Document Type


Publication Date



This paper studies generalizations of relation algebras to residuated lattices with a unary De Morgan operation. Several new examples of such algebras are presented, and it is shown that many basic results on relation algebras hold in this wider setting. The variety qRA of quasi relation algebras is defined and shown to be a conservative expansion of involutive FL-algebras. Our main result is that equations in qRA and several of its subvarieties can be decided by a Gentzen system, and that these varieties are generated by their finite members.


This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Algebra Universalis, volume 69, issue 1, in 2013 following peer review. The final publication is available at Springer at DOI: 10.1007/s00012-012-0215-y

Peer Reviewed




Included in

Algebra Commons



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.