Document Type


Publication Date



The northeastern parts of China, including Beijing city, the capital of China, were hit by an intense dust storm on 15 April 2015. The present paper discusses aerosol and meteorological parameters associated with this dust storm event. The back trajectory clearly shows that the dust originated from Inner Mongolia, the border of China, and Mongolia regions. Pronounced changes in aerosol and meteorological parameters along the dust track were observed. High aerosol optical depth (AOD) with low Ångström exponent (AE) are characteristics of coarse-mode dominated dust particles in the wavelength range 440–870 nm during the dusty day. During dust storm, dominance of coarse aerosol concentrations is observed in the aerosol size distribution (ASD). The single scattering albedo (SSA) retrieved from AERONET station shows increase with higher wavelength on the dusty day, and is found to be higher compared to the days prior to and after the dust event, supported with high values of the real part and decrease in the imaginary part of the refractive index (RI).With regard to meteorological parameters, during the dusty day, CO volume mixing ratio (COVMR) is observed to decrease, from the surface up to mid-altitude, compared with the non-dusty days due to strong winds. O3 volume mixing ratio (O3VMR) enhances at the increasing altitudes (at the low-pressure levels), and decreases near the surface at the pressure levels 500–925 hPa during the dust event, compared with the non-dusty periods. An increase in the H2O mass mixing ratio (H2OMMR) is observed during dusty periods at the higher altitudes equivalent to the pressure levels 500 and 700 hPa. The mid-altitude relative humidity (RH) is observed to decrease at the pressure levels 700 and 925 hPa during sand storm days. With the onset of the dust storm event, the RH reduces at the surface level.


This article was originally published in Remote Sensing, volume 10, in 2018. DOI: 10.3390/rs10060957

Peer Reviewed



The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.