Document Type


Publication Date



Various factors are responsible for injuries that occur in the U.S. Army soldiers. In particular, rucksack load carriage equipment influences the stability of the lower extremities and possibly affects gait balance. The objective of this investigation was to assess the gait and local dynamic stability of the lower extremity of five subjects as they performed a simulated rucksack march on a treadmill. The Motek Gait Real-time Interactive Laboratory (GRAIL) was utilized to replicate the environment of the rucksack march. The first walking trial was without a rucksack and the second set was executed with the All-Purpose Lightweight Individual Carrying Equipment (ALICE), an older version of the rucksack, and the third set was executed with the newer rucksack version, Modular Lightweight Load Carrying Equipment (MOLLE). In this experiment, the Inertial Measurement Unit (IMU) system, Dynaport was used to measure the ambulatory data of the subject. This experiment required subjects to walk continuously for 200 seconds with a 20kg rucksack, which simulates the real rucksack march training. To determine the dynamic stability of different load carriage and normal walking condition, Local Dynamic Stability (LDS) was calculated to quantify its stability. The results presented that comparing Maximum Lyapunov Exponent (LyE) of normal walking was significantly lower compared to ALICE (P=0.000007) and MOLLE (P=0.00003), however, between ALICE and MOLLE rucksack walking showed no significant difference (P=0.441). The five subjects showed significantly improved dynamic stability when walking without a rucksack in comparison with wearing the equipment. In conclusion, we discovered wearing a rucksack result in a significant (P < 0.0001) reduction in dynamic stability.


This article was originally published in International Journal of Prognostics and Health Management, volume 12, issue 4, in 2021.

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.