Document Type


Publication Date



We demonstrate how to efficiently implement extremely high-dimensional compressive imaging of a bi-photon probability distribution. Our method uses fast-Hadamard-transform Kronecker-based compressive sensing to acquire the joint space distribution. We list, in detail, the operations necessary to enable fast-transform-based matrix-vector operations in the joint space to reconstruct a 16.8 million-dimensional image in less than 10 minutes. Within a subspace of that image exists a 3.2 million-dimensional bi-photon probability distribution. In addition, we demonstrate how the marginal distributions can aid in the accuracy of joint space distribution reconstructions.


This article was originally published in Optics Express, volume 23, issue 21, in 2015.

Peer Reviewed




Included in

Optics Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.