Document Type

Article

Publication Date

2-12-2020

Abstract

The application of nanotechnology in medicine is gaining popularity due to its ability to increase the bioavailability and biosorption of numerous drugs. Chrysin, a flavone constituent of Orocylumineicum vent is well‐reported for its biological properties. However, its therapeutic potential has not been fully exploited due to its poor solubility and bioavailability. In the present study, chrysin was encapsulated into chitosan nanoparticles using TPP as a linker. The nanoparticles were characterized and investigated for their anti‐biofilm activity against Staphylococcus aureus. At sub‐Minimum Inhibitory Concentration, the nanoparticles exhibited enhanced anti‐biofilm efficacy against S. aureus as compared to its bulk counterparts, chrysin and chitosan. The decrease in the cell surface hydrophobicity and exopolysaccharide production indicated the inhibitory effect of the nanoparticles on the initial stages of biofilm development. The growth curve analysis revealed that at a sub‐MIC, the nanoparticles did not exert a bactericidal effect against S. aureus. The findings indicated the anti‐biofilm activity of the chrysin‐loaded chitosan nanoparticles and their potential application in combating infections associated with S. aureus.

Comments

This article was originally published in Pathogens, volume 9, in 2020. https://doi.org/10.3390/pathogens9020115

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.