Document Type

Article

Publication Date

8-18-2018

Abstract

Formation of dextrorphan (DXT) from dextromethorphan (DXM) has been widely used to assess cytochrome P450 2D (CYP2D) activity. Additionally, the kinetics of CYP2D activity have been well characterized in the liver microsomes. However, studies in brain microsomes are limited due to the lower microsomal content and abundance of CYP2D in the brain relative to the liver. In the present study, we developed a micro-scale enzymatic incubation method, coupled with a sensitive UPLC-MS/MS assay for the quantitation of the rate of DXT formation from DXM in brain microsomes. Rat brain microsomes were incubated with different concentrations of DXM for various times. The reaction was stopped, and the proteins were precipitated by the addition of acetonitrile, containing internal standard (d3-DXT). After centrifugation, supernatant (2 μL) was injected onto a UPLC, C18 column with gradient elution. Analytes were quantitated using triple-quadrupole MS/MS with electrospray ionization in positive ion mode. The assay, which was validated for accuracy and precision in the linear range of 0.25 nM to 100 nM DXT, has a lower limit of quantitation of 0.125 fmol on the column. Using our optimized incubation and quantitation methods, we were able to reduce the incubation volume (25 μL), microsomal protein amount (5 μg), and incubation time (20 min), compared with reported methods. The method was successfully applied to estimation of the Michaelis-Menten (MM) kinetic parameters of dextromethorphan-O-demethylase activity in the rat brain microsomes (mean ± SD, n = 4), which showed a maximum velocity of 2.24 ± 0.42 pmol/min/mg and a MM constant of 282 ± 62 μM. It is concluded that by requiring far less biological material and time, our method represents a significant improvement over the existing techniques for investigation of CYP2D activity in rat brain microsomes.

Comments

NOTICE: this is the author’s version of a work that was accepted for publication in Journal of Chromatography B. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version will be subsequently published in Journal of Chromatography B in 2018. DOI:10.1016/j.jchromb.2018.08.011

The Creative Commons license below applies only to this version of the article.

Copyright

Elsevier

Creative Commons License

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Available for download on Thursday, August 20, 2020

Share

COinS