Document Type

Article

Publication Date

9-25-2023

Abstract

Quantum interference phenomena are widely viewed as posing a challenge to the classical worldview. Feynman even went so far as to proclaim that they are the only mystery and the basic peculiarity of quantum mechanics. Many have also argued that basic interference phenomena force us to accept a number of radical interpretational conclusions, including: that a photon is neither a particle nor a wave but rather a Jekyll-and-Hyde sort of entity that toggles between the two possibilities, that reality is observerdependent, and that systems either do not have properties prior to measurements or else have properties that are subject to nonlocal or backwards-in-time causal influences. In this work, we show that such conclusions are not, in fact, forced on us by basic interference phenomena. We do so by describing an alternative to quantum theory, a statistical theory of a classical discrete field (the ‘toy field theory’) that reproduces the relevant phenomenology of quantum interference while rejecting these radical interpretational claims. It also reproduces a number of related interference experiments that are thought to support these interpretational claims, such as the Elitzur-Vaidman bomb tester, Wheeler’s delayed-choice experiment, and the quantum eraser experiment. The systems in the toy field theory are field modes, each of which possesses, at all times, both a particle-like property (a discrete occupation number) and a wave-like property (a discrete phase). Although these two properties are jointly possessed, the theory stipulates that they cannot be jointly known. The phenomenology that is generally cited in favour of nonlocal or backwards-in-time causal influences ends up being explained in terms of inferences about distant or past systems, and all that is observer-dependent is the observer’s knowledge of reality, not reality itself.

Comments

This article was originally published in Quantum, volume 7, in 2023. https://doi.org/10.22331/q-2023-09-25-1119

Peer Reviewed

1

Copyright

The authors

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.