Date of Award

Spring 5-2020

Document Type


Degree Name

Doctor of Philosophy (PhD)


Computational and Data Sciences

First Advisor

Gennady M Verkhivker

Second Advisor

Cyril Rakovski


Cancer arises from the accumulation of somatic mutations and genetic alterations in cell division checkpoints and apoptosis, this often leads to abnormal tumor proliferation. Proper classification of cancer-linked driver mutations will considerably help our understanding of the molecular dynamics of cancer. In this study, we compared several cancer-specific predictive models for prediction of driver mutations in cancer-linked genes that were validated on canonical data sets of functionally validated mutations and applied to a raw cancer genomics data. By analyzing pathogenicity prediction and conservation scores, we have shown that evolutionary conservation scores play a pivotal role in the classification of cancer drivers and were the most informative features in the driver mutation classification. Through extensive comparative analysis with structure-functional experiments and multicenter mutational calling data from PanCancer Atlas studies, we have demonstrated the robustness of our models and addressed the validity of computational predictions. We evaluated the performance of our models using the standard diagnostic metrics such as sensitivity, specificity, area under the curve and F-measure. To address the interpretability of cancer-specific classification models and obtain novel insights about molecular signatures of driver mutations, we have complemented machine learning predictions with structure-functional analysis of cancer driver mutations in several key tumor suppressor genes and oncogenes. Through the experiments carried out in this study, we found that evolutionary-based features have the strongest signal in the machine learning classification VII of driver mutations and provide orthogonal information to the ensembled-based scores that are prominent in the ranking of feature importance.

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.