Document Type


Publication Date



Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts.

Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the category of algebras for the functor is obtained compositionally from the presentations of the underlying category and of the functor.

Part II investigates algebras for a functor over ind-completions and extends the theorem of Jónsson and Tarski on canonical extensions of Boolean algebras with operators to this setting.

Part III shows, based on Part I, how to associate a finitary logic to any finite-sets preserving functor T . Based on Part II we prove the logic to be strongly complete under a reasonable condition on T.


This article was originally published in Logical Methods in Computer Science, volume 8, issue 3, in 2012. DOI: 10.2168/LMCS-8(3:14)2012


The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.