Document Type


Publication Date




To adapt and validate a previously developed decision tree for youth to identify bedrest for use in preschool children.


Parents of healthy preschool (3-6-year-old) children (n = 610; 294 males) were asked to help them to wear an accelerometer for 7 to 10 days and 24 hours/day on their waist. Children with ≥3 nights of valid recordings were randomly allocated to the development (n = 200) and validation (n = 200) groups. Wear periods from accelerometer recordings were identified minute-by-minute as bedrest or wake using visual identification by two independent raters. To automate visual identification, chosen decision tree (DT) parameters (block length, threshold, bedrest-start trigger, and bedrest-end trigger) were optimized in the development group using a Nelder-Mead simplex optimization method, which maximized the accuracy of DT-identified bedrest in 1-min epochs against synchronized visually identified bedrest (n = 4,730,734). DT's performance with optimized parameters was compared with the visual identification, commonly used Sadeh’s sleep detection algorithm, DT for youth (10-18-years-old), and parental survey of sleep duration in the validation group.


On average, children wore an accelerometer for 8.3 days and 20.8 hours/day. Comparing the DT-identified bedrest with visual identification in the validation group yielded sensitivity = 0.941, specificity = 0.974, and accuracy = 0.956. The optimal block length was 36 min, the threshold 230 counts/min, the bedrest-start trigger 305 counts/min, and the bedrest-end trigger 1,129 counts/min. In the validation group, DT identified bedrest with greater accuracy than Sadeh’s algorithm (0.956 and 0.902) and DT for youth (0.956 and 0.861) (both P<0.001). Both DT (564±77 min/day) and Sadeh’s algorithm (604±80 min/day) identified significantly less bedrest/sleep than parental survey (650±81 min/day) (both P<0.001).


The DT-based algorithm initially developed for youth was adapted for preschool children to identify time spent in bedrest with high accuracy. The DT is available as a package for the R open-source software environment (“PhysActBedRest”).


This article was originally published in PLoS ONE, volume 16, issue 1, in 2021.

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.