Document Type
Article
Publication Date
2-2014
Abstract
Dopamine plays a number of important physiological roles. However, activation of dopamine receptor type-5 (DR5) and its effect in renal epithelial cells have not been studied. Here, we show for the first time that DR5 is localized to primary cilia of LLCPK kidney cells. Renal epithelial cilia are mechanosensory organelles that sense and respond to tubular fluid-flow in the kidney. To determine the roles of DR5 and sensory cilia, we used dopamine to non-selectively and fenoldopam to selectively activate ciliary DR5. Compared to mock treatment, dopamine treated cells significantly increases the length of cilia. Fenoldopam further increases the length of cilia compared to dopamine treated cells. The increase in cilia length also increases the sensitivity of the cells in response to fluid-shear stress. The graded responses to dopamine- and fenoldopam-induced increase in cilia length further show that sensitivity to fluid-shear stress correlates to the length of cilia. Together, our studies suggest for the first time that dopamine or fenoldopam is an exciting agent that enhances structure and function of primary cilia. We further propose that dopaminergic agents can be used in "cilio-therapy" to treat diseases associated with abnormal cilia structure and/or function.
Recommended Citation
Upadhyay VS, Muntean BS, Kathem SH, Hwang JJ, Aboualaiwi WA, Nauli SM. Roles of dopamine receptor on chemosensory and mechanosensory primary cilia in renal epithelial cells. Front Physiol. 2014 Feb 26;5:72.
DOI: 10.3389/fphys.2014.00072
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Included in
Cells Commons, Endocrine System Commons, Organic Chemicals Commons, Pharmacy and Pharmaceutical Sciences Commons, Urogenital System Commons
Comments
This article was originally published in Frontiers in Physiology, volume 26, issue 5, in February 2014. DOI: 10.3389/fphys.2014.00072