Document Type


Publication Date



Modular lattices, introduced by R. Dedekind, are an important subvariety of lattices that includes all distributive lattices. Heitzig and Reinhold [8] developed an algorithm to enumerate, up to isomorphism, all finite lattices up to size 18. Here we adapt and improve this algorithm to construct and count modular lattices up to size 24, semimodular lattices up to size 22, and lattices of size 19. We also show that 2 n−3 is a lower bound for the number of nonisomorphic modular lattices of size n.


This is a pre-copy-editing, author-produced PDF of an article accepted for publication in journal, volume, issue, in year following peer review. The final publication is available at Springer via DOI: 10.1007/s00012-015-0348-x

Peer Reviewed




Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.