Document Type


Publication Date



Although Support Vector Machines (SVM) are widely used for classifying human motion patterns, their application in the automatic recognition of dynamic and static activities of daily life in the healthy older adults is limited. Using a body mounted wireless inertial measurement unit (IMU), this paper explores the use of an SVM approach for classifying dynamic (walking) and static (sitting, standing and lying) activities of the older adults. Specifically, data formatting and feature extraction methods associated with IMU signals are discussed. To evaluate the performance of the SVM algorithm, the effects of two parameters involved in SVM algorithm—the soft margin constant C and the kernel function parameter —are investigated. The changes associated with adding white-noise and pink-noise on these two parameters along with adding different sources of movement variations (i.e., localized muscle fatigue and mixed activities) are further discussed. The results indicate that the SVM algorithm is capable of keeping high overall accuracy by adjusting the two parameters for dynamic as well as static activities, and may be applied as a tool for automatically identifying dynamic and static activities of daily life in the older adults.


This article was originally published in Sci, volume 2, in 2020.

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.