Document Type

Article

Publication Date

5-2008

Abstract

Nanomaterials are typically considered as solid physical structures that comprise grain boundaries at the resolution of less than 100 nanometers, whereby nanotechnologies are depicted as dealing with the design of various applications based on employing the former. Some of the essential features of nanomaterials and the scientific approaches to their investigation are discussed in the course of this work. The real reason for the current scientific and technological interest in the physical effects at nanoscale is linked with the historic trend of refinement of human knowledge and of the corresponding ability to manipulate with the structural patterns of the Universe. Interesting novel properties of nanomaterials are presented as resulting from the interplay between the surface properties and quantum effects at nanoscale. Examples of peculiar combination properties that materials can exhibit with the transition to nanosized form are mentioned, with a particular emphasis on the nanoscopic aggregates of water molecules. Specific challenges tied with the further growth of the field, including the prospectives of functional superstructuring, biomimicry, green chemistry, and the interdisciplinary approach to research, are eventually outlined.

Comments

This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Current Nanoscience, volume 4, issue 2, in 2008 following peer review. The definitive publisher-authenticated version is available online at DOI: 10.2174/157341308784340903.

Copyright

Bentham Science Publishers

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.