Document Type


Publication Date




The usefulness of circulating tumor DNA (ctDNA) in detecting mutations and monitoring treatment response has not been well studied beyond a few actionable biomarkers in non-small cell lung cancer (NSCLC).

Research Question

How does the usefulness of ctDNA analysis compare with that of solid tumor biopsy analysis in patients with NSCLC?


We retrospectively evaluated 370 adult patients with NSCLC treated at the City of Hope between November 2015 and August 2019 to assess the usefulness of ctDNA in mutation identification, survival, concordance with matched tissue samples in 32 genes, and tumor evolution.


A total of 1,688 somatic mutations were detected in 473 ctDNA samples from 370 patients with NSCLC. Of the 473 samples, 177 showed at least one actionable mutation with currently available Food and Drug Administration-approved NSCLC therapies. MET and CDK6 amplifications co-occurred with BRAF amplifications (false discovery rate [FDR], < 0.01), and gene-level mutations were mutually exclusive in KRAS and EGFR (FDR, 0.0009). Low cumulative percent ctDNA levels were associated with longer progression-free survival (hazard ratio [HR], 0.56; 95% CI, 0.37-0.85; P = .006). Overall survival was shorter in patients harboring BRAF mutations (HR, 2.35; 95% CI, 1.24-4.6; P = .009), PIK3CA mutations (HR, 2.77; 95% CI, 1.56-4.9; P < .001) and KRAS mutations (HR, 2.32; 95% CI, 1.30-4.1; P = .004). Gene-level concordance was 93.8%, whereas the positive concordance rate was 41.6%. More mutations in targetable genes were found in ctDNA than in tissue biopsy samples. Treatment response and tumor evolution over time were detected in repeated ctDNA samples.


Although ctDNA analysis exhibited similar usefulness to tissue biopsy analysis, more mutations in targetable genes were missed in tissue biopsy analyses. Therefore, the evaluation of ctDNA in conjunction with tissue biopsy samples may help to detect additional targetable mutations to improve clinical outcomes in advanced NSCLC.


This article was originally published in Journal, volume number, issue number, in year.


The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.