Document Type

Article

Publication Date

2015

Abstract

The effective classification and tracking of cells obtained from modern staining techniques has significant limitations due to the necessity of having to train and utilize a human expert in the field who must manually identify each cell in each slide. Often times these slides are filled with noise cells that are not of particular interest to the researcher. The use of computational methods has the ability to effectively and efficiently enhance image quality, as well as identify and track target cell types over large data sets. Here we present a computational approach to the in vitro tracking of T cells in time-lapse imagery capable of scaling to hundreds of cells and applicable to multiple staining techniques.

Comments

This article was originally published in Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics in 2015. DOI: 10.1145/2808719.2811457

Peer Reviewed

1

Copyright

The authors

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.