Document Type


Publication Date



With the first reports on the possibility of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas)9 surfacing in 2005, the enthusiasm for protein silencing via nucleic acid delivery experienced a resurgence following a period of diminished enthusiasm due to challenges in delivering small interfering RNAs (siRNA), especially in vivo. However, delivering the components necessary for this approach into the nucleus is challenging, maybe even more than the cytoplasmic delivery of siRNA. We previously reported the birth of peptide/lipid-associated nucleic acids (PLANAs) for siRNA delivery. This project was designed to investigate the efficiency of these nanoparticles for in vitro delivery of CRISPR/Cas9 ribonucleoproteins. Our initial experiments indicated higher toxicity for PLANAs with the more efficient reverse transfection method. Therefore, polyethylene glycol (PEG) was added to the composition for PEGylation of the nanoparticles by partially replacing two of the lipid components with the PEG-conjugated counterparts. The results indicated a more significant reduction in the toxicity of the nanoparticle, less compromise in encapsulation efficiency and more PEGylation of the surface of the nanoparticles using DOPE-PEG2000 at 50 % replacement of the naïve lipid. The cell internalization and transfection efficiency showed a comparable efficiency for the PEGylated and non-PEGylated PLANAs and the commercially available Lipofectamine™ CRISPRMAX™. Next Generation Sequencing of the cloned cells showed a variety of indels in the transfected cell population. Overall, our results indicate the efficiency and safety of PEGylated PLANAs for in vitro transfection with CRISPR/Cas9 ribonucleoproteins. PEGylation has been studied extensively for in vivo delivery, and PEGylated PLANAs will be candidates for future in vivo studies.


This article was originally published in European Journal of Pharmaceutical Sciences, volume 195, in 2024.

This article was the recipient of a Chapman University Supporting Open Access Research and Scholarship (SOARS) award. (13924 kB)
Supplementary materials


The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.