Date of Award

Spring 5-6-2019

Document Type


Degree Name

Doctor of Philosophy (PhD)


Computational and Data Sciences

First Advisor

Dr Hesham El-Askary

Second Advisor

Dr Erik Linstead

Third Advisor

Dr Thomas Piechota


This dissertation is an evaluation of the generalization characteristics of machine learning classifiers as applied to the detection of coral reefs using remote sensing images. Three scientific studies have been conducted as part of this research: 1) Evaluation of Spatial Generalization Characteristics of a Robust Classifier as Applied to Coral Reef Habitats in Remote Islands of the Pacific Ocean 2) Coral Reef Change Detection in Remote Pacific Islands using Support Vector Machine Classifiers 3) A Generalized Machine Learning Classifier for Spatiotemporal Analysis of Coral Reefs in the Red Sea. The aim of this dissertation is to propose and evaluate a methodology for developing a robust machine learning classifier that can effectively be deployed to accurately detect coral reefs at scale. The hypothesis is that Landsat data can be used to train a classifier to detect coral reefs in remote sensing imagery and that this classifier can be trained to generalize across multiple sites. Another objective is to identify how well different classifiers perform under the generalized conditions and how unique the spectral signature of coral is as environmental conditions vary across observation sites. A methodology for validating the generalization performance of a classifier to unseen locations is proposed and implemented (Controlled Parameter Cross-Validation,). Analysis is performed using satellite imagery from nine different locations with known coral reefs (six Pacific Ocean sites and three Red Sea sites). Ground truth observations for four of the Pacific Ocean sites and two of the Red Sea sites were used to validate the proposed methodology. Within the Pacific Ocean sites, the consolidated classifier (trained on data from all sites) yielded an accuracy of 75.5% (0.778 AUC). Within the Red Sea sites, the consolidated classifier yielded an accuracy of 71.0% (0.7754 AUC). Finally, long-term change detection analysis is conducted for each of the sites evaluated. In total, over 16,700 km2 was analyzed for benthic cover type and cover change detection analysis. Within the Pacific Ocean sites, decreases in coral cover ranged from 25.3% reduction (Kingman Reef) to 42.7% reduction (Kiritimati Island). Within the Red Sea sites, decrease in coral cover ranged from 3.4% (Umluj) to 13.6% (Al Wajh).

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.