Document Type

Article

Publication Date

2011

Abstract

In this paper we show that the systems introduced in [12] and [22] are equivalent, both giving the notion of quaternionic Hermitian monogenic functions. This makes it possible to prove that the free resolution associated to the system is linear in any dimension, and that the first cohomology module is nontrivial, thus generalizing the results in [22]. Furthermore, exploiting the decomposition of the spinor space into sp(m)-irreducibles, we find a certain number of "algebraic" compatibility conditions for the system, suggesting that the usual spinor reduction is not applicable.

Comments

This article was originally published in Advances in Geometry, volume 11, issue 1, in 2011. DOI: 10.1515/ADVGEOM.2010.045

Peer Reviewed

1

Copyright

Walter de Gruyter GMBH

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.