Document Type
Article
Publication Date
2012
Abstract
Developing vehicles for the delivery of therapeutic molecules, like siRNA, is an area of active research. Nanoparticles composed of bovine serum albumin, stabilized via the adsorption of poly-L-lysine (PLL), have been shown to be potentially inert drug-delivery vehicles. With the primary goal of reducing nonspecific protein adsorption, the effect of using comb-type structures of poly(ethylene glycol) (1 kDa, PEG) units conjugated to PLL (4.2 and 24 kDa) on BSA-NP properties, apparent siRNA release rate, cell viability, and cell uptake were evaluated. PEGylated PLL coatings resulted in NPs with ζ-potentials close to neutral. Incubation with platelet-poor plasma showed the composition of the adsorbed proteome was similar for all systems. siRNA was effectively encapsulated and released in a sustained manner from all NPs. With 4.2 kDa PLL, cellular uptake was not affected by the presence of PEG, but PEG coating inhibited uptake with 24 kDa PLL NPs. Moreover, 24 kDa PLL systems were cytotoxic and this cytotoxicity was diminished upon PEG incorporation. The overall results identified a BSA-NP coating structure that provided effective siRNA encapsulation while reducing ζ-potential, protein adsorption, and cytotoxicity, necessary attributes for in vivo application of drug-delivery vehicles.
Recommended Citation
Yogasundaram, Haran, Markian Stephan Bahniuk, Harsh-Deep Singh, Hamidreza Montezari Aliabadi, Hasan Uludaǧ, and Larry David Unsworth. "BSA Nanoparticles for siRNA Delivery: Coating Effects on Nanoparticle Properties, Plasma Protein Adsorption, and In Vitro siRNA Delivery." International journal of biomaterials 2012 (2012). doi: 10.1155/2012/584060
Copyright
The authors
Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.
Included in
Medical Genetics Commons, Nanomedicine Commons, Other Chemicals and Drugs Commons, Pharmaceutical Preparations Commons, Pharmaceutics and Drug Design Commons
Comments
This article was originally published in International Journal of Biomaterials, volume 2012, in 2012. DOI: 10.1155/2012/584060