Document Type

Article

Publication Date

10-8-2024

Abstract

Terrestrial evapotranspiration is the second-largest component of the land water cycle, linking the water, energy, and carbon cycles and influencing the productivity and health of ecosystems. The dynamics of ET across a spectrum of spatiotemporal scales and their controls remain an active focus of research across different science disciplines. Here, we provide an overview of the current state of ET science across in situ measurements, partitioning of ET, and remote sensing, and discuss how different approaches complement one another based on their advantages and shortcomings. We aim to facilitate collaboration among a cross-disciplinary group of ET scientists to overcome the challenges identified in this paper and ultimately advance our integrated understanding of ET.

Comments

This article was originally published in Water Resources Research, volume 60, issue 10, in 2024. https://doi.org/10.1029/2024WR037622

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.