#### Document Type

Article

#### Publication Date

4-10-2018

#### Abstract

Two topics, evolving rapidly in separate fields, were combined recently: the out-of-time-ordered correlator (OTOC) signals quantum-information scrambling in many-body systems. The Kirkwood-Dirac (KD) quasiprobability represents operators in quantum optics. The OTOC was shown to equal a moment of a summed quasiprobability [Yunger Halpern, Phys. Rev. A 95, 012120 (2017)]. That quasiprobability, we argue, is an extension of the KD distribution. We explore the quasiprobability's structure from experimental, numerical, and theoretical perspectives. First, we simplify and analyze Yunger Halpern's weak-measurement and interference protocols for measuring the OTOC and its quasiprobability. We decrease, exponentially in system size, the number of trials required to infer the OTOC from weak measurements. We also construct a circuit for implementing the weak-measurement scheme. Next, we calculate the quasiprobability (after coarse graining) numerically and analytically: we simulate a transverse-field Ising model first. Then, we calculate the quasiprobability averaged over random circuits, which model chaotic dynamics. The quasiprobability, we find, distinguishes chaotic from integrable regimes. We observe nonclassical behaviors: the quasiprobability typically has negative components. It becomes nonreal in some regimes. The onset of scrambling breaks a symmetry that bifurcates the quasiprobability, as in classical-chaos pitchforks. Finally, we present mathematical properties. We define an extended KD quasiprobability that generalizes the KD distribution. The quasiprobability obeys a Bayes-type theorem, for example, that exponentially decreases the memory required to calculate weak values, in certain cases. A time-ordered correlator analogous to the OTOC, insensitive to quantum-information scrambling, depends on a quasiprobability closer to a classical probability. This work not only illuminates the OTOC's underpinnings, but also generalizes quasiprobability theory and motivates immediate-future weak-measurement challenges.

#### Recommended Citation

N. Y. Hunger, B. Swingle, and J. Dressel, Phys. Rev. A 97, 042105 (2018). doi: 10.1103/PhysRevA.97.042105

#### Peer Reviewed

1

#### Copyright

American Physical Society

#### Included in

Atomic, Molecular and Optical Physics Commons, Condensed Matter Physics Commons, Other Physics Commons, Quantum Physics Commons

## Comments

This article was originally published in

Physical Review A, volume 97, in 2018. DOI: 10.1103/PhysRevA.97.042105