Document Type

Article

Publication Date

1-8-2022

Abstract

Small- and intermediate-conductance Ca2+-activated potassium (KCa2.x and KCa3.1, also called SK and IK) channels are activated exclusively by a Ca2+-calmodulin gating mechanism. Wild-type KCa2.3 channels have a Ca2+ EC50 value of ∼0.3 μM, while the apparent Ca2+ sensitivity of wild-type KCa3.1 channels is ∼0.27 μM. Heterozygous genetic mutations of KCa2.3 channels have been associated with Zimmermann-Laband syndrome and idiopathic noncirrhotic portal hypertension, while KCa3.1 channel mutations were reported in hereditary xerocytosis patients. KCa2.3_S436C and KCa2.3_V450L channels with mutations in the S45A/S45B helices exhibited hypersensitivity to Ca2+. The corresponding mutations in KCa3.1 channels also elevated the apparent Ca2+ sensitivity. KCa3.1_S314P, KCa3.1_A322V and KCa3.1_R352H channels with mutations in the HA/HB helices are hypersensitive to Ca2+, whereas KCa2.3 channels with the equivalent mutations are not. The different effects of the equivalent mutations in the HA/HB helices on the apparent Ca2+ sensitivity of KCa2.3 and KCa3.1 channels may imply distinct modulation of the two channel subtypes by the HA/HB helices. AP14145 reduced the apparent Ca2+ sensitivity of the hypersensitive mutant KCa2.3 channels, suggesting the potential therapeutic usefulness of negative gating modulators.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Cell Calcium. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Cell Calcium, volume 102, in 2022. https://doi.org/10.1016/j.ceca.2022.102538

The Creative Commons license below applies only to this version of the article.

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Available for download on Sunday, January 08, 2023

Share

COinS