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A B S T R A C T

Lithological classification is essential for understanding the spatial distribution of rocks, especially in arid 
crystalline areas. Artificial intelligence (AI) recent advancements with multi-spectral satellite imagery have been 
utilized to enhance lithological mapping in these areas. Here we employed different AI models namely, Support 
Vector Machine (SVM), Random Forest Classification (RFC), Logistic Regression, XGBoost, and K-nearest 
neighbors (KNN) for lithological mapping. This was followed by the application of explainable AI (XAI) for 
lithological discrimination (LD) which is still not widely explored. Based on the highest accuracy and F1 score of 
the previously mentioned models, RFC model outperformed all of them, and hence, it was integrated with XAI, 
using the SHapley Additive exPlanations (SHAP) method.

This approach successfully identified critical multi-spectral features for LD in arid crystalline zones when 
applied on the Landsat-8, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and 
SRTM-DEM datasets covering the Hammash and the Wadi Fatimah areas in Egypt and the Kingdom of Saudi 
Arabia, respectively. Field validation in the Hammash area confirmed the RFC model’s efficacy, achieving a 
satisfactory 94% overall accuracy for 18 features. SHAP was able to identify the top ten features for proper LD 
over the Hammash area with 90.3% accuracy despite the complex nature of the ophiolitic mélange. For vali-
dation purposes, RCF was then utilized in the Wadi Fatimah region, using only the top 10 critical features 
rendered from the SHAP analysis. It performed well and had 93% accuracy. Notably, XAI/SHAP results indicated 
that elevation data, Landsat-8’s Green Band (B3), and the two ASTER SWIR bands (B5 and B6) were essential and 
significant for identifying island arc rocks. Moreover, the SHAP model effectively delineated complex mélange 
matrices, primarily using ASTER SWIR band (B8). Our findings highlight the successful combination of RFC with 
XAI for LD and its potential utilization in similar arid crystalline environments worldwide.

1. Introduction

Remote sensing (RS) plays a crucial role in lithological mapping, as 
the use of satellite data has significantly advanced geoscientists’ ability 
to visualize and understand Earth’s geological features. RS instruments 
capture reflected or absorbed electromagnetic spectra across different 
wavelengths, enabling the identification of objects based on their 
characteristic responses influenced by various chemical and physical 
properties (Clark and Roush, 1984; Cloutis, 1996). Until recently, 

several spectral-driven methods have been developed for lithological 
discrimination based on pixel-oriented concepts such as band rationing 
(BR) (Alifu et al., 2015; Pal et al., 2020; Sultan et al., 1986), spectral 
angle mapper (SAM) (Validabadi Bozcheloei and Tangestani, 2019; 
Zhang and Li, 2014), match filtering (MF) (Mehr et al., 2013; Rowan and 
Mars, 2003), and principal component analysis (PCA) (Amer et al., 
2010; Khalifa et al., 2021). In practical applications, spectral responses 
are influenced by factors such as spatial and spectral resolutions, at-
mospheric effects, soil presence, weathering, sub-pixel variations in 
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mineralogical and chemical composition, and vegetation cover. Even 
with extensive pre-processing steps like calibration, radiometric and 
geometric corrections, the spectral properties captured by RS for a 
particular rock type can differ markedly from the laboratory spectra of 
pure samples (Girija and Mayappan, 2019; Gupta, 2017).

In the current era of artificial intelligence (AI), the exponential 
growth in computing power and advancements in algorithms have made 
machine learning (ML) a widely adopted solution for tackling a range of 
geoscience challenges, including lithological discrimination (LD) 
(Karpatne et al., 2019; Morgan et al., 2023; Ouyang et al., 2024; Zhang 
et al., 2022).In geology and mineral exploration, ML plays a crucial role 
in LD, enhancing the objectivity and accuracy of lithological classifica-
tion (Shayeganpour et al., 2021a; Xie et al., 2018). However, challenges 
persist in recognizing certain lithology types, such as complex crystal-
line rocks. Multi-spectral bands of passive satellite images, such as 
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radi-
ometer) and Landsat-8 OLI (Operational Land Imager), integrated with 
ML algorithms, have been widely used for LD (Shirmard et al., 2022). 
Additionally, integrating these with the Digital Elevation Model (DEM) 
data can provide necessary bands for LD of crystalline rocks in arid 
mountainous regions (Baid et al., 2023; Ge et al., 2018b; Marzouki and 
Dridri, 2023).

Supervised ML classification (SMLC) models are widely used for LD, 
relying on training datasets containing labeled samples that provide 
essential information about the target variable (Kotsiantis, 2007; Witten 
et al., 2002). Notable SMLC methods used in LD include the maximum 
likelihood classifier (MLC)(Behnia et al., 2012; Ge et al., 2018b), 
K-nearest neighbors (K-NN) (Cracknell and Reading, 2014; Ge et al., 
2018b), naïve Bayes (NB)(Cracknell and Reading, 2014; Horrocks et al., 
2015), support vector machines (SVM) (Bachri et al., 2019; Shaye-
ganpour et al., 2021b), Random Forest Classifier (RFC) (He et al., 2015; 
Kuhn et al., 2018), and Artificial Neural Network (ANN) (Cracknell and 
Reading, 2014; Latifovic et al., 2018). Although SVM, RFC, and ANN 
models have performed best based on prior research, the RFC algorithm 
is preferred for LD classification for several reasons: (a) it reduces 
overfitting, which usually occurs in SVM; (b) ANN is more suitable for 
hyperspectral satellite images (Liu et al., 2021); (c) it works effectively 
with high-dimensional data (multi-spectral RS data); (d) it performs well 
in arid crystalline rocks (Cracknell and Reading, 2014; Kuhn et al., 
2018); (e) it can handle imbalanced data where ground truth points are 
scarce in uncommon and limited lithological units; (f) it exhibits notable 
resilience against outliers, can remove the "black-box" constraint of 
artificial neural networks, and provides an innovative approach to LD by 
assessing the relative importance of effective features and detecting the 
most significant ones (Palczewska et al., 2014); (g) it has limited bias 
and variance due to the vast number of trees.

Previous literature has shown that integrating state-of-the-art ML 
algorithms yields superior outcomes (Ge et al., 2018b; Temenos et al., 
2023). Understanding and explaining the model’s details can signifi-
cantly aid in assessing its capabilities. Numerous AI-based systems, 
particularly those based on ML, face criticism for being perceived as 
"black boxes." These systems showcase impressive decision-making 
performance based on their learned models but lack transparency in 
elucidating the rationale or mechanism behind their decisions 
(Linardatos et al., 2021). Traditionally, much of the previous AI research 
on LD has utilized these tools without delving deeply into the factors 
influencing their algorithmic behavior. Therefore, model explainability 
and interpretability are crucial for trusted AI. Explainable AI (XAI) 
techniques have become increasingly important in ML, especially for 
applications in critical domains like healthcare and finance 
(Sierra-Botero et al., 2024). These techniques provide interpretability 
and transparency to complex models, allowing stakeholders to under-
stand and trust the decision-making process. Among the commonly used 
explanatory techniques in ML are Local Interpretable Model-agnostic 
Explanations (LIME)(Garreau and Luxburg, 2020), Feature Importance 
Scores (Letoffe et al., 2024; Little et al., 2024), and SHapley Additive 

exPlanations (SHAP) (Arslan et al., 2022). LIME is a popular technique 
for explaining individual predictions by approximating the complex 
model locally with an interpretable model. It works by perturbing the 
input and observing how the predictions change, then fitting a simple 
model around the prediction to be explained (Garreau and Luxburg, 
2020, 2020; Zafar and Khan, 2019; Z. Zhou et al., 2021). Feature 
importance scores, such as Gini importance or permutation importance, 
provide a global view of which features contribute most to a model’s 
predictive accuracy (Little et al., 2024). On the other hand, SHAP values, 
based on Shapley values from cooperative game theory, have gained 
significant popularity in recent years. SHAP offers several advantages, 
including a solid theoretical foundation for fairly attributing predictions 
among features, the ability to provide both local and global explana-
tions, consistency in ensuring that changes in feature importance align 
with changes in the model, and model-agnostic applicability(Arslan 
et al., 2022; Futagami et al., 2021). SHAP has been successfully applied 
in various domains, including healthcare for predicting post-stroke 
adverse mental outcomes, finance for enhancing interpretability in 
time-series forecasting models, and cybersecurity for explaining deep 
learning models in malware classification. While LIME, feature impor-
tance scores, and SHAP are all valuable explanatory techniques, SHAP is 
often preferred for several reasons (Arslan et al., 2022). However, the 
choice of technique often depends on the specific use case and re-
quirements. LIME may be preferred for quick, intuitive explanations of 
individual predictions, while feature importance scores are useful for a 
simple, global understanding of feature relevance (Arslan et al., 2022). 
SHAP is ideal for comprehensive model interpretation, especially in 
high-stakes applications.

Therefore, from the above, it is evident that applying explanatory 
machine learning (XML) in remote sensing image classification would 
provide better explanations for the model’s predictions rather than just 
focusing on achieving high classification accuracy. This is especially 
relevant in domains such as environmental monitoring, urban planning, 
and agriculture, where understanding the justification behind a cate-
gorization is as vital as the classification itself (Kakogeorgiou and Kar-
antzalos, 2021; Temenos et al., 2023). Feature importance analysis is a 
crucial technique in explanatory ML for determining the value of various 
variables (such as spectral bands) in formulating predictions. SHAP 
values (Futagami et al., 2021; Mangalathu et al., 2020; Zeng et al., 2020) 
can be used to determine which features have the most influence in 
identifying different forms of land cover or land use (H. H. Chen et al., 
2023; Hosseiny et al., 2022; Temenos et al., 2023). We believe that XAI 
techniques can help identify the most important features or spectral 
bands that contribute to improving AI models for LD. This information is 
valuable for geologists and helps in (a) enhancing the understanding of 
spectral signatures associated with different rock types, (b) guiding 
future data collection efforts, and (c) improving the design of RS in-
struments for geological applications. Consequently, by understanding 
how the model makes decisions, researchers can identify weaknesses or 
biases in the system and refine the algorithms or training data as needed 
(Antonini et al., 2024; Chen and Zhang, 2023; Kong et al., 2024; Yang 
et al., 2023). This iterative process can lead to more accurate and reli-
able lithological mapping over time. To our knowledge, this research is 
the first to apply multi-spectral RS-based explanatory ML in lithological 
classification. Our innovative approach combines cost-effective, multi-
disciplinary methodologies, including Geographic Information System 
(GIS) integration, minimal RS feature engineering, the RFC model, and 
advanced techniques such as feature importance analysis and SHAP for 
explaining LD. Feature extraction (FE) in ML is the process of trans-
forming raw data into a set of features that can assist ML algorithms to 
perform well(Khalid et al., 2014; Suhaidi et al., 2021). There are two 
main approaches to feature extraction: Manual feature extraction, which 
involves human experts using their domain knowledge to identify and 
select relevant features from the raw data, and Automated feature 
extraction, which uses algorithms and computational techniques to 
identify and extract relevant features from the data. In our Study, the 
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PCA is used as the automated feature extraction approach. XML is used 
to understand and interpret raw data without domain experts manually 
designing and selecting features based on their knowledge and under-
standing of the problem. The objective is to identify and clarify the key 
spectral features critical for LD in arid crystalline terrains characterized 
by complex geological structures. The Hammash area in the south-
eastern desert of Egypt, known for its diverse crystalline rock formations 
and substantiated by reliable field studies, was selected as our primary 
research site. We also apply our approach to a comparable area in 
western Saudi Arabia, namely, Wadi Fatimah, to validate the model’s 
effectiveness and adaptability to similar geological settings. These in-
sights are expected to apply to other regions with similar geological 
conditions regionally and globally.

2. Study areas

This study focuses on two crystalline arid areas located in the 
Arabian-Nubian Shield (ANS) in Egypt and Saudi Arabia. The ANS 

comprises Precambrian crystalline basement rocks formed by the Pan- 
African Orogeny. The ANS was subdivided into the Nubian Shield and 
Arabian Shield due to the opening of the Red Sea in the Early Neogene. 
In the Nubian Shield, the Hammash gold mine area was selected for this 
study, while the Wadi Fatimah area was chosen for investigation in the 
Arabian Shield (Fig. 1).

The Hammash area covers about 41 km2 and includes a gold mine 
located 60 km south of the Idfu-Marsa Alam Road in the southeastern 
desert of Egypt. It is characterized by the Red Sea Mountains with 
igneous and metamorphic rocks, a barren and scarce water supply, and 
large drought wadis trending in various directions. Based on previous 
work (El-Desoky et al., 2021; Gharib et al., 2021; Helmy and Kaindl, 
1999; Hilmy and Osman, 1989), field observations, and published 
geological maps (Abdel-Rahman et al., 2023; Aboelkhair et al., 2021; 
El-Desoky et al., 2021; Kassem and Rahim, 2014; Sakran et al., 2009) 
(Fig. 1A), the rocks in the Hammash area are arranged from oldest to 
youngest as follows: ophiolitic serpentinites and related rocks (talc--
carbonate and quartz-carbonate rocks), meta-gabbro, ophiolitic 

Fig. 1. High-resolution regional satellite image of southeastern Egypt and western Saudi Arabia, highlighting the geographic location of the study areas showing 
their geological maps; (a) Hammash goldmine area following (Abdel-Rahman et al., 2023; Said, 2010; Sakran et al., 2009); (b) a cropped area from the Wadi Fatimah 
region following (Alshehri and Abdelrahman, 2023; Moore and Al-Rehaili, 1989a,b).
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mélange (a complex geological formation mainly composed of serpen-
tinite and meta-gabbro blocks embedded in a quartz-feldspathic 
mélange matrix), island arc-related meta-volcanic rocks (meta-basalt, 
meta-pyroclastics, and meta-andesite), subduction-related granitoids 
(diorite and granodiorite), Hammash granite (mainly tonalites), dikes, 
trachyte plugs, and Wadi deposits (Quaternary deposit). A field survey 
was conducted by the co-author to study the petrology and minerali-
zation in the Hammash mine area (Fig. 2) (Said, 2010).

The second study area encompasses 35 km2 in the Wadi Fatimah 
area, near Makkah, western Saudi Arabia. It is very similar to the 
Hammash area in Egypt, as both areas are primarily composed of Pre-
cambrian crystalline rocks and are in arid regions. Based on previous 
studies (GRAINGER, 1992) and published geological maps (Alshehri and 
Abdelrahman, 2023; Moore, T.A. and Al-Rehaili, M.H.,1989) (Fig. 1b), 
this area has many complex geological formations, ordered from oldest 
to youngest as follows: Zibarah group (hornblende schist, meta-basalt, 
and volcaniclastics), an unassigned unit (a complex geological forma-
tion consisting of biotite granite, tonalite, diorite, and meta-gabbro), 
Ju’ranah complex group (mainly composed of hornblende tonalite), 

post-tectonic intrusive rocks (monzogranite, syenogranite, and granite), 
and Quaternary deposits (Wadi deposits).

3. Experimental design and layout

3.1. Data sources and software

Visible and near-infrared (VNIR) and shortwave-infrared (SWIR) 
radiometers of ASTER multi-spectral images were collected from Earth 
Science Data Systems (ESDS) Program (https://www.earthdata.nasa. 
gov/), while Landsat-8 OLI multi-spectral images and SRTM-DEM 
were acquired from USGS Earth Explorer (https://earthexplorer.usgs. 
gov/) (Table S1). The DEM is utilized in this study due to the moun-
tainous terrain of the research area. The elevation range (360–524 m.a.s. 
l.) plays a crucial role in differentiating the wadi from the surrounding 
crystalline rock formations (Y. Y. Chen et al., 2023; Kumar et al., 2022; 
Yu et al., 2012). Additionally, the DEM can assist in distinguishing be-
tween different rock units, such as serpentinites and meta-gabbro, both 
mafic and ultramafic rocks in the study area, which are typically found 

Fig. 2. Field images (Said, 2010) validating the main rock units in Hammash area including: (A) Serpentinite rocks (SP) embedded in mélange matrix (Mx), (B) 
Shearing in meta-gabbros, (C) Hammash granite, (D) Trachyte plug, (E) The arc meta-volcanics, (F) Highly jointed subduction-related granitoids.
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at higher elevations compared to felsic rocks like granite.
The lithological map of the Hammash area used in this research was 

extracted from published geological maps (Abdel-Rahman et al., 2023; 
Aboelkhair et al., 2021; El-Desoky et al., 2021; Kassem and Rahim, 
2014; Sakran et al., 2009), which were integrated with a detailed field 
study conducted by the third author, creating about 520 ground truth 
points (GTP). Approximately 300 GTP for the Fatimah area were 
extracted from previously published geological maps (Alshehri and 
Abdelrahman, 2023; Moore and Al-Rehaili, 1989a,b).

ArcGIS Pro 3.2.1 software was used for generating and handling the 
necessary features, integrating Python with ML libraries such as Scikit- 
Learn and geospatial libraries like ArcPy to execute RFC model and 
determine variable importance. SHAP was applied to provide both 
global and local insights into the model’s predictions, utilizing multiple 
spectral bands within the dataset. The computational platform consisted 
of an Intel(R) Xeon(R) W-2245 CPU running at 3.90 GHz, with 64 GB of 
RAM and SSD storage, and Python 3.11.5 was the primary programming 
language used. Although no GPU was utilized, the CPU provided suffi-
cient computational power. Additionally, Anaconda Navigator 4.4 
served as a graphical user interface (GUI), providing access to Jupyter 
Notebook and a wide range of data science libraries, which, in combi-
nation with the SHAP Python library, allowed for a deeper interpreta-
tion of the model’s outcomes.

4. Methodology

In this research, we used the "Machine Learning Life Cycle" to extract 
knowledge from data, including LD (Ashmore et al., 2021). Fig. 3 shows 
a flow chart of the complete ML cycle, which extracts the most useful 
multi-spectral bands for LD in crystalline arid regions with minimal 
independent feature engineering using RFC in the Hammash area and 
validates them in the Wadi Fatimah area, as follows: (a) labeling 520 
GTP to cover every lithological unit using a published geological map 

and field verification in the Hammash area; (b) preparing VNIR, SWIR, 
and PCA for ASTER and OLI, and PCA for Landsat-8 and Shuttle Radar 
Topography Mission Digital Elevation Model (SRTM-DEM) as 21 inde-
pendent raster features; (c) selecting independent features using 
multi-collinearity analysis combined with spectral and petrological 
analysis; (d) using 90% of randomly selected GTP on independent fea-
tures to train different ML models and then optimizing the hyper-
parameters to achieve the best model performance; (e) evaluating the 
model using equations in Table S1; (f) determining and explaining the 
importance of independent variables affecting LD in the Hammash area 
using the SHAP library in Python 3 within Jupyter Notebook; (g) using 
the best ten independent features in the Wadi Fatimah area with the 
same model characteristics for validation.

5. Results and discussion

5.1. Dependent and independent features preparation

Dependent features must be labeled and classified before imple-
menting supervised ML classification algorithms (Kotsiantis et al., 
2006). To encompass the diverse lithological composition of the Ham-
mash area, a total of 520 GTPs were established across the eight distinct 
rock units based on field survey and petrological analysis. Serpentine 
minerals comprise most serpentinites, along with a few residual pyrox-
enes, including secondary talc and chlorite, accessory opaques, and 
carbonates. Antigorite makes up the majority of the 90% of serpentine 
minerals (Figs. S1 and S2). Plagioclase and hornblende, along with the 
serpentine mineral antigorite, are the primary minerals found in 
meta-gabbros with serpentinites rocks (Figs. S3 and S4). Recordings of 
actinolitic hornblende (uralite) are also common. Ophiolitic mélange 
matrix rocks (Fig. S5) are very complicated rocks mainly composed of 
plagioclase and quartz, with sericite alteration of feldspar and subordi-
nate number of accessory opaques. Rock shows a very well-pronounced 

Fig. 3. Flowchart of a MLmodel developed for lithological discrimination, designed to identify the most important multispectral features for crystalline arid regions.
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preferred orientation. Island arc rocks (Figs. S6, S7, S8) are composed of 
meta-basalts, meta-andesites and pyroclastics. The essential minerals 
encountered in these rocks are plagioclase, augite and olivine. Second-
ary sericite (paragonite), epidote, calcite, chlorite, serpentine, pum-
pellyite as well as accessory celadonite, prehnite, quartz, carbonates and 
opaques are observed. These rocks exhibit a porphyritic texture and 
locally flow texture. Some of the examined samples show amygdaloidal 
texture. The main minerals observed in subduction-related granitoid 
rocks are plagioclase, quartz and hornblende. Secondary chlorite and 
sericite are recorded with accessories represented by zircon, epidote and 
opaques. These rocks are mainly equigranular, showing a hypidiomor-
phic granular fabric. Transpression-related Granites (Hammash gran-
ites) (Fig. S9) are economically important because it includes gold 

mineralization (Figs. S10–S13). The main minerals encountered in these 
rocks are plagioclase and quartz with secondary sericite, kaolinite and 
chlorite. Further accessories are mainly microcline, muscovite and 
opaques. The main minerals found in Trachyte plugs (Fig. S14) are 
sanidine and plagioclase with secondary kaolinite and sericite as well as 
accessory opaques.

Careful consideration must be given to the uneven distribution of 
these units to avoid an imbalanced dataset. For example, the trachyte 
plugs, covering approximately 0.58 square kilometers, will be repre-
sented by 34 GTPs, whereas the much larger granodiorite and quartz 
diorite unit, spanning around 10 square kilometers, will be assigned 150 
GTPs. minimal feature engineering was used in this study resulting in 
the usage of 21 independent raster features, generated from VNIR/SWIR 

Fig. 4. Multicollinearity Analysis (MCA) for the independent features.
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bands, and PCA utilization for ASTER, OLI, Landsat-8 and SRTM-DEM. 
PCA rasters were the only feature extraction method used and the 
thermal infrared bands in ASTER and Landsat-8 were excluded due to 
their lower spatial resolution.

6. Independent features selection and analysis

Multicollinearity Analysis (MCA), a statistical method used to eval-
uate the linear association between independent features, with R- 
squared being a commonly used metric is used here. MCA plays a crucial 
role in feature selection prior to training ML models (Chen et al., 2020; 
Ebrahimi-Khusfi et al., 2021; Morgan et al., 2023). An exceedingly high 
R-squared value (>0.95) poses a significant issue within the training 
dataset, reducing model performance and leading to inaccurate results 
(Daoud, 2018).

Fig. 4 shows the results of the MCA performed on the 21 independent 
images influencing the LD in the Hammash area. There are notably high 
R-squared values (>0.95) that can be handled by excluding some fea-
tures in the pre-modeling stage: (a) B1, B2, and B8 in Landsat-8 were 
removed because they are highly correlated with B4 and B3; (b) B9 in 
ASTER was removed because it is highly correlated (R2 = 0.96) with 
ASTER B7.

Despite the robust correlations between ASTER B5 and ASTER B6, as 
well as between ASTER B7 and ASTER B8, no bands were omitted based 
on petrological and spectral analysis due to the following reasons: (a) 
The spectra of serpentine minerals, such as antigorite, which constitute 
about 90% of serpentinite rocks (Fig. 5), has a unique absorption pattern 
at 2.3 μm (Fig. 6) resulting from the vibrational actions of the Mg-OH 

bond (Ge et al., 2018a; King and Clark, 1989; Rajendran et al., 2014), 
as illustrated in ASTER B8 based on the USGS spectral library Version 7 
(https://crustal.usgs.gov/speclab/); (b) Mafic and ultramafic rocks, 
such as meta-basalt-related minerals, have an absorption peak between 
2.1 and 2.3 μm based on previous studies(Ghrefat et al., 2021; Kamel 
et al., 2016), represented in B5, B6, B7, and B8 in ASTER and B7 in 
Landsat-8; (c) Gabbro in the Hammash area possesses special charac-
teristics due to metamorphism, consisting mainly of 40% hornblende 
and 50% andesitic plagioclase (Fig. 5), that results in higher reflectance 
in B5, B6, B7, and B8 in ASTER (Fig. 6); (d) Subduction-related granit-
oids, the largest rock unit in the study area, consist of plagioclase and 
hornblende, which result in higher reflectance; (e) Andesitic plagioclase 
and quartz, constituting 95% of the mélange matrix, result in the highest 
reflectance in B8 in ASTER.

7. Utilization and optimization of RFC model

Based on the highest accuracy and F1 score, as shown in Table S3, RF 
outperformed SVM, logistic regression, XGBoost, and KNN, making it 
the optimal model for lithological interpretation in the study area. In 
recent studies, RF has been widely used for its ability to handle high- 
dimensional datasets and non-linear interactions between features. For 
instance (Breiman, 2001), introduced RF as a method that enhances 
model stability and accuracy by aggregating the predictions of multiple 
decision trees, which helps improve its overall performance. Despite 
RF’s limitation in terms of interpretability, its accuracy and ability to 
deal with diverse data sources, such as remote sensing imagery and 
geospatial data, made it the most suitable method for this study. This is 

Fig. 5. (A) Epidote crystals (Epi) with hornblende (Hb) in ophiolitic meta-gabbro (XPL), (B) Relict sub-ophitic texture in ophiolitic meta-gabbro. Pl = Plagioclase, 
Aug = Augite (XPL), (C) Mesh texture exhibited by opaques in serpentinite. An = Antigorite (PPL), (D) Fresh hornblende (Hb) crystal in quartz diorite (XPL) 
(Said, 2010).
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particularly important for classifying remote sensing data in arid crys-
talline environments, where the landscape complexity and sparse 
vegetation present challenges that RF effectively addresses(Belgiu and 
Drăguţ, 2016; Pal, 2005; Rodriguez-Galiano et al., 2012; H. Zhou et al., 
2021).

To address this (Lundberg and Lee, 2017), developed SHAP, which 
provides a unified framework for interpreting the predictions of any ML 
model, including RF. SHAP’s ability to generate consistent and fair 
feature importance scores has led to its growing adoption in various 
fields, such as environmental modeling and healthcare (Lundberg et al., 
2020). Compared to other approaches, such as feature importance scores 
from RF (Strobl et al., 2007), SHAP provides a more granular and 
theoretically sound explanation by assigning Shapley values. In our 

analysis here and for classification, the RFC model uses a resampling 
technique that randomly modifies the predictive features to maximize 
diversity within each tree (Jin et al., 2018) (Fig. S15A). This adds a layer 
of insight into our model’s predictions, making it more transparent and 
interpretable than conventional modeling methods.

This method uses several decision trees to illustrate the geographical 
relationship between 17 independent LD features and dependent fea-
tures. Each decision tree is built using a bootstrap sample of raw data, 
enabling accurate failure evaluation with the residual validating set, 
known as the out-of-bag (OOB) collection. The overall mean square 
error (MSEOOB) of all 500 trees we built was about 24, computed using 
Eq. (1)in Table S1. The number of trees is an essential hyperparameter 
for RFC performance optimization. This is clear since the MSEOOB 

Fig. 6. Reflectance spectral curves for rock units and minerals in the Hammash area A) Rock units: Meta-gabbros with Serpentinites, Serpentinites, and Subduction- 
related Granitoids), (B) Minerals based on USGS spectral library Version 7: Andesine, Hornblende, and Antigorite.

Fig. 7. (A) Geological map of the Hammash area associated with 520 GTP as dependent points that were examined during field surveys to determine the rock types; 
(B) The result of the RFC model in the Hammash area.
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declined from around 24 to 23 as the number of trees increased from 500 
to 10,000 (Fig. S15B).

Fig. 7A shows the position of dependent points on the Hammash 
geological map, alongside the predicted LD in Fig. 7B, based on the 
trained RFC model with improvements, using the model diagnostics in 
Table S2.

The model demonstrated a high level of accuracy in segmenting and 
classifying the principal rock units within the study area, including is-
land arc rocks, the Hammash granite, and the Wadi deposits. These re-
sults indicate the robustness of the RFC model in distinguishing between 
these distinct lithological units. The ophiolitic mélange, which com-
prises serpentinite, mélange matrix, and meta-gabbro with serpentinite, 
presents a significant challenge due to its inherent complexity and the 
difficulty in differentiating these components in the field. Despite this, 
the model effectively classified these units, showcasing its capability to 
handle complex geological formations that are often problematic in 
manual field mapping. The predicted LD outperformed the traditional 
geological map in segmenting the intrusions between the mélange ma-
trix and the subduction-related granitoid in the lower right corner of the 
study area. This improved segmentation suggests that the model offers 
enhanced resolution in identifying and delineating geological bound-
aries that may be less apparent in conventional mapping techniques. The 
model accurately identified and localized serpentinites within the meta- 
gabbro with the serpentinite group, further validating its precision in 
distinguishing closely associated lithological units. This level of detail is 
crucial for understanding the spatial distribution of these units and their 
geological significance (see Table 1).

Due to the unbalanced categorization data set, accuracy alone cannot 
be used to evaluate the model’s performance. Based on the confusion 
matrix illustrated in the supplementary material (Fig. S16), the 
following computations can be performed using Eqs. (2)–(6) (Chicco and 
Jurman, 2020; Sokolova and Lapalme, 2009) in Table S1. The findings of 
various strategies, as reported in Table 2, were used to evaluate the RFC 
model and show it is an excellent match with overall accuracy (94%) 
and precision (81%) during validation. The overall sensitivity decreased 
to 76% due to the imbalanced data set, with training sample scarcity in 
trachyte plugs and the complexity of ophiolite mélange (mélange matrix 
and meta-gabbro with serpentinite), which mix in many places.

8. Independent features importance and explanation for LD

The RFC model’s "variable importance" is an XAI tool that shows the 
proportional importance of the 17 LD independent factors (Fig. S17).

In this scenario, the Landsat-8 B3 band, coupled with elevation data, 
emerged as critical for distinguishing Wadi deposits from neighboring 
rock formations. This distinction is primarily because Quaternary de-
posits reflect more in the B3 band and are typically present at lower 
elevations according to the DEM. The variable importance was rein-
forced, with ASTER bands B5, B6, B7, and B8 initially expected to be 
excluded during the MCA, turning out to be crucial in differentiating 
ophiolitic mélange units and felsic rocks. While the PCA derived from 
both ASTER and Landsat-8 data was the sole effective FE method in this 
research, its contribution to LD analysis was not as significant as initially 
expected.

When the RFC model was rerun and evaluated using only the top 10 
features in the Hammash area, the Landsat-PCA feature was excluded as 
it ranked eleventh. Since the goal of the research is to optimize the RFC 
with FE, the results detailed in the supplementary material show an 
accuracy of 90.3%, with only the top 10 features proven to be effective. 
We used SHAP to explain the impact of each independent feature of the 
LD using equation (6) in Table S1. The weight of each feature used for 
lithological units’ delineation is presented (Fig. 8A) and the Beeswarm 
plot (Fig. 8B). Using SHAP here provides us with a consistent approach 
to feature importance identification by ensuring that each feature 
contribution to the prediction is attributed. Unlike traditional feature 
importance identification methods in RF, which might simply rank 

features based on their contribution to the model’s decision-making 
process, SHAP here fairly distributed the prediction among the fea-
tures (Lundberg et al., 2019; Mangalathu et al., 2020; Nohara et al., 
2022). Such distribution ensures that each feature’s importance is 
calculated in a manner that considers all possible combinations of fea-
tures, offering a more robust and accurate assessment. While traditional 
feature importance in RF provides a global view of which features are 
most important overall, SHAP extends this by offering both global and 

Table 1 
Data used for independent features.

Subsystem Sensor Band No. Spectral 
Wavelength 
Range (μm)

Spatial 
Resolution 
(m)

Date

VNIR ASTER B1 0.52–0.60 15 May 31, 
2000

ASTER B2 0.63–0.69 15 May 31, 
2000

ASTER B3 0.78–0.86 15 May 31, 
2000

SWIR ASTER B4 1.6–1.7 30 May 31, 
2000

ASTER B5 2.145–2.185 30 May 31, 
2000

ASTER B6 2.185–2.225 30 May 31, 
2000

ASTER B7 2.235–2.285 30 May 31, 
2000

ASTER B8 2.295–2.365 30 May 31, 
2000

ASTER B9 2.36–2.43 30 May 31, 
2000

OLI Landsat- 
8

B1 0.43–0.45 30 May 1, 
2013

Landsat- 
8

B2 0.45–0.51 30 May 1, 
2013

Landsat- 
8

B3 0.53–0.59 30 May 1, 
2013

Landsat- 
8

B4 0.64–0.67 15 May 1, 
2013

Landsat- 
8

B5 0.85–0.88 30 May 1, 
2013

Landsat- 
8

B6 1.57–1.65 30 May 1, 
2013

Landsat- 
8

B7 2.11–2.29 30 May 1, 
2013

Landsat- 
8

B8 0.50–0.68 30 May 1, 
2013

Landsat- 
8

B9 1.36–1.38 30 May 1, 
2013

 SRTM- 
DEM

Elevation  1 arc- 
second

February 
11, 2000

Table 2 
RFC model evaluation for the Hammash area.

Class F1- 
Score

MCCa Sensitivity Precision Accuracy

Training
Overall 1 1 1 1 1
Validation
Serpentinites 0.75 0.68 0.75 0.75 0.88
Meta-gabbros with 

serpentinites
0.5 0.44 0.43 0.6 0.88

Melange Matrix 0.67 0.7 0.5 1 0.98
Island arc rocks 0.83 0.81 0.83 0.83 0.96
Subduction-related 

Granitoids
0.93 0.91 1 0.87 0.96

Transpression-related 
Granites

0.83 0.83 1 0.71 0.96

Trachyte Plugs 0.67 0.64 0.6 0.75 0.94
Wadi deposits 1 1 1 1 1
Overall 0.77 0.75 0.76 0.81 0.94

a Matthews correlation coefficient.
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local interpretability. This means that SHAP can explain the overall 
feature importance for the entire dataset (global) as well as for indi-
vidual predictions (local) (Ekanayake et al., 2022). This is particularly 
important in lithological mapping, where local variations and specific 
geological formations might have significant implications.

SHAP values for each feature along with each data point value are 
plotted, with the x location of each dot representing how high or low the 
SHAP value is. The dots pile up over each feature row, y-location, 
illustrating its density, which is represented by how wide or narrow the 
plot is over different SHAP values. Colors indicate the feature’s original 
value that allows us to gain insights about the patterns driving the 
model’s segmentation process and provide a comprehensive view of the 
model’s behavior at a global level. Fig. 8A highlights each feature’s 
importance for different lithological units, while Fig. 8B identifies the 
order of that feature in relation to its actual value. Every point here 
indicates a Shapley value for an independent feature. The Shapley value 
determines the position on the x-axis, whereas the independent feature 
determines the location on the y-axis. The color denotes the feature’s 
value, which ranges from low to high. Sometimes features may overlap 

features in the y-axis direction, giving us an idea of the spread of Shapley 
values per feature, which is not the case here. It is also noteworthy that 
features are ranked based on their significance in our lithological 
identification analysis. The feature rankings derived from random forest 
and SHAP were similar in some features (like ASTER B7 and Landsat-8 
B6), and slight differences (like Landsat-8 B3, ASTER-B5, and ASTER- 
B8) and strong differences in the ranking across the others due to the 
distinct calculation methods. Random forest feature importance is 
typically calculated using heuristic approaches, such as the decrease in 
Gini impurity, which assesses how much each feature improves the 
model’s accuracy. While effective for ranking features overall, this 
method does not provide explanations at the individual prediction level. 
In contrast, SHAP values, grounded in cooperative game theory, 
compute the marginal contribution of each feature by evaluating all 
possible combinations of features. This allows SHAP to capture in-
teractions between features, providing more detailed and interpretable 
insights into the model’s decision-making process.

For instance, the wide spread of SHAP values for elevation feature 
shows its significance for LD for this mountainous study area (360–524 

Fig. 8. (A) Heat map of the weight of each feature for delineating each lithological unit; (B) Beeswarm plot created using SHAP shows a detailed overview of the 
ways that top features in a dataset affect the model output.
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m.a.s.l) (Fig. 8B). We saw that elevation feature is influential in the 
segmentation of most lithological units, especially subduction-related 
granitoids, meta-gabbros with serpentinites, serpentinites, Wadi de-
posits, and mélange matrix (Fig. 8A). Secondly, Landsat-8 B3 proves to 
be one of the most important bands for delineating subduction-related 
granitoids and Wadi deposits while still important in other rock unit 
segmentation (Fig. 8A) Similarly, we found that ASTER B5, ASTER B6, 
and Landsat-8 B7are significant for classifying island arc rocks. 
Although the ophiolitic mélange matrix is one of the most complex rock 
units, it was well classified mainly based on ASTER B8, elevation, 
Landsat-8 B3, ASTER B7, and Landsat-8 B5. While elevation plays a 
significant role in identifying serpentinite, it is just one of several key 
factors essential for distinguishing between serpentine in pure serpen-
tinite and serpentine within meta-gabbro with serpentinite. Other crit-
ical contributors include Landsat-8 bands B3, B6, and B5, as well as 
ASTER bands B8 and B4. So, SHAP confirms the mineral spectroscopy 
analysis using ASTER, where ASTER B4 is important for Serpentinites 
(Antigorite) and Subduction-related granitoids. B5 and B6 in ASTER 
significantly differentiate island arc rocks containing meta-basalt. 
ASTER B8 is important for the Mélange Matrix, which contains fresh 
hornblende (Hb) crystals in quartz diorite.

9. Implementation and evaluation of the best features for a 
similar area

To validate our previously outlined approach, its implementation 
while utilizing the previously indicated best ten independent features, 
based on variable importance from the RFC model, over a different area 
was attempted. We used the same model characteristics (Table S3) in 
another area with similar conditions, namely Wadi Fatimah to verify our 
findings over Hammash area. Fig. 9A illustrates the published geological 
map of Wadi Fatimah, associated with 300 GTP used for model training 
and validation. Despite the complexity and mixing of geological units, 
the RFC model succeeded in discriminating between lithological units 
using the best ten variables approach implemented previously (Fig. 9B).

Table 3 summarizes the model validation in the Wadi Fatimah area 
based on the confusion matrix in the supplementary material (Fig. S18). 
During validation, the model evaluation showed excellent overall ac-
curacy (93%) and precision (92%). The overall sensitivity and MCC 
slightly decreased to 91% and 86%, respectively, due to the complexity 
of the Ju’ranah complex group, an unassigned unit of the uncertain af-
finity group, and the Zibarah group, which interconnect in various areas.

10. Conclusion

This study pioneers the use of SHAP and advances LD in arid crys-
talline environments by integrating XAI and multi-spectral remote 
sensing data. By combining GIS, ML, and geological insights, this 
research demonstrates the effectiveness of RFC and SHAP analysis in 
identifying key features for distinguishing rock types in different 
geological settings, like the Hammash region in Egypt and the Wadi 

Fig. 9. (A) Previously published geological map incorporating 300 GTP-dependent points; (B) RFC model results over Wadi Fatimah area.

Table 3 
RFC model evaluation for the Wadi Fatimah area using the best ten features.

Class F1- 
Score

MCCa Sensitivity Precision Accuracy

Training
Overall 1 1 1 1 1
Validation
UNASSIGNED UNIT OF 

UNCERTAIN 
AFFINITY

0.80 0.67 0.91 0.71 0.83

ZIBARAH Group 1.00 1.00 1.00 1.00 1.00
JU’RANAH 

COMPLEX
0.76 0.65 0.67 0.89 0.83

POST-TECTONIC 
INTRUSIVE ROCKS

1.00 1.00 1.00 1.00 1.00

QUATERNARY 
DEPOSITS

1.00 1.00 1.00 1.00 1.00

Overall 0.91 0.86 0.91 0.92 0.93

a Matthews correlation coefficient.

H. Morgan et al.                                                                                                                                                                                                                                Computers and Geosciences 193 (2024) 105738 

11 



Fatimah area in the Kingdom of Saudi Arabia. The model, supported by 
520 ground truth data points collected in the Hammash area, achieved a 
high overall accuracy of 94% in Hammash and 93% in Wadi Fatimah, 
confirming its robustness in challenging environments.

Based on the initial analysis as well as the validation step here, we 
found that B3, B5, B6, and B7 in Landsat-8, B4, B5, B6, B7, and B8 in 
ASTER, and SRTM-DEM are the most critical and effective multi-spectral 
features for LD in crystalline arid areas. Variable importance is an effi-
cient XAI tool for evaluating RFC features and makes it trusted. Over 
time, RFC has proven its strength compared to other ML models like 
SVM (Bachri et al., 2019; Shebl et al., 2022).

Thermal infrared bands from ASTER and Landsat-8 were excluded 
due to their lower spatial resolution, leaving ASTER PCA and Landsat-8 
PCA as the most effective methods for feature extraction. Before 
modeling, MCA was conducted to remove highly correlated bands, 
resulting in 17 independent features. The RFC model, optimized by fine- 
tuning the number of trees as a hyperparameter, processed these fea-
tures, using 90% of the ground truth points for training and 10% for 
validation. Despite the complexity posed by the ophiolitic mélange, the 
model achieved an impressive 94% overall accuracy and 81% precision 
in rock unit segmentation.

The model’s use of SHAP to interpret key features ensures trans-
parency in decision-making, allowing for a deeper understanding of the 
most critical spectral bands and elevation data contributing to LD. 
Achieving high accuracy demonstrates its potential for application in 
geological mapping, resource exploration, and environmental moni-
toring, especially in remote and geologically complex areas. Further-
more, the ability to generalize the model across different arid regions 
makes it a powerful tool for global geological studies, with applications 
ranging from mineral exploration to hazard assessment.

Due to the fundamental nature of the datasets, which used multi- 
spectral bands with tree-based ML, this study highlights some limita-
tions for other rock types since our effective features may only be suit-
able for arid mountainous crystalline rocks. Although this study proved 
its strength in determining the bands suitable for discriminating a wide 
variety of major crystalline rocks and complex crystalline formations, it 
showed weakness in classifying minor and limitedly distributed crys-
talline rocks such as trachyte plugs. Finally, our analysis displayed 
strength in delineating ore-bearing rocks but not the ore grading within 
the rocks, such as Hammash granite, which is well-defined.

Looking ahead, integrating high spectral resolution hyperspectral 
satellite imagery, such as that from PRISMA (Hyperspectral Precursor of 
the Application Mission) and Earth Surface Mineral Dust Source Inves-
tigation (EMIT), with convolutional neural networks (CNN) models, 
which excel in internal feature extraction, along with XAI techniques, 
could enhance LD. This approach has the potential to more effectively 
identify relevant bands for lithological mapping, benefiting not only 
crystalline arid regions but also sedimentary rock areas. By leveraging 
the advanced capabilities of hyperspectral imagery and CNN models, 
future research could significantly improve the accuracy and applica-
bility of lithological discrimination in a wide range of geological 
settings.
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