Document Type
Article
Publication Date
10-4-2016
Abstract
In the fight against drug-resistant bacteria, accurate and high-throughput detection is essential. Here, a bimaterial microcantilever with an embedded microfluidic channel with internal surfaces chemically or physically functionalized with receptors selectively captures the bacteria passing through the channel. Bacterial adsorption inside the cantilever results in changes in the resonance frequency (mass) and cantilever deflection (adsorption stress). The excitation of trapped bacteria using infrared radiation (IR) causes the cantilever to deflect in proportion to the infrared absorption of the bacteria, providing a nanomechanical infrared spectrum for selective identification. We demonstrate the in situ detection and discrimination of Listeria monocytogenes at a concentration of single cell per ml. Trapped Escherichia coli in the microchannel shows a distinct nanomechanical response when exposed to antibiotics. This approach, which combines enrichment with three different modes of detection, can serve as a platform for the development of a portable, high-throughput device for use in the real-time detection of bacteria and their response to antibiotics.
Recommended Citation
Etayash, H. et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat. Commun. 7, 12947 doi: 10.1038/ncomms12947 (2016).
Supplementary Information
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Included in
Biophysics Commons, Biotechnology Commons, Other Biochemistry, Biophysics, and Structural Biology Commons, Other Biomedical Engineering and Bioengineering Commons
Comments
This article was originally published in Nature Communications, volume 7, in 2016. DOI: 10.1038/ncomms12947