Student Scholar Symposium Abstracts and Posters

Document Type


Publication Date

Spring 5-2020

Faculty Advisor(s)

Dr. Jerry LaRue, Dr. Bingjie Zhang


Catalysis provides pathways for efficient and selective chemical reactions through the lowering of energy barriers for desired products. Gold nanoparticles (AuNP) show excellent promise as plasmonic catalysts. Localized surface plasmon resonances are oscillations of the electron bath at the surface of a nanoparticle that generate energetically intense electric fields and rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize strongly bound oxygen atoms through occupation of accessible anti-bonding orbitals. Tuning the anti-bonding orbitals to make them accessible for occupancy will be achieved by coating the AuNP in a thin layer of another transition metal, such as ruthenium, silver, or platinum, creating a bimetallic nanoparticle. We will initially study the carbon monoxide (CO) oxidation reaction, where the oxygen species is strongly bound and limits reactivity, in the presence of ruthenium-gold bimetallic nanoparticles (Ru-AuNPs). The bond between oxygen and ruthenium is typically strong, which inhibits reaction rates. Excited electrons from the AuNPs can transfer to the oxygen-ruthenium anti-bonding orbital. Electrons occupy the anti-bonding orbital, weakening the bond between the atomic oxygen and the Ru-AuNPs and making the atomic oxygen much more reactive. We will be studying the physical and chemical characteristics of the synthesized Ru-AuNP catalysts with spectroscopic and microscopic techniques including: UV Vis spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM).


Presented at the Spring 2020 Student Scholar Symposium at Chapman University.