Document Type


Publication Date



Diabetes mellitus causes several detrimental effects on the ocular surface, including compromised barrier function and an increased risk of infections. The glycocalyx plays a vital role in barrier function. The present study was designed to test the effect of a high glucose level on components of glycocalyx. Stratified human corneal and conjunctival epithelial cells were exposed to a high glucose concentration for 24 and 72 h. Changes in Mucin (MUC) 1, 4, 16 expression were quantified using real-time PCR and ELISA. Rose bengal and jacalin staining were used to assess the spatial distribution of MUC16 and O-glycosylation. Changes in the gene expression of five glycosyltransferases and forty-two proteins involved in cell proliferation and the cell cycle were also quantified using PCR and a gene array. High glucose exposure did not affect the level or spatial distribution of membrane-tethered MUC 1, 4, and 16 either in the corneal or conjunctival epithelial cells. No change in gene expression in glycosyltransferases was observed, but a decrease in the gene expression of proteins involved in cell proliferation and the cell cycle was observed. A high-glucose-mediated decrease in gene expression of proteins involved in cellular proliferation of corneal and conjunctival epithelial cells may be one of the mechanisms underlying a diabetes-associated decrease in ocular surface’s glycocalyx.


This article was originally published in International Journal of Molecular Sciences, volume 23, in 2022.


The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.