Document Type


Publication Date



Health interventions using real-time sensing technology are characterized by intensive longitudinal data, which has the potential to enable nuanced evaluations of individuals’ responses to treatment. Existing analytic tools were not developed to capitalize on this opportunity as they typically focus on first-order findings such as changes in the level and/or slope of outcome variables over different intervention phases. This paper introduces an exploratory, Markov-based empirical transition method that offers a more comprehensive assessment of behavioral responses when intensive longitudinal data are available. The procedure projects a univariate time-series into discrete states and empirically determines the probability of transitioning from one state to another. State transition probabilities are summarized separately in phase-specific transition matrices. Comparing transition matrices illuminates intricate, quantifiable differences in behavior between intervention phases. Statistical significance is estimated via bootstrapping techniques. This paper introduces the methodology via three case studies from a secondhand smoke reduction trial utilizing real-time air particle sensors. Analysis enabled the identification of complex phenomena such as avoidance and escape behavior in response to punitive contingencies for tobacco use. Additionally, the largest changes in behavior dynamics were associated with the introduction of behavioral feedback. The Markov approach‘s ability to elucidate subtle behavioral details has not typically been feasible with standard methodologies, mainly due to historical limitations associated with infrequent repeated measures. These results suggest that the evaluation of intervention effects in data-intensive single-case designs can be enhanced, providing rich information that can ultimately be used to develop interventions uniquely tailored to specific individuals.


NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Biomedical Informatics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be subsequently published in Journal of Biomedical Informatics in 2018. DOI: 10.1016/j.jbi.2018.07.023

The Creative Commons license below applies only to this version of the article.



Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.