Document Type


Publication Date



The small intestine generally transports dietary fats to circulation in triglyceride (TG)-rich lipoproteins. The two main intestinal lipoproteins are chylomicron (CM) and very low-density lipoprotein (VLDL). Unfortunately, studies on the CM biogenesis and intestinal transport of dietary fats have been hampered by the lack of an adequate in vitro model. In this study, we investigated the possible factors that might increase the efficiency of CM production by Caco-2 cells. We utilized sequential NaCl gradient ultracentrifugation to isolate the CMs that were secreted by the Caco-2 cells. To confirm the successful isolation of the CMs, we performed Fat Red 7B staining, TG reading, apolipoprotein B (ApoB) measurement, and transmission electron microcopy (TEM) analysis. We then tested the effects of cell differentiation, oleic acid, mono-olein, egg lecithin, incubation time, and collagen matrix on CM secretion. We found that cell differentiation, oleic acid, and lecithin were critical for CM secretion. Using the Transwell system, we further confirmed that the CMs produced by our Caco-2 cells contained significant amount of TGs and ApoB-48 such that they could be detected without the use of isotope labeling. In conclusion, when fully differentiated Caco-2 were challenged with oleic acid, lecithin, and sodium taurocholate, 21% of their total number of lipoproteins were CMs with the diameter of 80-200 nm.


This article was originally published in Physiological Reports, volume 2, issue 6, in 2014. DOI: 10.14814/phy2.12018

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.