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Abstract. In this paper we describe the rise of global operators in the
scaled quaternionic case, an important extension from the quaternionic
case to the family of scaled hypercomplex numbers Ht, t ∈ R

∗, of which
the H−1 = H is the space of quaternions and H1 is the space of split
quaternions. We also describe the scaled Fueter-type variables associated
to these operators, developing a coherent theory in this field. We use
these types of variables to build different types of function spaces on
Ht. Counterparts of the Hardy space and of the Arveson space are also
introduced and studied in the present setting. The two different adjoints
in the scaled hypercomplex numbers lead to two parallel cases in each
instance. Finally we introduce and study the notion of rational function.
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1. Introduction and the Algebra of Scaled Hypercomplex
Numbers

In the case of H, the skew-field of quaternions, generated on the real numbers
by 1, i, j, k with the usual Cayley table, a global operator G was defined in [28]
as:

Gq = (x2
1 + x2

2 + x2
3)

∂

∂x0
+ (ix1 + jx2 + kx3)

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
.

(1.1)
In [15], the related operator,

Vq =
∂

∂x0
− 1

ix1 + jx2 + kx3

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
, (1.2)

(which we still name “the global operator”) was studied extensively by two
of the co-authors (together with Kamal Diki). In particular new Fueter-type
variables associated to Vq were found and analyzed, and Fueter-type expan-
sions were given for smooth functions in its kernel.

In recent works [3–5,7,8], the space of quaternions was extended to a
family of spaces indexed by the real numbers, and, for t ∈ R, these papers
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introduced and studied the scaled families of rings Ht
2 of C2×2 matrices, with

elements of the form:

qt =
(

a tb

b a

)
, a, b ∈ C, t ∈ R. (1.3)

When t = −1 one obtains the matrix representation of the skew field of
quaternions, while the case t = 1 corresponds to the matrix representation of
the ring of split-quaternions. In the latter case (t = 1), hyperbolic numbers
correspond to real a and b.

In the present paper we first extend the results of [15] to the scaled
family of rings mentioned above, interpolating from the space of quaternions
to the one of split quaternions. Then we study counterparts of the classical
Hardy space in the present setting. An important new point with respect to
the previous work [15] is the appearance of Krein spaces (as in [17]).

We now review the definitions and main results of the scaled-
hypercomplex algebras introduced in [3–5,7,8]. We start with the first def-
inition of the space Ht

2 as above, with two equivalent characterizations to
follow:

Definition 1.1. Let t ∈ R. The space of scaled hypercomplex numbers is:

Ht
2 =

{(
a tb

b a

)
| a, b ∈ C

}
. (1.4)

This space is an algebra over the field of real numbers, with the usual addition
and multiplication of matrices.

In another characterization we will see that Ht
2 becomes a real vector

space.

Remark 1.2. We note that Ht
2 is not closed under the usual matrix conjuga-

tion when t �= ±1, since

q∗
t =

(
a b

tb a

)
�∈ Ht

2 (1.5)

if t �= ±1 or if b �= 0.

One can define two natural adjoints (or conjugations) associated to
(1.4), and which leave Ht

2 invariant, namely

q�
t =

(
a −tb

−b a

)
(1.6)

(that is, the adjugate matrix of qt) and, see (2.21),

q
[∗]
t =

(
a tb
b a

)
. (1.7)

See [4,5,7] and [8]. We note that these two adjoints are contravariant (see
Lemma 2.1 and Lemma 2.17)

(qtpt)� = p�
t q�

t and (qtpt)[∗] = p
[∗]
t q

[∗]
t , pt, qt ∈ Ht

2,
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are involutive, and commute:
(
q�
t

)[∗]
=
(
q
[∗]
t

)�
=
(

a −tb
−b a

)
.

It is therefore not possible to obtain another involutive contravariant from
iterated compositions of these adjoints.

It is easy to see that Ht
2 is ring-isomorphic to the ring Ht defined below.

Definition 1.3. Let Ht be the space of elements of the form:

qt = a + bjt, a, b ∈ C[i], (1.8)

where i, jt and kt = ijt satisfy the generalized Cayley laws, induced by the
matrix multiplication in Definition 1.1:

↗ 1 i jt kt

1 1 i jt kt

i i −1 kt −jt

jt jt −kt t −ti
kt kt jt ti t

.

Writing a = x0 + x1i and b = x2 + x3i we have that the ring Ht is the vector
space over R of elements of the form:

qt = x0 + x1i + x2jt + x3kt, x0, x1, x2, x3 ∈ R. (1.9)

We will often in this paper pass from one representation to the other
and denote both of them by qt.

We now introduce a third equivalent definition, where scaled hypercom-
plex numbers are seen as pairs of complex numbers. For an arbitrarily fixed
non-zero scale t ∈ R, and qt = a + bjt as in (1.8), we write the correspond-
ing pair of complex numbers (a, b)t and we define the scaled multiplicative
operation ·t on C

2 induced by the multiplication of matrices as:

(a1, b1)t ·t (a2, b2)t
def=

(
a1a2 + tb1b2, a1b2 + b1a2

)
t
. (1.10)

As proven in [4,5] the space of pairs (a, b)t forms a unital ring with
unity (1, 0), where + is the usual vector addition, and ·t is the operation
(1.10) above.

We will use these three definitions interchangeably, whenever each be-
comes more convenient to describe the associated differential theory, spaces
of functions, domains of holomorphy and so forth.

Observe that, if

a = x0 + x1i and b = x2 + x3i

are complex numbers with i =
√

−1 and x0, x1, x2, x3 ∈ R, and (a, b)t ∈ Ht,
with some abuse of notation, we have that the realization of (a, b)t is identified
with:

qt = a + bjt = (a, b)t =
(

a tb

b a

)
=

⎛
⎝x0 + x1i tx2 + tx3i

x2 − x3i x0 − x1i

⎞
⎠ . (1.11)
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We then identify the basis elements using:

qt = x0

(
1 0
0 1

)
+ x1

(
i 0
0 −i

)
+ x2

(
0 t
1 0

)
+ x3

(
0 ti
−i 0

)
, (1.12)

and we obtain:

1 =
(

1 0
0 1

)
= (1, 0)t , it =

(
i 0
0 −i

)
= (i, 0)t ,

and

jt =
(

0 t
1 0

)
= (0, 1)t , kt =

(
0 ti
−i 0

)
= (0, i)t ,

in Ht
2, which means that every element qt of Ht

2 is expressed by

qt = x0 (1, 0)t + x1 (i, 0)t + x2 (0, 1)t + x3 (0, i)t ,

for some xl ∈ R, 0 ≤ l ≤ 3, (as seen in [4,5,7]).
The R-basis Bt = {(1, 0)t , (i, 0)t , (0, 1)t , (0, i)t} satisfies the following

properties in the Cayley table of Ht, i.e.:

i2t = (−1, 0)t = −1, j2
t = t (1, 0)t = t = k2

t ,

it ·t jt = kt, jt ·t kt = −tit,

kt ·t it = jt, kt ·t jt = ti

jt ·t it = −kt, it ·t kt = −jt.

Remark 1.4. From now on we write i rather than it, meaning that we view
the ring Ht containing a fixed copy of the complex numbers.

When t = 1, that is, the split quaternion case, we have

q�
1 =

(
a −b

−b a

)
while q

[∗]
1 =

(
a b
b a

)
.

With i1, j1, k1 corresponding to t = 1, and using the notation (1.8), one has
q1 = a − bj1 and

q�
1 = a − bj1 and q

[∗]
1 = a + bj1. (1.13)

The latter case was the one considered in [17].
When t = −1, that is, for the quaternions, we have

q�
−1 =

(
a b

−b a

)
and q

[∗]
−1 =

(
a −b
b a

)
.

Here q�
1 corresponds to the usual quaternion conjugate, and q

[∗]
1 leads to

new directions in analytic quaternionic theory. With i, j, k corresponding to
t = −1, one has q−1 = a + bj and

q�
−1 = a − bj = a + bj = q−1 (1.14)

(since bj has a zero real part) corresponding to classical quaternionic analysis,
while

q
[∗]
−1 = a − bj = a + bj. (1.15)
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As just mentioned a few lines above, the corresponding theory is new in
quaternionic analysis.

The paper consists of seven sections and two appendices, of which this
introduction (Sect. 1) is the first. In Sect. 2 we introduce the algebra of hy-
percomplex numbers, their conjugates, and properties, asa well as an intro-
duction to a theory of functions on these spaces.

In Sect. 3 we introduce the scaled global operator Vt in this case and
introduced a new set of Fueter-type variables associated to this operator. In
the same section (Sect. 3) we also build parallel theories of regular functions
using these new variables (see Definition 3.1) and the previously introduced
Fueter-variables associated to the scaled Fueter operator (see Definition 3.6).

In Sect. 4 we introduce and describes Hardy spaces with respect to the
conjugate �, define the Blaschke product in this case and discuss the inter-
polation problem in this context, while in Sect. 5 we do the same for the [∗]
conjugate.

In Sect. 6 we build the associated Averson space related to the new
scaled Fueter variables associated to the scaled global operator, while in
Sect. 7 we establish the premises of a theory of rational functions in this
case. Both of these sections are further developed in works that the authors
are currently in a preliminary stage of completion.

For clarity, we also write Appendix A and Appendix B, to remind the
reader of the concepts and properties of Krein and Pontryagin spaces, as they
apply to our work.

2. Conjugates, Their Properties, and a Theory of Functions

In this section, as mentioned in the introduction, one can see that Ht
2 is not

closed under the usual matrix conjugation as in (1.5) when t �= ±1, unless
t �= ±1 or qt is a real scalar matrix. However, as in (1.6) and (1.7), one can
define two natural adjoints (or conjugations, or conjugate) associated to (1.4)
which leave Ht

2 invariant, namely

q�
t =

(
a −tb

−b a

)
q
[∗]
t =

(
a tb
b a

)
.

These conjugates lead to different theories, see [4,7] and [6] respectively. On
the other hand, just as for the usual ∗-matrix conjugation, we have:

Lemma 2.1. The two new conjugates are contravariant with respect to the
matrix product (or, equivalently the product ·t in the representation of the
ring in terms of pairs).

Proof. For the first conjugate we have with qt =
(

a tb

b a

)
and pt =

(
c td

d c

)
,

(qtpt)� =
((

a tb

b a

)(
c td

d c

))�
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(
ac + tbd t(ad + bc)
cb + ad tb + ac

)�

=
(

ac + tbd −(cb + ad)
−(ad + bc) ac + tbd

)

=
(

c −td

−d c

)(
a −tb

−b a

)

= p�
t q�

t .

The second conjugate is considered in Lemma 2.17. �
2.1. The Regular Matrix Adjoint ∗
Ht

2 is not closed under the usual matrix conjugation when t �= ±1,

q∗
t =

(
a b

tb a

)
�∈ Ht

2

if t �= ±1 or if qt is not a real scalar matrix, however this conjugate is useful
in defining the matrix Hilbert Schmidt norm and the operator norm. For qt

as above, the Hilbert–Schmidt norm is equal to

‖qt‖HS =
√

Tr qtq∗
t =

√
2|a|2 + (1 + t2)|b|2. (2.1)

Let us define the operator norm ‖qt‖op as follows:

Definition 2.2. The operator norm of qt ∈ Ht is denoted by ‖qt‖op and it
is defined to be the square root of the largest eigenvalue of qtq

∗
t , using the

regular adjoint q∗
t as in (1.5).

For ease of calculations, we now compute the operator norm of qt:

Proposition 2.3. For any qt ∈ Ht it holds that

‖qt‖op =

√
|b|2(1 + t2) + 2|a|2 +

√
|b|4(1 − t2)2 + 4|a|2|b|2(1 + t)2

2
(2.2)

Proof. We have

det(qtq
∗
t − λI2) = det

(|a|2 + t2|b|2 − λ ab(1 + t)

ab(1 + t) |b|2 + |a|2 − λ

)

= λ2 − λ(|b|2 + |a|2 + |a|2 + t2|b|2) + (|b|2 + |a|2)(|a|2 + t2|b|2)
−|a|2|b|2(1 + t)2

and the discriminant, say Δ, of the corresponding eigenvalue equation is:

Δ = (|b|2 + |a|2 + |a|2 + t2|b|2))2 − 4((|b|2 + |a|2)(|a|2 + t2|b|2) − |a|2|b|2(1 + t)2)

= (|b|2 + |a|2 − |a|2 − t2|b|2))2 + 4|a|2|b|2(1 + t)2

= |b|4(1 − t2)2 + 4|a|2|b|2(1 + t)2.

Thus

λ =
|b|2(1 + t2) + 2|a|2 ±

√
|b|4(1 − t2)2 + 4|a|2|b|2(1 + t)2

2
with largest eigenvalue corresponding to the + sign, and hence the result.

�
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Corollary 2.4. We have the following:

‖qt‖op = ‖q�
t ‖op = ‖q

[∗]
t ‖op (2.3)

and
‖qt‖HS = ‖q�

t ‖HS = ‖q
[∗]
t ‖HS . (2.4)

Proof. This is because ‖qt‖op depends only on the absolute values of a and
b. �

Remark 2.5. For t = −1 we get ‖q−1‖ =
√

|a|2 + |b|2 (as it should be, usually
written as |q| =

√
|a|2 + |b|2) while we get

‖q1‖ = |a| + |b|
for t = 1. Note that the latter is not a Hilbert space norm.

We recall that Ht
2 endowed with the real-valued bilinear form

〈pt, qt〉 = Tr q∗
t pt

is a real four dimensional Hilbert space.
This norm is cumbersome to deal with, so we define a similar norm that

induces the same topology, a scaled Euclidean-type norm.

Definition 2.6. We will now define the scaled Euclidean norm of Ht to be

‖qt‖E =
√

|a|2 + |t| |b|2 =
√

x2
0 + x2

1 + |t| (x2
2 + x2

3), (2.5)

and the scaled inner product associated ‖ · ‖E by [·, ·]E .

For qt = x0 + x1i + x2jt + x3kt and pt = y0 + y1i + y2jt + y3kt the
associated inner product is:

[qt, pt]E = x0y0 + x1y1 + |t|(x2y2 + x3y3). (2.6)

Remark 2.7. This norm gives the same topology as the operator norm given
in (2.2) or the Hilbert–Schmidt norm given in (2.1).

We conclude this subsection with a remark on matrices with entries in
Ht

2. Consider Let G = (guv)N
u,v=1 ∈ (Ht

2)
N×N . Identifying Ht

2 with a subset
of matrices of C

2×2 one can identify G with a matrix in C
2N×2N . Even if

this new matrix is invertible in C
2N×2N , it is not clear that it will have the

structure corresponding to an element of (Ht
2)

N×N . First a definition:

Definition 2.8. Let G = (guv)N
u,v=1 ∈ (Ht

2)
N×N . We say that G is invertible

in Ht
2 if there exist a matrix H = (huv)N

u,v=1 ∈ (Ht
2)

N×N such that GH =
HG = I(Ht

2)
N×N . The matrices Gm = (Guv)m

u,v=1 are called the main minors
of G.

Before we consider this above invertibility question in greater details we
mention a number of formulas, often presented for complex matrices, but in
fact valid for matrices with entries in any algebra, and can be traced at least
with the work of Schur [43,44]. More recent references include [31,37], [38, p.
18], [35, p. 113].
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Lemma 2.9. Let (A,B,C,D) ∈ (Ht
2)

n×n × (Ht
2)

n×m × (Ht
2)

m×n × (Ht
2)

m×m,
and assume that A (resp. D) is invertible. Then:(

A B
C D

)
=
(

In 0
CA−1 Im

)(
A 0
0 D − CA−1B

)(
In A−1B
0 Im

)
, (2.7)

and (
A B
C D

)
=
(

In BD−1

0 Im

)(
A − BD−1C 0

0 D

)(
In 0

D−1C Im

)
(2.8)

respectively.

As a consequence, with

A× = A − BD−1C and D� = D − CA−1B, (2.9)

we have:

Lemma 2.10. Assume A invertible. Then, M is invertible if and only if D�

is invertible, and it holds that:

M−1 =
(

In −A−1B
0 Im

)(
A−1 0
0 (D�)−1

)(
In 0

−CA−1 Im

)

=
(

A−1 + A−1B(D�)−1CA−1 −A−1B(D�)−1

−(D�)−1CA−1 (D�)−1

)
. (2.10)

Similarly, assuming D invertible, the matrix M is invertible if and only if
A× is invertible, and we then have:

M−1 =
(

In 0
−D−1C Im

)(
(A×)−1 0

0 D−1

)(
In −BD−1

0 Im

)

=
(

(A×)−1 −(A×)−1BD−1

−D−1C(A×)−1 D−1 + D−1C(A×)−1BD−1

)
. (2.11)

As a prelimary example, consider the case N = 2, and G =
(

g11 g12

g21 g22

)
.

Assume that g11 is invertible, and define

g�
22 = g11 − g12g

−1
22 g21.

Then it follows from the formula (2.10) that G is invertible if g�
22 is invertible.

Using the above formulas one can give sufficient conditions in terms of N
element of Ht

2 for the matrix G to be invertible in (Ht
2)

N×N .

2.2. The Adjoint �
As written in the introduction we define the new adjoint � as follows:

Definition 2.11. For qt =
(

a tb

b a

)
, qt ∈ Ht we define

q�
t =

(
a −tb

−b a

)
.
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The bilinear real form associated to � is

[qt, pt]� = ac + ac − t(bd + bd) (2.12)

with pt =
(

c td

d c

)
.

Lemma 2.12. The �-adjoint satisfies

qtq
�
t = q�

t qt = (det qt)I2 = (|a|2 − t|b|2)I2. (2.13)

As we saw above, the associated bilinear real form is

[qt, pt]� = Tr q�
t pt = ac + ac − t(bd + bd). (2.14)

This � adjoint leads to a theory which is completely parallel to the
study of slice hyperholomorphic functions.

We set
qt + q�

t

2
= Re qt

We first note that
Re qt = (Re a)I2 = x0I2, (2.15)

where we use the notation of Eq. (1.12)

Lemma 2.13. It holds that q�
t = qt if and only if q is a scalar matrix, qt = xI2

for some x ∈ R.

Proof. This is a direct computation. �

Formula (2.13) shows that qtq
�
t need not be positive for t > 0. More

precisely:

Theorem 2.14. Let t ∈ R
∗. The space Ht

2 endowed with the form

[pt, qt]� = Tr (q�
t pt) = Tr (p�

t qt) (2.16)

is a real Hilbert space of dimension four for t < 0 and a real Pontryagin space
of dimension four, with (real) index of negativity equal to two, for t > 0.

Proof. With pt =
(

c td

d c

)
we have

Tr (q�
t pt) = Tr (p�

t qt) = ac + ac − t(bd + bd). (2.17)

Furthermore,

[pt, qt]� = Tr (q�
t pt)

= ac + ac − t(bd + bd)

=
1

2

{
(a + a)(c + c) − (a − a)(c − c) − t

(
(b + b)(d + d) − (b − b)(d − d)

)}

=
1

2

{
(a + a)(c + c) + (a − a)(c − c) − t

(
(b + b)(d + d) + (b − b)(d − d)

)}
,

which shows that in the case of t > 0 the form has two positive squares and
two negative squares and Ht

2 becomes a Pontryagin space with [pt, qt]� and
it is a Hilbert space for t < 0. which ends the proof (see also [7] and [8]). �
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As a corollary we have the following result.

Corollary 2.15. Let Ht
2 be the scaled hypercomplex space for a fixed t, where

we assume that t �= 0. If, moreover, for a fixed pt ∈ Ht
2 we have Tr q�

t pt = 0
for all qt ∈ Ht

2, then pt = 0.

Proof. Let

pt =
(

c td

d c

)
and qt =

(
a tb

b a

)
.

Then, as in (2.14),

Tr q�
t pt = ac + ac − t(bd + bd).

Assume Tr q�
t pt = 0 and first take b = 0. The choice a = 1 and a = i lead

respectively to Re c = 0 and Im c = 0 so that c = 0. The case of d is treated
similarly. �

The first adjoint � leads to a theory which is completely parallel to
the study of slice hyperholomorphic functions and the authors are preparing
another work in this direction as well.

In order to properly define spaces of functions, we will write the con-
nection between the scaled norm and the � inner product as follows. Let J�
be the matrix:

J� =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 − t

|t| 0
0 0 0 − t

|t|

⎞
⎟⎟⎠

R

=
(

1 0
0 − t

|t|

)
C

(2.18)

J� is a signature matrix (both self-adjoint and equal to its inverse) and
induces a signature operator (which we still denote by J� on Ht such that

[qt, qt]� = [qt, J�qt]E (2.19)

where [·, ·]E is the inner product associated to the norm ‖ · ‖E , as in (2.6).
Note that, using the representation (1.8) we have

J�qt = a − bjt. (2.20)

2.3. The Adjoint [∗]
We now turn to the definition of adjoint q

[∗]
t , as in the introduction.

Definition 2.16. For a fixed scalar t ∈ R, and qt = (a, b)t ∈ Ht we define q
[∗]
t

by
(a, b)[∗]

t
def=

(
a, b

)
t

in Ht. (2.21)

Equivalently, if we take qt to be an element of Ht
2 rather than Ht then

q
[∗]
t becomes: (

a tb

b a

)[∗]

=
(

a tb
b a

)
(2.22)

on Ht
2.
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The second adjoint [∗] satisfies the following identity in matrix form:

q
[∗]
t = Jq∗

t J with J =
(

0 1
1 0

)
. (2.23)

Note that, even if, q∗
t and J are not in Ht for general t, we have that q

[∗]
t ∈ Ht

and hence it becomes a Pontryagin space adjoint on C
2×2 (see Sect. Appendix

A and Example A.3; see also [7]).
We also note that, in general, qt is not normal for this adjoint, (i.e. it

does not commute with q
[∗]
t ):

qtq
[∗]
t �= q

[∗]
t qt. (2.24)

The adjoint [∗] is associated to the bilinear real form

[qt, pt][∗] = ac + ac − t(bd + bd) (2.25)

(as compared with (2.14)), and leads to a new theory, more “non-commutative”.
A way to see this is to compare the definitions of the corresponding Blaschke
factors later on in Sect. 6 (see formulas (4.18) and (5.2) respectively).

The second adjoint [∗] satisfies

q
[∗]
t = Jq∗

t J with J =
(

0 1
1 0

)
. (2.26)

Lemma 2.17. It holds that, for every pt, qt ∈ Ht

(q[∗]
t )[∗] = qt (2.27)

(pt ·t qt)[∗] = q
[∗]
t ·t p

[∗]
t (2.28)

Proof. The proof follows from (2.26) and of the corresponding properties for
the regular adjoint. We leave the details to the reader. �

We now make more precise the fact (see (2.24) above) that qt is not
normal in general with respect to this adoint.

Proposition 2.18. Let qt =
(

a tb

b a

)
∈ Ht

2. Then,

qtq
[∗]
t =

(
a2 + tb2 2Re ab

2Re ab a2 + tb
2

)

q
[∗]
t qt =

(
a2 + tb

2
2tRe ab

2Re ab a2 + tb2

)
.

(2.29)

Proof. The formulas (2.29) are shown by straightforward computations. See [6]
for details. �
Lemma 2.19. The form

[qt, pt][∗] = Tr
(
p
[∗]
t qt

)
, p, q ∈ Ht

2

is bilinear on Ht
2 with respect to the real numbers, satisfies

[qt, pt][∗] = [pt, qt][∗]

and is not degenerate on Ht
2.
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Proof. Set

qt =
(

a tb

b a

)
and pt =

(
c td

d c

)
,

and assume that q ∈ Ht is such that [qt, pt][∗] = 0 for all p ∈ Ht. Since

q
[∗]
t pt =

(
ac + tbd t(ad + bc)
bc + ad tbd + ac

)

we have

[qt, pt][∗] = Re (ac + tbd).

The choice d = 0 and c ∈ R gives Re a = 0 and the choice c ∈ R gives
Im a = 0. So a = 0. To see that b = 0 take then d real and then d purely
imaginary. �

By the above analysis, one can get the following result (see [6]).

Theorem 2.20. If t �= 0, the pair
(
Ht

2, [, ][∗]

)
is a Pontryagin space over R.

Proof. We have that:

[qt, pt][∗] = 2Re (ac + tbd)

= ac + ac + t(bd + bd)

=
1

2

{
(a + a)(c + c) − (a − a)(c − c) + t

(
(b + b)(d + d) − (b − b)(d − d)

)}
,

which shows that the form has two positive squares and two negative squares
and the result follows. �

We will now write the connection between the scaled norm and the [∗]
inner product as follows. Let J[∗] be the matrix:

J[∗] =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 t

|t| 0
0 0 0 − t

|t|

⎞
⎟⎟⎠

R

(2.30)

J[∗] is a signature matrix (both self-adjoint and equal to its inverse) and
induces a signature operator (which we still denote by J[∗] on Ht such that
such that

[qt, qt][∗] = [qt, J[∗]qt]E . (2.31)
Note that, using the representation qt = a + bjt we have

J[∗]qt = a + bjt. (2.32)

Remark 2.21. As a reminder, we now have
(
Ht

2, [, ][∗]

)
a Pontryagin space

for all t �= 0, while
(
Ht

2, [, ]�
)

is a Pontryagin space for t > 0 and a Hilbert
space for t < 0.

Remark 2.22. Let t = ±1. It holds that q∗
1 = q

[∗]
1 if and only if b = b and

a = a, i.e. if and only if q1 is an hyperbolic number. Similarly, let t = −1.
Then q∗

1 = q
[∗]
1 if and only if b = −b and a = a.
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In a table form, the adjoints of i, jt and kt with respect to � and [∗]
are:

� [∗]
1 1 1
i −i i
jt −jt jt

kt −kt −kt

or, equivalently, in terms of matrices:

� [∗](
1 0
0 1

) (
1 0
0 1

) (
1 0
0 1

)
(

i 0
0 −i

)
−
(

i 0
0 −i

) (
i 0
0 −i

)
(

0 t
1 0

)
−
(

0 t
1 0

) (
0 t
1 0

)
(

0 ti
−i 0

)
−
(

0 ti
−i 0

)
−
(

0 ti
−i 0

)
.

Throughout the paper we will make use of the three equivalent defini-
tions of scaled hypercomplex numbers and their conjugates and use either
the matrix, vector, or complex pair notation as needed. As a reminder, we
include them here:

q∗
t =

(
a b

tb a

)
q�
t =

(
a −tb

−b a

)
q
[∗]
t =

(
a tb
b a

)
.

These conjugates will lead interesting function theories and it is worth
mentioning here the example of f(qt) =

√
1 − qt which will have a familiar

corresponding power series decomposition depending on the two adjoints �
and [∗].

In this paper, we do not develop the degenerate case t = 0, as it is not
relevant here. This case is currently being worked on in another project.

2.4. Spaces of Functions on Ht
2

We start with considering the spectrum of a matrix given by the � adjoint.
This is the only case that can be considered, since, for the [∗] adjoint we have
that qt is not normal for this adjoint (see (2.24)) and that qtq

[∗]
t is not scalar.

Proposition 2.23. For qt ∈ Ht and A ∈ H
m×m
t we have that:

∞∑
n=0

qn
t An = (1 − q�

t A)(qtq
�
t A2 − 2(Re (qt))A + I2)−1, (2.33)

whenever the sum on the left is convergent.

Proof. We prove (2.33); We have
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( ∞∑
n=0

qn
t An

)(
qtq

�
t A2 − 2(Re (q�

t ))A + I2

)

=
∞∑

n=0

qn
t (qtq

�
t )An+2 − 2

∞∑
0

qn
t (Re (qt))An+1 +

∞∑
n=0

qn
t An

=
∞∑

n=0

qn+1
t q�

t An+2 −
∞∑
0

qn
t (qt + q�

t )An+1 +
∞∑

n=0

qn
t An

=
∞∑

n=0

qn+1
t q�

t An+2 −
∞∑

n=0

qn+1
t An+1 −

∞∑
n=0

qn
t q�

t An+1 +
∞∑

n=0

qn
t An

=
∞∑

n=0

qn+1
t q�

t An+2 −
∞∑

n=0

qn
t q�

t An+1

︸ ︷︷ ︸
−q�

t A

+
∞∑

n=0

qn
t An −

∞∑
n=0

qn+1
t An+1

︸ ︷︷ ︸
I2

= I2 − q�
t A.

�
Corollary 2.24. For any pt, qt ∈ H

t
2 we have that:

∞∑
n=0

qn
t pn

t = (1 − q�
t pt)(qtq

�
t p2

t − 2(Re (qt))pt + 1)−1, (2.34)

whenever the sum on the left is convergent.

Proof. Setting then A = pt in (2.33) gives (2.34). �
Remark 2.25. In the case where t = 1, the quaternionic case, this spectrum
first appeared in [25–27].

We now introduce the Cauchy product of power series in Ht
2. In view of

the non-commutativity there are various possible ways to define power series
and their product; here we follow [32], and consider power series of the form

f(qt) =
∞∑

n=0

qn
t αn, (2.35)

where both the variable qt and the coefficients α0, α1, . . . are in Ht
2.

Definition 2.26. Let f(qt) =
∑∞

n=0 qn
t αn and g(qt) =

∑∞
n=0 qn

t βn, then the
Cauchy-star product of f and g is:

(f � g)(qt) =
∞∑

n=0

n∑
k=0

qn−k
t αn−k � qk

t βk (2.36)

where:

ql
tα �t qm

t β = ql+m
t α ·t β, l,m ∈ N0, α, β ∈ Ht

2,

is called the star-product.

Throughout the paper we will call both of the above � products. The �-
product does not respect point-evaluation, but as in the quaternionic setting
we have:
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Lemma 2.27. In the above notation assume that f(qt) �= 0. We then have:

(f � g)(qt) = f(qt)g
(
f(qt)−1qtf(qt)

)
. (2.37)

Proof. In the above notation we have:

(f � g)(qt) =
∞∑

n=0

qn
t f(qt)βn

=
∞∑

n=0

f(qt)f(qt)−1qn
t f(qt)βn

=
∞∑

n=0

f(qt)
(
f(qt)−1qtf(qt)

)n
βn

= f(qt)

( ∞∑
n=0

f(qt)
(
f(qt)−1qtf(qt)

)n
βn

)

= f(qt)g
(
f(qt)−1qtf(qt)

)
.

�

The proof of the following important lemma is easy and will be omitted.

Lemma 2.28. The power series (2.35) is uniquely determined by the values
f(x), where x is real and in an open interval of the form (−ε, ε), for some
ε > 0. Furthermore the restriction to the real line of the �-product reduces to
the regular (non-commutative) product of power series of a real variable with
matrix coefficients.

Thus these are series of matrices (with a certain structure), and the
results from series of matrices will hold, using the operator norm, and the
claims can be proved by first considering the case qt ∈ R. In particular:

Proposition 2.29. Let f(qt) =
∑∞

n=0 qn
t αn and g(qt) =

∑∞
n=0 qn

t βn be power
series of the form (2.35), converging in a neighborhood ‖qt‖op < ε of the
zero matrix in Ht

2. The star product f � g converges in a (possibly smaller)
neighborhood of the origin.

Proof. Let (γn) be the corresponding convolution sequence:

γn =
n∑

k=0

αkβn−k, n = 0, 1, . . .

Restricting qt = x0I2 where x ∈ R, and resorting to the classical theory, we
see that the series

∑∞
n=0 xn

0γn converges for |x0| < η for some η > 0. Thus

1
R

= lim sup
n→∞

‖γn‖
1
n
op > 0.

For ‖qt‖ < R the series
∑∞

n=0 ‖qt‖n
op · ‖γn‖op converges and so does f �g. �
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Proposition 2.30. Assume α0 = 1, and write f(qt) = 1 − g(qt) with g(qt) =∑∞
k=1 qk

t αk. Then, the inverse f−�(qt) is equal to a convergent power series
of the form (2.35) in a neighborhood of the origin and moreover

f−�(qt) =
∞∑

n=0

g�n(qt)

where g�n = g � g · · · � g, n-times, and the convergence is in the topology of
C

2×2.

Proof. The result is true for qt = x ∈ R and then follows since the restriction
to any subinterval of the real line uniquely determines a power series of the
form (2.35) (see Lemma 2.28). �

The following lemma will play a key role in the study of rational func-
tions.

Lemma 2.31. Let α = (αn)n∈N0 be a sequence of elements in Ht
2 and let

α� = (α�
n )n∈N0 denote the corresponding sequence of �-adjoints. Then the

sequence of self-convolution α ⊗ α� is real.

Proof. We have

(α ⊗ α�)n =
∑

�,k∈{0,...,n}
k+�=n

αkα�
�

which is equal to its own �-adjoint since∑
�,k∈{0,...,n}

k+�=n

αkα�
� =

∑
�,k∈{0,...,n}

k+�=n

α�α
�
k (2.38)

�
Definition 2.32. Let f(qt) =

∑∞
n=0 qn

t αn be converging in a neighborhood
‖qt‖ < ε of the zero element of Ht

2. We define

f�(qt) =
∞∑

n=0

qn
t α�

n . (2.39)

We note that, for qt = x ∈ R for which the power series converges,

f�(x) = (f(x))�.

Proposition 2.33. The power series f(qt) � f�(qt) has real coefficients and
commute with every other converging power series.

Proof. This follows from Lemma 2.31. �
Proposition 2.34. Assume that α0 in (2.35) is invertible. Then,

(f(qt))−� = f�(qt)(f(qt) � f�(qt))−1 = (f(qt) � f�(qt))−1f�(qt). (2.40)

Proof. We observe that, since f(qt)�f�(qt) is real valued and � is associative:

(f(qt))−� (f(qt) � f�(qt)) = (f(qt))−� � (f(qt) � f�(qt))
= (f(qt)−� � f((qt))) � f�(qt) = f�(qt).

�
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In preparation of the study of rational functions we specialize the pre-
vious result to polynomial

Corollary 2.35. Let P (x) =
∑N

n=0 xnαn be a polynomial of the real variable
x, with coefficients α0, . . . , αN ∈ Ht

2. Then the polynomial

P (x)(P (x))� (2.41)

has real coefficients and

(P (qt))−� = P�(qt)(P (qt) � P�(qt))−1 = (P (qt) � P�(qt))−1P�(qt). (2.42)

We note that (2.42) can be rewritten as

(P (qt))−� =
P�(qt)

(P (qt) � P�(qt))
.

We present an illustration of the previous corollary, which pertains to Blaschke
factors; see Sect. 4.4 for the latter.

Example 2.36. Let α ∈ Ht
2. Then,

(1 − qtα)−� = (1 − qtα
�)((1 − qtα) � (1 − qtα

�))−1

=
1 − qtα

�

q2
t (αα�) − 2qtRe α + 1

We conclude this section with:

Proposition 2.37. We have that qt − α and (1 − qtα) �-commute. It then
follows that qt − α and (1 − qtα)−� also �-commute.

Proof. The claim amounts to show that

(1 − qtα) � (qt − α) = (qt − α) � (1 − qtα),

but both sides are equal to −q2
t α + qt(α2 + 1) − α.

The second part follows. �

In fact the above proposition is a special case of the following result,
whose proof is left to the reader.

Proposition 2.38. Let f(qt) =
∑∞

n=0 qn
t αn and g(qt) =

∑∞
n=0 qn

t βn be power
series of the form (2.35), converging in a neighborhood ‖qt‖op < ε of zero. If
their coefficients pairwise commute, i.e. αnβm = βmαn, ∀n,m ∈ N0, then f
and g will also �-commute.

We conclude with a definition generalizing the quaternioinc setting:

Definition 2.39. Let α ∈ Ht. We denote by [α], and call sphere associated to
α, the set of points β ∈ Ht such that

Re α = Re β (2.43)
αα� = ββ� (2.44)
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3. The Scaled Global Operator for Scaled Hypercomplex
Numbers

For the scaled variable qt we have its vector part:

�qt = ix1 + jtx2 + ktx3,

and, similar to the global operator Gq on the space of quaternions, we can
define the global operator associated to the scaled quaternions Ht to be:

Gt = �qt
∂

∂x0
−
(

x1
∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
(3.1)

and its associated, simplified version:

Vt =
∂

∂x0
− 1

ix1 + jtx2 + ktx3

(
x1

∂

∂x1
+ x2

∂

∂x2
+ x3

∂

∂x3

)
(3.2)

3.1. The Gleason Problem Associated to the Vt -Operator and the Vt -Fueter
Variables

As in [15] we solve the Gleason problem associated to the new Vt-operator
and define μt,l, the Fueter-type variables which are in its kernel and which
generate the series solutions to Vtf = 0, where f is real-analytic.

Assume f smooth and in the kernel of Vt, which yields:
∂f

∂x0
=

1
ix1 + jtx2 + ktx3

(
x1

∂f

∂x1
+ x2

∂f

∂x2
+ x3

∂f

∂x3

)
.

Varying x by a real parameter u, we obtain:
df(ux)

du
= x0

∂f

∂x0
(ux) + x1

∂f

∂x1
(ux) + x2

∂f

∂x2
(ux) + x3

∂f

∂x3
(ux)

=
x0

�qt

(
x1

∂f

∂x1
(ux) + x2

∂f

∂x2
(ux) + x3

∂f

∂x3
(ux)

)

+ x1
∂f

∂x1
(ux) + x2

∂f

∂x2
(ux) + x3

∂f

∂x3
(ux)

= μ1,t(x)
∂f

∂x1
(ux) + μ2,t(x)

∂f

∂x2
(ux) + μ3,t(x)

∂f

∂x3
(ux)

(3.3)

where:

μl,t(x) = xl

(
1 +

x0

�qt

)
, l = 1, 2, 3. (3.4)

Definition 3.1. The functions μl,t, l = 1, 2, 3, are called the Vqt
-Fueter vari-

ables.

For t = −1, corresponding to the field of quaternions H−1, these vari-
ables were introduced in [15].

With α = (α1, α2, α3) ∈ N
3
0 we recall that

|α| = α1 + α2 + α3

and we use the multi-variable notation for x = (x1, x2, x3) ∈ R
3, and more

generally for commuting variables:

xα = xα1
1 xα2

2 xα3
3 .
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We can now define:

Definition 3.2. For the Vt-Fueter variables μu and α = (α1, α2, α3) ∈ N
3
0, we

define the product:

μα
t (x) = μα1

1,t(x)μα2
2,t(x)μα3

3,t(x), (3.5)

for every x ∈ H
∗
t .

Proposition 3.3. The Vt-Fueter variables pairwise commute and for α ∈ N
3
0

it holds that
μα

t = μα1
1,tμ

α2
2,tμ

α3
3,t

= xα

(
1 +

x0

�qt

)|α| (3.6)

and
μα

t

∣∣
x0=0

= xα (3.7)

Proof. Since here too the Vt-Fueter variables μl commute, in the above defi-
nition we do not need to use the symmetric product and the proof goes along
the lines of the quaternionic case which was presented in [15]. �

We can now prove that the Vt-Fueter products μα
t are in the kernel of

Vt on H
∗
t :

Theorem 3.4. It holds that μα
t are in the kernel of the operator Vt on any

open domain Ω ⊂ H
∗
t . Moreover, we have:

Vtμ
α
t (x) = 0, (3.8)

for every x ∈ Ω.

Proof. Following the argument in [15], we divide the verification into a num-
ber of steps.

STEP 1: It holds that
∂

∂x1

1
�qt

=
i

�qt
2 +

2x1

�qt
3 ,

∂

∂x2

1
�qt

=
jt

�qt
2 +

2x2t

�qt
3 ,

∂

∂x3

1
�qt

=
kt

�qt
2 +

2x3t

�qt
3 . (3.9)

Indeed, for the first case we have
1
�qt

=
�qt

�qt
2 =

− �qt

x2
1 + (x2

2 + x2
3)t

.

Hence
∂

∂x1

1
�qt

=
−i(x2

1 + (x2
2 + x2

3)t) + 2x1 �qt

(x2
1 + (x2

2 + x2
3)t)2

=
i �qt

2

�qt
4 +

2x1 �qt

�qt
3

and the result follows. The other cases are similar and Eq. (3.9) are proven.
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STEP 2: It now holds that

∂

∂x1

(
1 +

x0

�qt

)|α|
=
∑

t,s∈N0
t+s=|α|

(
1 + x0

�qt

)t (
x0i
�qt

2 + 2x1x0
�qt

3

)(
1 + x0

�qt

)s

,

∂

∂x2

(
1 +

x0

�qt

)|α|
=
∑

t,s∈N0
t+s=|α|

(
1 + x0

�qt

)t (
x0jt

�qt
2 + 2tx2x0

�qt
3

)(
1 + x0

�qt

)s

,

∂

∂x3

(
1 +

x0

�qt

)|α|
=
∑

t,s∈N0
t+s=|α|

(
1 + x0

�qt

)t (
x0kt

�qt
2 + 2tx3x0

�qt
3

)(
1 + x0

�qt

)s

.

(3.10)

(3.10) is a direct consequence of (3.9) and of the formula for the derivative of
fn when f is a matrix-valued function (and in particular a global quaternionic
valued) of (say) a real variable w:

dfn

dw
=

∑
t,s∈N0

t+s=|α|

f tf ′fs. (3.11)

STEP 3: We have

∂

∂x0

(
1 +

x0

�qt

)|α|
=

|α|
�qt

(
1 +

x0

�qt

)|α|−1

. (3.12)

This is because 1 + x0
�qt

commutes with its derivative with respect to x0, and
formula (3.11) reduces then to the classical formula.

STEP 4: We now calculate

1
�qt

3∑
u=1

xu
∂

∂xu
μα .

We have:

1

�qt

3∑
u=1

xu
∂

∂xu
xα

(
1 +

x0

�qt

)|α|
=

1

�qt

·
(

x1
∂

∂x1
xα

(
1 +

x0

�qt

)|α|
+ x2

∂

∂x2
xα

(
1 +

x0

�qt

)|α|
+ x3

∂

∂x3
xα

(
1 +

x0

�qt

)|α|)

=
1

�qt

[
x1α1x

α−(1,0,0)

(
1 +

x0

�qt

)|α|

+x1x
α

∑
t,s∈N0

t+s=|α|

(
1 +

x0

�qt

)t (
x0i

�qt
2 +

2x1x0

�qt
3

)(
1 +

x0

�qt

)s

⎤
⎥⎥⎦

+
1

�qt

[
x2α2x

α−(0,1,0)

(
1 +

x0

�qt

)|α|

+x2x
α

∑
t,s∈N0

t+s=|α|

(
1 +

x0

�qt

)t (
x0jt

�qt
2 +

2tx2x0

�qt
3

)(
1 +

x0

�qt

)s

⎤
⎥⎥⎦
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+
1

�qt

[
x3α3x

α−(0,0,1)

(
1 +

x0

�qt

)|α|

+x3x
α

∑
t,s∈N0

t+s=|α|

(
1 +

x0

�qt

)t (
x0kt

�qt
2 +

2tx3x0

�qt
3

)(
1 +

x0

�qt

)s

⎤
⎥⎥⎦ ,

=
1

�qt

[
|α|xα

(
1 +

x0

�qt

)|α|]

+
1

�qt

⎡
⎢⎢⎣xα

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

�qt

)t (
x1x0i + x2x0jt + x3x0kt

�qt
2

+
2x2

1x0 + 2tx2
2x0 + 2tx2

3x0

�qt
3

)(
1 +

x0

�qt

)s]

=
xα

�qt

⎡
⎢⎢⎣|α|

(
1 +

x0

�qt

)|α|
+

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

�qt

)t (
x0 �qt

�qt
2 − 2 �qt

2x0

�qt
3

)(
1 +

x0

�qt

)s

⎤
⎥⎥⎦

=
xα

�qt

⎡
⎢⎢⎣|α|

(
1 +

x0

�qt

)|α|
−

∑
t,s∈N0

t+s=|α|−1

(
1 +

x0

�qt

)t
x0

�qt

(
1 +

x0

�qt

)s

⎤
⎥⎥⎦

=
xα

�qt

[
|α|

(
1 +

x0

�qt

)|α|
− |α|

(
1 +

x0

�qt

)|α|−1
x0

�qt

]
.

STEP 5: We can now compute Vtμ
α
t .

Using (3.12) and the previous step we have:

Vtμ
α
t = xα |α|

�qt

(
1 +

x0

�qt

)|α|−1

− xα

�qt

[
|α|

(
1 +

x0

�qt

)|α|
− |α|

(
1 +

x0

�qt

)|α|−1
x0

�qt

]

=
|α|xα

�qt

(
1 +

x0

�qt

)|α|−1 (
1 −

(
1 +

x0

�qt

)
+

x0

�qt

)

= 0.

This ends the proof. �

Remark 3.5. We observe that both functions μα
t and ζα

t coincide with xα

when x0 = 0. It is important to note that these are two different extensions
of the same real function xα leading to two different regular function theories.
In fact, μα

t is the Vt-regular extension of xα while ζα
t gives the classical global

Fueter extension. However, the classical global Fueter variables ζα
t extend xα

to the whole space of quaternions while μα
t extend xα to domains of H∗

t .

In their work paper [8] two of the co-authors have introduced the ex-
tension of the Fueter variables corresponding to the Fueter operator to the
scaled case, namely to scaled Fueter variables for the scaled Fueter operator:
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Definition 3.6. The scaled Fueter ζt variables are:

ζ1,t = x1 − x0i, ζ2,t = x2 +
sign (t)x0√

|t|
jt, ζ3,t = x3 +

sign (t)x0√
|t|

kt.

(3.13)

In the case of t = −1, namely, in the case of quaternions, we have the
following (see [15] for details)

Proposition 3.7. Let Ω be an open domain in H
∗. For every x ∈ Ω ⊂ H

∗ it
holds that

|μα|2 = |x|2α

(
1 +

x2
0

x2
1 + x2

2 + x2
3

)|α|
, (3.14)

and, in particular, we have:

|μu(x)|2 ≤ |ζu(x)|2, u = 1, 2, 3. (3.15)

Proof. This follows from the fact that x0
�q has no real part on Ω and:

|μu(x)|2 = x2
u +

x2
ux2

0

x2
1 + x2

2 + x2
3

≤ x2
u + x2

0 = |ζu(x)|2. (3.16)

�
In the case of the scaled hypercomoplex numbers, using the scaled Eu-

clidean norm we have a similar result:

Proposition 3.8. Let Ωt be an open domain in H
∗
t . For every x ∈ Ω ⊂ H

∗
t it

holds that

|μα
t |2E = |x|2α

E

(
1 +

x2
0

x2
1 + |t|(x2

2 + x2
3)

)|α|
, (3.17)

and, in particular, we have:

|μu,t(x)|2E ≤ |ζu,t(x)|2, u = 1, 2, 3. (3.18)

Proof. This follows from the fact that x0
�q has no real part on Ωt and it is

easy to check that:

|μu,t(x)|2E = x2
u +

x2
ux2

0

x2
1 + |t|(x2

2 + x2
3)

≤ x2
u +

x2
0

|t| = |ζu,t(x)|2E ,

for u = 2, 3 and that:

|μ1,t(x)|2E = x2
1 +

x2
1x

2
0

x2
1 + |t|(x2

2 + x2
3)

≤ x2
1 + x2

0 = |ζ1,t(x)|2E ,

�
Proposition 3.9. For any n ∈ N, the function qn

t is in ker Vt and that, more-
over,

qn
t =

∑
|α|=n

μα
t cα,n

where, with α = (α1, α2, α3),

cα,n =
n!
α!

i×α1 × j×α2
t × k×α3

t , (3.19)

where the symmetric product is taken among all the products of the units eu.
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Proof. In H
∗
t we have

qn
t = (x0 + �qt)n

=
(

1 +
x0

�qt

)n

( �qt )n

=
(

1 +
x0

�qt

)n
⎛
⎝ ∑

|α|=n

xαcα,n

⎞
⎠

=
∑

|α|=n

xα

(
1 +

x0

�qt

)n

cα,n,

for some cα,n ∈ Ht which can be expressed in term of symmetrized products
as in (3.19) by known formulas. �

We note that (3.19) does not take into account the Cayley table of
multiplication for the quaternions.

3.2. Left Regular Functions on Ht Where t �= 0 in R

In this section, we review some main results of [8], providing motivations of
our works. Let t ∈ R and Ht = span

R
({1, i, jt, kt}), the t-scaled hypercom-

plexes. We consider functions,

f : Ht → Ht,

in the t-scaled hypercomplex variable,

w = x0 + x1i + x2jt + x3kt, with xl ∈ R,

for all l = 0, 1, 2, 3. Especially, we are interested in R-differentiable functions
on an open connected set Ω of the t-hypercomplex R-space Ht. For motiva-
tions, see e.g., [17,18,29,36] and [40].

Definition 3.10. Let t ∈ R be fixed, and U ⊂ Ht, an open subset. Define a
set,

Ft.U
def= {f : Ht → Ht |f is R-differentiable on U } .

Remark that the openness on Ht, here, is determined by the semi-norm
topology for Ht in terms of the semi-norm ‖.‖t of (2.1.10), for a fixed t ∈ R.
We first, let t �= 0 in R, and Ft,U , the family of R-differentiable functions on
an open subset U of the t-scaled hypercomplexes Ht. Define the differential
operators ∇t and ∇�

t on Ft,U by

∇t =
∂

∂x0
+ i

∂

∂x1
− jt

sign (t)√
|t|

∂

∂x2
− kt

sign (t)√
|t|

∂

∂x3
, (3.20)

and

∇�
t =

∂

∂x0
− ∂

∂x1
i +

sign (t)√
|t|

∂

∂x2
jt +

sign (t)√
|t|

∂

∂x3
kt, (3.21)

where

sign (t) =
{

1 if t > 0
−1 if t < 0,



Scaled Global Operators and Fueter Variables Page 25 of 61    53 

for all t ∈ R\ {0}.
The definitions (3.20) and (3.21) of the differential operators ∇t and

∇�
t on Ft,U generalizes those on F−1 (the quaternionic case) and those on

F1 (the split-quaternionic case), studied in [17–19,29,36]

Theorem 3.11. If ∇t and ∇�
t are the differential operators of (3.20) and (3.21),

then

∇�
t ∇t =

∂2

∂x2
0

+
∂2

∂x2
1

− sign (t)
∂2

∂x2
2

− sign (t)
∂2

∂x2
3

(3.22)

Proof. See [8] for details. �
By (3.22), one obtains the following corollary.

Corollary 3.12. Let ∇t and ∇�
t be the differential operators on Ft, and Δt,

the t-Laplacian. Then

Δt =

⎧⎪⎨
⎪⎩

Δ−1 = ∂2

∂x2
0

+ ∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

if t < 0

Δ1 = ∂2

∂x2
0

+ ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

if t > 0.

Proof. It is proven by (3.22), whenever t �= 0 in R. �
Definition 3.13. Let ∇t be the operator 3.20 on Ft,U , and f ∈ Ft,U . If

∇tf =
∂f

∂x0
+ i

∂f

∂x1
− jt

sign (t)√
|t|

∂f

∂x2
− kt

sign (t)√
|t|

∂f

∂x3
= 0,

then f is said to be left t(-scaled)-regular on U . If

f∇t =
∂f

∂x0
+

∂f

∂x1
i − sign (t)√

|t|
∂f

∂x2
jt − sign (t)√

|t|
∂f

∂x3
kt = 0,

then f is said to be right t(-scaled)-regular on U . If f ∈ Ft,U is both left and
right t-regular, then it is called t(-scaled)-regular.

While, a function f ∈ Ft,U is t(-scaled)-harmonic, if

Δtf =
∂2f

∂x2
0

+
∂2f

∂x2
1

− sign (t)
∂2f

∂x2
2

− sign (t)
∂2f

∂x2
3

= 0,

where Δt is the t-Laplacian (3.22).

The following theorem illustrates the relation between t-regularity and
t-harmonicity.

Theorem 3.14. Let f ∈ Ft,U , for U ∈ Tt in Ht. Then if f is left t-regular on
U , it is t-harmonic on U .

Proof. If f is left t-regular in Ft,U , then ∇tf = 0 on U , and hence,

Δtf = ∇�
t (∇tf) = ∇�

t (0) = 0,

implying the t-harmonicity of f on U . �
In Definition 3.6 we have introduced the entire R-differentiable functions

{ζl}3
l=1 ⊂ Ft,Ht

, associated to a Ht-variable qt = x0 + x1i + x2jt + x3kt, with
xl ∈ R, 0 ≤ l ≤ 3. In [8] the following result was proven:
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Theorem 3.15. If ζl,t are the functions (3.13) in Ft,Ht
, then ζl,t are t-harmonic

and t-regular on Ht, ∀ l = 1, 2, 3.

Now, define the so-called symmetrized product on Ht. One can do that
since the R-vector space Ht has a well-defined vector-multiplication (·) = (·t).

Definition 3.16. Let h1, ..., hN ∈ Ht, for N ∈ N. Then the symmetrized prod-
uct of h1, ..., hN is defined by a new hypercomplex number,

N
×

n=1
hn

denote= h1 × · · · × hN
def=

1
N !

∑
σ∈SN

hσ(1)hσ(2)...hσ(N), (3.23)

where SN is the symmetric group over {1, ..., N}.

Remark 3.17. Recall that we are considering the cases where t �= 0 in R,
however, the symmetrized product (×) of (3.23) is well-defined for “all” t ∈ R,
including the case where t = 0.

Let f1, ..., fN : Ht → Ht be functions for N ∈ N. By applying (3.23),
define a symmetrized-product function of f1, ..., fN by

N
×

n=1
fn =

1
N !

∑
σ∈SN

fσ(1)fσ(2)...fσ(N), (3.24)

where (
fσ(1)fσ(2)...fσ(N)

)
(h) = fσ(1) (h) ...fσ(N) (h) , ∀h ∈ Ht,

for all σ ∈ SN . So, one obtains

f
(n)
j = fj × fj × · · · × fj︸ ︷︷ ︸

n-times

= fn
j , ∀n ∈ N,

where we define f0 to be:

f (0) = 1, the constant 1-function on Ht,

for all functions f : Ht → Ht, where 1 = 1 + 0i + 0jt + 0kt ∈ Ht.

Definition 3.18. Let n denote= (n1, n2, n3) ∈ N
3
0 be a triple of numbers in N0 =

N∪{0}, and let {ζl}3
l=1 be the t-harmonic t-regular functions of (3.13). Define

a new function ζn ∈ F1,Ht
by

ζn
def=

1
n!

(
ζ
(n1)
1 × ζ

(n2)
2 × ζ

(n3)
3

)
, (3.25)

where
n! = (n1!) (n2!) (n3!) ∈ N,

and

ζ
(nl)
l+1 = ζl+1 × ζl+1 × · · · × ζl+1︸ ︷︷ ︸

nl-times

= ζnl

l+1, ∀l = 1, 2, 3.

Theorem 3.19. Let n = (n1, n2, n3) ∈ N
3
0, and let ζn ∈ Ft,Ht

be the func-
tion (3.25). Then it is a t-harmonic t-regular function, i.e.,

ζn∇t = ∇tζ
n = 0, and Δtζ

n = 0, on Ht.
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Proof. Theorem 3.19 follows from Theorem 3.14. See [8] for details. �
By Theorem 3.19, all functions

{
ζn : n ∈ N

3
0

}
of (3.25) are t-harmonic

t-regular functions on Ht. We will now see that they also generate the space
of t-regular functions in this case.

In [8] the authors have proven the following:

Theorem 3.20. Let t �= 0 in R, and f ∈ Ft,U , where 0 = 0+0i+0jt +0kt ∈ U
in Ht. If f is R-analytic on U , then

f is left t-regular on U,

if and only if
f = f (0) +

∑
n∈N3

ζnfn, (3.26)

with

fn =
1
n!

∂n1+n2+n3f

∂xn1
1 ∂xn2

2 ∂xn3
3

(0) , ∀n ∈ N
3.

Proof. See [8] for details. �
Note that if t < 0, then the R-analyticity of a t-regular function f ∈ Ft,U

is automatically guaranteed by (3.26). Thus, if t < 0 in R then, without
the R-analyticity assumption of f , the above characterization (3.26) holds.
However, if t ≥ 0, then the R-analyticity assumption is needed in (3.26). See
e.g., [8].

Remark 3.21. Please note that for the Fueter operator in the case of split
quaternions other notations exist in literature and we write the equivalence
of notation in this table:

This paper Notation in
paper [17]

Variables x3 x1

x1 x3

Hypercomplex basis i i
j1 k2

k1 k1

Differential operator ∇1 ∇+
R

∂
∂x0

+ i ∂
∂x1

− j1
∂

∂x2
−

k1
∂f
∂x3

∂
∂x0

−k1
∂

∂x1
−k2

∂
∂x2

+
i ∂f
∂x3

Fueter vari-
ables (3.5)–
(3.7), p. 332
of [17]

ζ1,1(q1) = x1 − x0i ζ1(x) = x1 + x0k1

ζ2,1(q1) = x2 + x0j1 ζ2(x) = x2 + x0k2

ζ3,1(q1) = x3 + x0k1 ζ3(x) = x3 − x0i

In general, other linear changes of variables can be considered for the
setting of Fueter variables, for example in [12].
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4. Hardy Space and Interpolation for the First Conjugate �
4.1. Prelude

The Hardy space H2(D) is the reproducing kernel Hilbert space of functions
analytic in the open unit disk and with reproducing 1

1−zw . It is also the unique
(up to a positive multiplicative factor in the inner product) Hilbert space of
functions analytic in D such that M∗

z = R0, where Mz denotes the operator of
multiplication by z and R0 is the backward-shift operator. Important issues
pertaining to the classical theory include the Beurling-Lax theorem, Schur
multipliers and related interpolation problems. In the present section we first
study the counterparts of this space in the setting of the rings Ht

2. For t = −1
this was done in [10]. We mention that a difference occured there between the
scalar and matrix-valued case in view of the lack of commutativity; see [11,
p. 1767 (and in particular (62.38)]). The counterpart of the Hardy space is
now the following real Hilbert space:

Definition 4.1. We denote by Ht
2 the space of power series of the form

f(qt) =
∞∑

n=0

qn
t αn (4.1)

where α0, α1, . . . ∈ Ht and such that
∞∑

n=0

‖αn‖2
E < ∞ (4.2)

where the scaled norm (2.5) is used in (4.2).

Note that (4.2) is induced by the inner-product

[f, g]E = 2
∞∑

n=0

Re
(
ancn + |t| bndn

)

where

αn = an + bnjt, n = 0, 1, . . .

and with g(qt) =
∑∞

n=0 qn
t γn,

γn = cn + dnjt, n = 0, 1, . . .

We also note that, under (4.2), the power series converges for ‖qt‖ < 1, where
‖·‖ is the operator norm. The case t = −1, corresponding to the quaternionic
setting, was first studied in [10]. In that work and related ones, one views the
Hardy space as a quaternionic Hilbert space. This is not possible for general
t since Ht will not be a skew field in general. We will endow Ht

2 with two real
symmetric forms, namely

[f, g]� =
∞∑

n=0

[gn, fn]�, (4.3)

and

[f, g][∗] =
∞∑

n=0

[gn, fn][∗] (4.4)
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where f(qt) =
∑∞

n=0 qn
t fn and g(qt) =

∑∞
n=0 qn

t gn are elements of Ht
2.

Theorem 4.2. The space Ht
2 endowed with either of the form (4.3) or (4.4)

is a Krein space. In case of (4.3) it is a Hilbert space for t < 0. When using
the form (4.3) we denote this space by Ht

2,�, and by Ht
2,[∗] when using (4.4).

Proof. The claim follows from the corresponding structure of the coefficient
space Ht from Theorems 2.14 and 2.20 endowed with the forms

[pt, qt]� = Tr (q�
t pt) = ac + ac − t(bd + bd)

and
[pt, qt][∗] = Tr (q[∗]

t pt) = ac + ac − t(bd + bd),

where

qt =
(

a tb

b a

)
, pt =

(
c td

d c

)
.

�

Definition 4.3. We denote by H2,� the Hardy space Ht
2 endowed with the

form (4.3) and by Ht
2,[∗] the Hardy space Ht

2 endowed with the form (4.4),
which, by Theorem 4.2, become Hilbert and Krein spaces, respectively, de-
pending on sign t.

These Hilbert and Krein spaces are studied in Sects. 4.2 and 5 respec-
tively.

In several complex variables, one considers in Schur analysis the Arveson
space rather than the Hardy space of the ball. In the last part of the present
section we present the analog of the Arveson space for the μt variables. In
the cases t = 1 this was first done in [19].

4.2. The Hardy Space in One Variable: Case 1
In this subsection, we consider the Hardy space Ht

2,� when the adjoint � is
considered,

q�
t =

(
a −tb

−b a

)
. (4.5)

We recall that Ht
2 endowed with the inner product (2.16)

[pt, qt]� = Tr (q�
t pt)

is a real Pontryagin space of dimension 4 and index of negativity 2, in the
case t > 0 and it is a Hilbert space when t < 0; see Lemma 2.14.

In what follows we will use the spaces Ht
2 and Ht interchangeably, for

example the matrix I2 in the first becomes the number 1 in the second.

Theorem 4.4. Ht
2,� is a reproducing kernel Krein right Ht

2-module (or an
Ht-module) with reproducing kernel

K(qt, pt) =
∞∑

n=0

qn
t p�n

t (4.6)
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when endowed with the form (we use the same notation as for Ht
2; see (4.5))

[f, g]� =
∞∑

n=0

δ�
n γn (4.7)

with g(qt) =
∑∞

n=0 qn
t δn, and associated inner product (indefinite when t > 0

and definite when t < 0)

Tr [f, g]� =
∞∑

n=0

Tr δ�
n γn (4.8)

Proof. The space of sequences (γn)n∈N0 of elements of Ht
2 such that (4.2) is

in force is a real Hilbert space, and so is Ht
2,� by transfer of structure. The

norm (4.2) corresponds to the inner product

〈f, g〉 =
∞∑

n=0

Tr δ∗
nγn

where g(qt) =
∑∞

n=0 qn
t δn. To check the reproducing kernel property, we

write, with f as in (4.1) and the kernel defined by (4.6):

Tr [f(·),K(·, pt)α]� = Tr

( ∞∑
n=0

α�pn
t γn

)
= Tr α�f(pt).

�

Theorem 4.5. The operator Mqt
of star-multiplication on the left by qt is a

continuous Krein space isometry, with adjoint the backward-shift operator

(M∗
qt

f)(qt) =
∞∑

n=1

qn−1
t αn, with f(qt) =

∞∑
n=0

qn
t αn. (4.9)

We also have that M∗
qt

Mqt
f = f for f ∈ Ht

2,�.

Proof. We have with f and g as above,

[Mqt
f, g]� = Tr

( ∞∑
n=0

δ�
n+1γn

)

= [f,M∗
qt

g]�.

�

4.3. Interpolation in the Complex Case

In the following subsections we begin a study of interpolation in the spaces
Ht

2,� and Ht
2,[∗]. In the classical complex scalar setting, the most simple

problem would be:
Given N different points a1, . . . , aN in the open unit disk, describe the set of
functions f in the Hardy space such that

f(aj) = 0, j = 1, . . . , N. (4.10)

It is a simple exercise, and a particular instance of Beurling’s theorem,
that the set of solutions of this problem consists of the functions of the form
f(z) = b(z)g(z) where b(z) =

∏N
n=1

z−an

1−zan
and g runs through the Hardy
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space. To sharpen the difference beetween the following subsection and the
following two ones we present the following well-known result from J-theory
(see [41, Theorem 1, p. 145, p. 146 line 5 and Theorem 2, p. 146], [31,46]
and [2, Lemma 4.1.7, p. 80] for more information).

Lemma 4.6. Let E1, E2 ∈ C
u×v be strict contractions. Then, the matrices

(Iu − E1E
∗
1 )−1/2(E2 + E1)(Iv + E∗

1E2)−1(Iv − E∗
1E1)1/2 (4.11)

and

(Iu − E1E
∗
1 )1/2(Iv + E2E

∗
1 )(E2 + E1)(Iv − E∗

1E1)−1/2 (4.12)

are also strictly contractive.
Assume that u = v and E1E

∗
1 = cIu for some real number c > 0. Then,

E∗
1E1 = cIu and

(E2 + E1)(Iv + E∗
1E2)−1 (4.13)

and
(Iv + E∗

1E2)−1(E2 + E1) (4.14)

are strictly contractive.

When u = 1 and replacing E1 = −a ∈ C
1×v and E2 = z ∈ C

1×v such
that zz∗ < 1 we get the counterpart of the Blaschke product in the unit ball
of Cv,

ba(z) =
√

1 − aa∗(z − a)(Iv − a∗z)−1(Iv − a∗a)−1/2

which satisfies the formula (with w ∈ C
1×v such that ww∗ < 1)

1 − aa∗

(1 − za∗)(1 − aw∗)
=

1 − ba(z)ba(w)∗

1 − zw∗ (4.15)

see [42].
We remark that Blaschke factors, and more generally Blaschke products,

are examples of rational functions taking unitary (or co-isometric in the case
of Cd) values on the boundary.

4.4. Blaschke Factor and Interpolation: Case 1
Since αα� is a scalar we can use (4.13) to define the �-Blaschke factor.

Definition 4.7. Assume ‖α‖ < 1. We define the �-Blaschke factor with a zero
at α by:

bα(qt) = (qt − α) � (1 − qtα
�)−�, (4.16)

where S−� represents the � inverse of S.

Lemma 4.8. Let α ∈ Ht
2 of norm striclty less that 1. Then,

bα(qt) = −α +
∞∑

n=1

qn
t (I2 − αα�)α�(n−1) (4.17)

where the convergence in in C
2×2.
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Proof. For qt = xI2 where x is real and of absolute value less than 1 we have

bα(qt) = (x − α)

( ∞∑
n=0

xnα�n

)

=
∞∑

n=0

xn+1α�n − α −
∞∑

n=1

xnαα�n

= −α +
∞∑

n=1

xn(α�(n−1) − αα�n)

= −α +
∞∑

n=1

xn(I2 − αα�)α�(n−1)

= −α + (det α)
∞∑

n=1

xnα�(n−1)

and hence the result by Proposition 2.29. �

As in the slice-hyperholomorphic setting we have the following new phe-
nomenon:

Lemma 4.9. Let α of norm strictly less than 1. It holds that:

(bα � bα�)(qt) =
q2
t − 2qtReα + det α

q2
t det α − 2qtRe α + 1

(4.18)

Proof. We can write

(bα � bα�)(qt) = (qt − α) � (1 − qtα
�)−� � (qt − α�)︸ ︷︷ ︸

�−commute; see Proposition 2.37

�(1 − qtα
�)−�

= (qt − α) � (qt − α�) � (1 − qtα
�)−� � (1 − qtα)−�

= (q2
t − 2qtRe α) + αα�) � (1 − qtα

�)−� � (1 − qtα)−�

= (q2
t − 2qtRe α) + αα�) � ((1 − qtα) � (1 − qtα

�))−�

= (q2
t − 2qtRe α) + αα�) � (q2

t det α − 2qtRe α + 1)−�,

and hence the result since the elements of the quotients have real coefficients,
and hence the star-product can be replaced by the usual product. �

In view of the following theorem note that there is a technical difficulty:
a densely defined isometry in a Krein (as opposed to Hilbert) space need not
be continuous, and so it is not enough to check isometry on a dense set.

Theorem 4.10. The operator Mbα
of of �-multiplication by bα on the left is a

continuous isometry from the Krein space H2,� into itself.

Proof. We divide the proof into steps.
STEP 1: Mba

is an isometry on a dense set.
Indeed, since

(Mbα
qu
t γ)(Mbα

qv
t δ)� = δ�[Mbα

qu
t γ,Mbα

qv
t ]�γ
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we can assume γ = δ = I2. We first assume u = v. We have

[Mbα
qu

t , Mbα
qu

t ]�

=

[
−qu

t α +
∞∑

n=1

qn+u
t (I2 − αα�)α�(n−1), −qu

t α +
∞∑

m=1

qm+u
t (I2 − αα�)α�(m−1)

]

�

= α�α +

∞∑
n=1

αn−1(I2 − αα�)2α�(n−1)

= α�α + (I2 − αα�)2(I2 − αα�)−1

= I2,

where we have used that αα� = α�α to compute
∞∑

n=1

αn−1α�(n−1) = (I2 − αα�)−1

for ‖α‖ < 1 and the fact that [qn+u
t , qm+u

t ]� = 0 if m �= n.
We now assume u �= v. We now have [qn+u

t qm+v
t ]� = 0 unless n + u =

m+v. Without loss of generality we will assume u > v, so that m = n+(u−
v) > n and write:

[Mbαqu
t , Mbαqv

t ]�

=

[
−qu

t α +

∞∑
n=1

qn+u
t (I2 − αα�)α�(n−1), −qv

t α +

∞∑
m=1

qm+v
t (I2 − αα�)α�(m−1)

]

�

=

[
−qu

t α,
∞∑

m=1

qm+v
t (I2 − αα�)α�(m−1)

]

�︸ ︷︷ ︸
only m=u−v contributes

+

[ ∞∑
n=1

qn+u
t (I2 − αα�)α�(n−1), −qv

t α

]

�︸ ︷︷ ︸
=0 since n+u>v

+

[ ∞∑
n=1

qn+u
t (I2 − αα�)α�(n−1),

∞∑
n=1

qn+u
t (I2 − αα�)α�(n+u−v−1)

]

�

= −(I2 − αα�)αu−v + αu−v(I2 − αα�)2

[ ∞∑
n=1

qn+u
t α�(n−1),

∞∑
n=1

qn+u
t α�(n−1)

]

�
= −(I2 − αα�)αu−v + (I2 − αα�)2αu−v(I2 − αα�)−1

= 0.

STEP 2: Mba
is continuous. We note that Mba

= Mqt−α ◦ M(1−qtα�)−1 .
The result then follows from the fact that Mqt

is continuous of norm equal
to 1 and so

‖M(1−qtα�)−1‖ ≤ 1
1 − ‖α‖ < ∞ (4.19)

It follows that Mba
has a continuous extension to Ht

2, which is an isometry
since the form (4.3) is continuous with respect to the inner product of Ht

2.
�

Theorem 4.11. A function f ∈ H2,� vanishes at α if and only if it can be
written as f = bα � g where g ∈ H2,� and, moreover

[f, f ]� = [g, g]�
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Proof. We proceed in a number of steps; the arguments are an adaptation
of the classical arguments to the present setting. We denote by M the real
linear space spanned by the functions (1 − qtα)−�b, where b varies in Ht

2.
STEP 1: For any g ∈ Ht

2 and α such that ‖α‖ < 1 (operator norm), we
have

(bα � g)(α) = 0. (4.20)

Indeed, with h(qt) = (I2 − qtα)−� � g(qt)
ref=

∑∞
n=0 qtt

nhn we can write

bα(qt) � g(qt) = (qt − α) � h(qt)

=
∞∑

n=0

((qt − α) � qn
t )hn

=
∞∑

n=0

(qn+1
t − qn

t α)hn

which vanishes for qt = α.
STEP 2: We have M ⊂ Ht

2 � ba � Ht
2.

It suffices to verify that M and ba � Ht
2 are orthogonal. For f ∈ Ht

2 we
have

[f(qt), (1 − qtα)−�b]� = Tr b�f(α) = [f(α), b]�

and so the claim follows from Step 1.
STEP 3: We have M ⊃ Ht

2 � ba � Ht
2.

We follow the proof of Proposition 3.10 in [9]. Let g(qt) =
∑∞

n=0 qn
t gn ∈

Ht
2 � Ba � Ht

2. Then for every k ∈ N0,

[g, ba � qk
t ]� = 0.

Using (4.17) we can write

[g, ba � qk
t ]� = −α�gk +

∞∑
j=1

(I2 − αα�)αj−1gk+j .

Hence,

α�gk =
∞∑

j=1

(I2 − αα�)αj−1gk+j

= (I2 − αα�)gk+1 + (I2 − αα�)αgk+2

+ (I2 − αα�2)α2gk+3 + · · · , k = 0, 1, . . .

(4.21)

We multiply on the left these equalities by α to obtain

αα�gk = α(I2 − αα�)gk+1 + α(I2 − αα�)αgk+2

+α(I2 − αα�)α2gk+3 + · · · , k = 0, 1, . . .

For k + 1 instead of k this identity becomes

αα�gk+1 = α(I2 − αα�)gk+2 + α(I2 − αα�)αgk+3

+α(I2 − αα�)αgk+4 + · · · , k = 0, 1, . . .

Subtracting from (4.21)
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α�gk = (I2 − αα�)gk+1 + (I2 − αα�)αgk+2

+(I2 − αα�)2α2gk+3 + c . . . , k = 0, 1, . . .

we obtain

αα�gk+1 − α�gk = −(I2 − αα�)gk+1, k = 0, 1, . . .

and so

gk+1 = α�gk, k = 0, 1, . . .

Thus gk = α�kg0, and

g(qt) =
∞∑

k=0

qtα
�kg0 = (I2 − qtα

�)−�g0 ∈ M.

To conclude the proof, we write for f ∈ Ht
2,

f(qt) = f(qt) − (1 − qtα
�)−�(1 − αα�)f(α)︸ ︷︷ ︸

vanishesatα

+ (1 − qtα
�)−�(1 − αα�)f(α)︸ ︷︷ ︸

∈M

We have thus f(qt) − (1 − qtα
�)−�(1 − αα�)f(α) ∈ ba � Ht

2, and the result
follows. �

Remark 4.12. Unfortunately the previous result cannot be used iteratively
because of the non-commutativity. If α1 and α2 ∈ Ht are of small neough
norm, then we indeed have f(qt) = bα1(q1) � g(qt) when f(α1) = 0. On the
other hand the condition f(α2) = 0, i.e.

(bα1(qt) � g(qt))(α2) = 0

does not translate in a way conducive to computations, even when using
Lemma 2.27. Indeed, let α1 and α2 be in Ht and small enough. Assume that
f ∈ Ht

2,� is such that f(α1) = 0. Then

f(qt) = bα1(qt) � g(qt)

where g ∈ Ht
2,�. We now require f(α2) = 0. Assuming bα1(α2) invertible, we

can write

f(α2) = (bα1(α2)) g(α3)

where

α3 = (bα1(α2))
−1

α2 (bα1(α2)) g(α3) �= α2

in general. A special case occcurs when α2 = α�
1 . Then (see Proposition 2.37),

bα1(qt)bα�
1
(qt) = (qt − α) � (1 − qtα

�)−star � (q − αct) � (1 − qtα)−�

= (qt − α) � (q − αct) � (1 − qtα
�)−star � (1 − qtα)−�

= (q2
t − 2qt(Re α) + αα�)(qt(αα�) − 2qt(Re α) + 1)−1

and so we have interpolation on the sphere associated to α (see Definition 2.39
for the latter).



   53 Page 36 of 61 D. Alpay et al. Adv. Appl. Clifford Algebras

In general one needs to proceed differently, in a global way. The following
extension of Theorem 4.11 can be seen as a finite dimensional version of the
Beurling–Lax theorem in the present setting. First some notations. We define
a matrix G� ∈ HN×N

t via

G� =

⎛
⎜⎜⎜⎝

∑∞
n=0 αn

1α�n
1

∑∞
n=0 αn

1α�n
2 · · ·

∑∞
n=0 αn

1α�n
N∑∞

n=0 αn
2α�n

1

∑∞
n=0 αn

2α�n
2 · · ·

∑∞
n=0 αn

2α�n
N

...
...

...∑∞
n=0 αn

Nα�n
1

∑∞
n=0 αn

Nα�n
2 · · ·

∑∞
n=0 αn

Nα�n
N

⎞
⎟⎟⎟⎠ . (4.22)

where α1, α2, . . . , αN ∈ Ht are the interpolation points, assumed to be in the
operator unit ball of Ht, i.e. such that

‖αj‖op < 1, j = 1, . . . , N. (4.23)

Then, see Corollary 2.4, the �-adjoints also are in the operator unit ball, and
thus the power series in (5.9) converge.

Theorem 4.13. Assume G� invertible in H
N×N
t and define

Θ(qt) = 1−(1−qt)�
(
(1 − qtα

�
1 )−� · · · (1 − qtα

�
N )−�

)
G�

−1

⎛
⎜⎝

(1 − α1)−1

...
(1 − αN )−1

⎞
⎟⎠ .

(4.24)
A function f ∈ H2,� vanishes at α1, α2, . . . , αN if it can be written as f =
bα � g where g ∈ H2,� and, moreover

[f, f ]� = [g, g]�

Before presenting the proof we need some preliminary results. We first
note that (4.20) has the following generalization:

Lemma 4.14. Assume that f � g makes sense and that f(α) = 0. Then, (f �
g)(α) = 0.

Proof. Let f(qt) =
∑∞

n=0 qn
t fn and g(qt) =

∑∞
m=0 qm

t gm where the coeffi-
cients fn and gm beong to Ht. The claim follows from the formula

(f � g)qt =
∞∑

m=0

qm
t f(qt)gm.

�

Proposition 4.15. Assume that the points α1, . . . , αN are in the open unit
operator ball of Ht, and let

A = diag(α�
1 , . . . , α�

N )

C =
(
1 1 · · · 1

)
.

The matrix G� is the unique solution of the Stein equation

G� − A�G�A = C�C. (4.25)
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and is given by the formula

G� =
∞∑

n=0

A�nC�CAn. (4.26)

Proof. From the hypothesis on the interpolation points we have ‖A‖op < 1
and the series on the right hand side of (4.26) converges. On the other hand,
iterating (4.25) (M − 1)-times we get

G� =
M∑

n=1

A�nC�CAn + A�(M+1)G�A(M+1)

The result follows by letting M → ∞. �

Proof. We will proceed in steps and follow arguments from [9].
STEP 1: It holds that Θ(αj) = 0, j = 1, . . . N

Without loss of generality we consider the case j = 1. We have that
(
(1 − qtα

�
1 )−� · · · (1 − qtα

�
N )−�

)
(α1)

is the first row of the matrix G and that

(1 − qt) �
(
(1 − qtα

�
1 )−� · · · (1 − qtα

�
N )−�

)
= (1 − α1)

(
g11 g12 . . . g1N

)
.

Thus

Θ(α1) = 1 − (1 − α1)
(
g11 g12 . . . g1N

)
G�

−1

⎛
⎜⎝

(1 − α1)−1

...
(1 − αN )−1

⎞
⎟⎠ = 0

STEP 2: It holds that

Θ(qt) = D + qtC � (IHN
1

− qtA)−�B (4.27)

where (note that A and C were defined earlier in Proposition 4.15)

A = diag(α�
1 , . . . , α�

N ) (4.28)

B = (IHN
t

− A)G�
−1(IHN

t
− A�)−1C�. (4.29)

C =
(
1 1 · · · 1

)
(4.30)

D = 1 − CG�
−1(IHN

t
− A�)−1C�. (4.31)

The computations spresented in the next step are used later, see Exam-
ple 7.8, but we need at this stage equality (4.34) in Step 4.

STEP 3: The following three equalities hold:

A�G�A + C�C = G�, (4.32)
B�G�A + D�C = 0, (4.33)
B�G�B + D�D = I. (4.34)
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Indeed, the first equality is the Stein equation (4.25). We now check
(4.33) and write

B�G�A + D�C = C(IN − A)−1G�−1(IN − A�)G�A

+ (1 − C(I − A)−1G�−1C�)C

= C(IN − A)−1G�−1
{
(IN − A�)G�A + G�(IN − A) − C�C

}

= C(IN − A)−1G�−1
{

−A�G�A + G� − C�C
}

= 0

thanks to the Stein equation (4.25). Finally to check (4.34) we write

B�G�B + D�D = C(IN − A)−1G�−1(IN − A�)G�

(I(Ht
2)

N − A)G�−1(I(Ht
2)

N − A�)−1C�

+ (1 − C(I − A)−1G�−1C�)(1 − CG�−1(I(Ht
2)

N − A�)−1C�)

= 1 + C(IN − A)−1G�−1
{
(IN − A�)G�(I(Ht

2)
N − A)+

−(IN − A�)G� − G�(IN − A) + C�C
}
G�−1

(I(Ht
2)

N − A�)−1C�

= 1 + C(IN − A)−1G�−1 {−G� + A�G�A + C�C
}

× G�−1(I(Ht
2)

N − A�)−1C�

= 0,

here too thanks to the Stein equation (4.25).
This follows from (4.19) in the second step of Theorem 4.10 applied to

each of the αj .
STEP 4: The operator MΘ of �-multiplication on the left by Θ is an

isometry from H2,� into itself.
The fact that MΘ is bounded follows from (4.19) in the second step of

Theorem 4.10 applied to each of the αj . We now prove that MΘ is isometric
on polynomials. The continuity of MΘ implies then the isometry property on
the whole Hardy space. We first remark that Θ =

∑∞
n=0 qn

t θn with

θn =

{
D, n = 0,

CAn−1B, n = 1, 2, . . .
(4.35)

So

θ�
0 θ0 +

∞∑
n=1

θ�
n θn = D�D + B�

( ∞∑
n=0

A�nC�CAn

)
B

= D�B + B�G�B

= 1,

(4.36)

where we have used (4.34) and the formula (4.26) for G�, and for k > 0,

θ�
0 θk +

∞∑
n=1

θ�
n θn+k = D�CAk−1B + B�

( ∞∑
n=0

A�nC�CAn

)
Ak−1B

= (D�C + B�G�)Ak−1B
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= 0, (4.37)

where we have used (4.33) and here too the formula (4.26) for G�.
We follow STEP 1 in the proof of Theorem 4.10 and compute [MΘqu

t γ,
MΘqtvδ]� for γ = δ = 1. We may, and shall, assume that u ≥ v and set
k = u − v. We have

[MΘqu
t ,MΘqv

t ] = [MΘ1,MΘqv
t ]�

=

[ ∞∑
n=0

qn
t θn,

∞∑
n=0

qn+k
t θn

]

�

= θ�
0 θk +

∞∑
n=1

θ�
n θn+k

= δk,0

by the previous step, and hence the result by linearity and continuity.
STEP 5: Let M be the real linear span of the functions (1 − qtαj)−�b,

where j = 1, . . . , N and b ∈ Ht. Then

MΘHt
2,� ⊂ M⊥� , (4.38)

where ⊥� is the Krein orthogonal with respect to [·, ·]�
This follows from Step 1. �

The above result is a finite dimensional Beurling–Lax type theorem in
the present setting.

5. Hardy Space and Interpolation for the Second Conjugate [∗]
5.1. The Hardy Space in One Variable: Case 2
We recall from Sect. 4.1 that the Hardy space H2(D) is the reproducing
kernel Hilbert space of functions analytic in the open unit disk and with
reproducing 1

1−zw . We also recall that the counterpart of the Hardy space is
now the following real Hilbert space Ht

2 the space of power series of the form

f(qt) =
∞∑

n=0

qn
t αn

as in (4.2).
We now focus on Ht

2 with the real [∗] symmetric form (4.4), namely

[f, g][∗] =
∞∑

n=0

[gn, fn][∗]

where g(qt) =
∑∞

n=0 qn
t gn is another element of Ht

2 and we recall that Theo-
rem 4.2 for this case states:

Theorem 5.1. The space Ht
2 endowed with the form (4.4) is a Krein space.

This space was denote by Ht
2,[∗] in Definition 4.3.
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Proposition 5.2. The space Ht
2,[∗] endowed with the real symmetric form (4.4)

is a reproducing kernel Krein space right Ht
2-module with reproducing kernel

with reproducing kernel

k(qt, pt) =
∞∑

n=0

qn
t (pn

t )[∗]. (5.1)

Proof. We write

[∗] =

[ ∞∑
n=0

qn
t fn,

∞∑
n=0

qn
t (pn

t )[∗]b

]

[∗]

=
∞∑

n=0

[fn, (pn
t )[∗]b][∗]

=
∞∑

n=0

Tr (b[∗]pn
t fn)

= Tr b[∗]f(pt))

= [f(pt), b][∗].

�

We see that Ht
2,[∗] is an Ht-module. For t = −1 the second adjoint gives

a new theory for quaternions.

5.2. Star Product and Blaschke Factor

We remind the reader of the precursor to this theory, described in Sect. 4.3.
Since αα[∗] is not (in general) a scalar matrix, one cannot define Blaschke
factors using the formula (qt − α) � (I2 − qtα

[∗])−�, but one could think of
defining a Blaschke factor here by

Cα(qt) = (1 − αα[∗])−1/2 � (qt − α) � (1 − qtα
[∗])−�(1 − α[∗]α)1/2; (5.2)

See (4.11). But this definition does not allow for a counterpart of Theo-
rem 4.11. The appropriate definition is

Bα(qt) = (qt − α) � (1 − qtΓαα[∗]Γ−1
α )−�L1/2

α

which is introduced (for regular adjoint) in [9] in a different context, and
takes its inspiration from the formulas for a Blaschke factor in [14, Section
4]. For t �= −1 Γα is not self-adjoint, and need not be invertible not have a
squareroot. But we have:

Lemma 5.3. Γα is [∗] self-adjoint. When
∞∑

n=1

‖α‖2n
op =

‖α‖2
op

1 − ‖α‖2
op

< 1

Γα is invertible and there exists an element of Ht, denoted Γ1/2
α , which is [∗]

self-adjoint and whose square is Γα.
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Proof. We write

Γα = 1 +
∞∑

n=1

αnα[∗]n

︸ ︷︷ ︸
ε

For ‖α‖op < 1 we have

‖ε‖op <
‖α‖2

op

1 − ‖α‖2
op

(5.3)

we can define Γ1/2
α via

Γ1/2
α = 1 +

∞∑
n=1

γnαn,

where the numbers γn are defined via

√
1 + t = 1 +

∞∑
n=1

γntn, t ∈ C such that |t| < 1. (5.4)

�

Still following [9] and [14] we define

Lα = Γα − Γαα[∗]Γ−1
α αΓα

for α such that Γ−1
α exists.

Lemma 5.4. Lα satisfies Lα = L
[∗]
α and the set of α for which Lα is invertible

and for which there exists Kα satisfying Kα = K
[∗]
a and K2

α = Lα is open
and not empty. Furthermore we have

L−1
α = α[∗]α + Γ−1

α (5.5)

Proof. Let as above Γα = 1 + ε with α be such that ‖ε‖op < 1. Then, the
series

∞∑
n=0

(−1)nεn

converges in Ht and (since the operator norm is submultiplicative)

‖Γ−1
α ‖op ≤ 1

1 − ‖ε‖op

≤ 1

1 − ‖α‖2
op

1−‖α‖2
op

=
1 − ‖α‖2

op

1 − 2‖α‖2
op

< 1

for α small enough. From

Lα = 1 + Γα − 1 − Γαα[∗]Γ−1
α αΓα︸ ︷︷ ︸

ε1
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and using (5.3), we have

‖ε1‖op ≤
‖α‖2

op

1 − ‖α‖2
op

+ ‖Γα‖2
op‖Γ−1

α ‖op‖α‖2
op

≤
‖α‖2

op

1 − ‖α‖2
op

+

(
1 +

‖α‖2
op

1 − ‖α‖2
op

)2
1

1 − ‖α‖2
op

1−‖α‖2
op

‖α‖2
op

≤
‖α‖2

op

1 − ‖α‖2
op

+
(

1
1 − ‖α‖2

op

)2 1 − ‖α‖2
op

1 − 2‖α‖2
op

‖α‖2
op

< 1

for α small enough. For such α, Lα is also invertible and has a squareroot
which is [∗] symmetric. The argument is the same as in the preceding lemma.
We now check (5.5). We have

(α[∗]α + Γ−1
α )Lα = α[∗]α(Γα − Γαα[∗]Γ−1

α αΓα) + 1 − α[∗]Γ−1
α αΓα

= 1 + α[∗]αΓα + α[∗](1 − Γα)Γ−1
α αΓα − α[∗]Γ−1

α αΓα

= 1.

To conclude the proof we note that MBα
is continuous for α small

enough, as is seen from the formula giving Bα, and so the isometry property
extends to all of Ht

2,[∗] (recall that ina Krein space, a densely defined unitary
map need not be continuous). �

Theorem 5.5. The operator of �-multiplication by Bα on the left is isometric
from the Krein space Ht

2,[∗] into itself.

Proof. It is enough to check on monomials and the proofs of Steps 1, 2, and
3 are similar to the � case. We refer to the proof of Theorem 4.10 for more
details.
STEP 1: It holds that

Bα(qt) = −αKα +
∞∑

n=1

qn
t α[∗](n−1)Γ−1

α Kα (5.6)

We set qt = x ∈ R (small enough) in the definition of Bα and write:

Bα(x) = (x − α)

(
Kα +

∞∑
n=0

xnΓαα[∗]nΓ−1
α Kα

)

= −αKα +
∞∑

n=0

xn+1Γαα[∗]nΓ−1
α Kα −

∞∑
n=0

xn+1αΓαα[∗]nΓ−1
α Kα

︸ ︷︷ ︸
n=0 corresponds to xKα

+xKα

= −αKα +
∞∑

n=1

xnΓαα[∗](n−1)Γ−1
α Kα −

∞∑
n=1

xn(αΓαα[∗])α[∗](n−1)Γ−1
α Kα

= −αKα +
∞∑

n=1

xnα[∗](n−1)Γ−1
α Kα
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since Γα satisfies the Stein equation

Γα − αΓαα[∗] = 1. (5.7)

STEP 2: We have

[Bα � qm
t c,Bα � qm

t d][∗] = [c, d][∗]

We have

[Bα � qm
t c,Bα � qm

t d][∗] = [Δc, d][∗],

where

Δ = Kαα[∗]αKα + KαΓ−1
α

⎛
⎜⎜⎜⎜⎝

∞∑
n=1

α(n−1)α[∗](n−1)

︸ ︷︷ ︸
Γα

⎞
⎟⎟⎟⎟⎠Γ−1

α Kα

= Kαα[∗]αKα + KαΓ−1
α ΓαΓ−1

α Kα

= Kα

(
α[∗]α + Γ−1

α

)
Kα

= KαL−1
α Kα (by (5.5)

= 1

where we have used Lemmma 5.4. Note that KαL−1
α Kα = 1 and K2

α = Lα

are indeed equivalent since both Kα and Lα are invertible.
STEP 3: We have

[Bα � qu
t c,Bα � qv

t d][∗] = 0, u �= v.

Without loss of generality we will assume u > v, In a way similar to the
proof of Step 2 we have with h = u − v:

[Bα � q
(u−v)
t c,Bα � d][∗]

=

[
−qh

t αKαc +
∞∑

n=1

qh+n
t α[∗](n−1)Γ−1

α Kαc,
∞∑

n=h

qn
t α[∗](n−1)Γ−1

α Kαd

]

[∗]

=

[
−qh

t αKαc +
∞∑

n=1

qh+n
t α[∗](n−1)Γ−1

α Kαc, α[∗](h−1)Γ−1
α Kαd

+
∞∑

n=0

qh+n
t α[∗](h+n−1)Γ−1

α Kαd

]

[∗]

= [Δhc, d][∗],
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where

Δh = −KαΓ−1
α αhKα +

∞∑
n=0

KαΓ−1
α αh+nα[∗]n︸ ︷︷ ︸

αhΓα

Γ−1
α Kα

= −KαΓ−1
α αhKα +

∞∑
n=0

KαΓ−1
α αhΓαΓ−1

α Kα

= 0.

�

Theorem 5.6. f ∈ Ht
2,[∗] vanishes at α if and only if f = Bα � g where

g ∈ Ht
2,[∗] satisfies [f, f ][∗] = [g, g][∗]

Proof. One direction is clear, thanks to (4.20) (see Step 1 in the proof of
Theorem 4.11. To prove the converse we proceed in a number of steps, and
first define the operator

Maqn
t b = qn

t ab, a, b ∈ Ht. (5.8)

STEP 1: Ma is bounded in Ht
2,[∗] and it holds that (Ma)[∗]qn

t b = qn
t a[∗]b

Ma is defined everywhere and closed (as is seen using the reproducing
kernel property), and so is bounded in the Krein space Ht

2,[∗]. To compute
the adjoint we write

[∗] = [qn
t b,Ma(qm

t c)][∗]

= [qn
t b, qm

t ac)][∗]

= δm,nTr((ac)[∗]b)

= δm,nTr(c[∗]a[∗]b)

= δm,n[qn
t a[∗]b, qm

t b][∗].

STEP 2: The operator Mqt
− Ma has closed range and

Ht
2,[∗] = ran (Mqt

− Ma)
[+]

[∗] span
{

(1 − qta
[∗])−�b, b ∈ H1

}

The closed range follows from the reproducing kernel property and the
previous step. Let now f orthogonal in the [∗] inner product to the range.
Then

(M [∗]
qt

− (Ma)[∗])f = 0

With f(qt) =
∑∞

n=0 qn
t fn and since, as is readily verified

M [∗]
qt

qn
t b

{
0, n = 0,

qn−1
t b, n = 1, 2, . . .

we get

fn = a[∗]fn+1, n = 0, 1, . . .

so that

f(qt) = (1 − qta
[∗])−�f0
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STEP 3: We conclude the proof.

Let f ∈ Ht
[2,[∗] be such that f(a) = 0. By the previous step, f ∈

ran(Mqt
− Ma) so that

f(qt) = (qt − a) � g(qt) = Bα(qt) � (1 − qtΓαα[∗]Γ−1
α )�L−1/2

α

which concludes the proof. �

The same conclusions as in Remark 4.12 hold. One can define the couter-
part of the matrix G� and Problem 4.13, namely

G[∗] =

⎛
⎜⎜⎜⎜⎝

∑∞
n=0 αn

1α
[∗]n
1

∑∞
n=0 αn

1α
[∗]n
2 · · ·

∑∞
n=0 αn

1α
[∗]n
N∑∞

n=0 αn
2α

[∗]n
1

∑∞
n=0 αn

2α
[∗]n
2 · · ·

∑∞
n=0 αn

2α
[∗]n
N

...
...

...∑∞
n=0 αn

Nα
[∗]n
1

∑∞
n=0 αn

Nα
[∗]n
2 · · ·

∑∞
n=0 αn

Nα
[∗]n
N

⎞
⎟⎟⎟⎟⎠ . (5.9)

where α1, α2, . . . , αN ∈ Ht are the interpolation points, assumed to be in the
operator unit ball of Ht, i.e. such that

‖αj‖op < 1, j = 1, . . . , N. (5.10)

6. Arveson Space, Blaschke Factors and Related Topics

6.1. Reproducing Kernel Krein Spaces of Vt -Fueter Series

We are interested in studying power series of the form

f(x) =
∑

α∈N
3
0

μα
t fα (6.1)

where the fα ∈ Ht. Since the μt are not defined at x = 0 ∈ R
4 one first needs

to make precise where such power series will be considered. For estimates we
will need a submultiplicative norm, and take the operator norm (2.2). We
define

Or,ρ =
{
x ∈ R

4 ; r < |x2
1 + t(x2

2 + x2
3)| and |xu| < ρ, u = 0, 1, 2, 3

}
(6.2)

Lemma 6.1. In Or,R,ρ we have

‖μα
t (x)‖op ≤ M

|α|
r,R,ρ (6.3)

with

Mr,R,ρ = ρ

(
1 +

3ρ2

r

)
(6.4)
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Proof. In a similar way to our work [15], we have

‖μα
t (x)‖op = |x1|α1 |x2|α2 |x3|α3

∥∥∥∥∥
(

1 +
x0

�qt

)|α|∥∥∥∥∥
op

≤ ρα

∥∥∥∥1 +
x0

�qt

∥∥∥∥
|α|

op

= ρα

∥∥∥∥1 − x0 �qt

x2
1 + t(x2

2 + x2
3)

∥∥∥∥
|α|

op

≤ ρα

(
1 +

∥∥∥∥ x0 �qt

x2
1 + t(x2

2 + x2
3)

∥∥∥∥
op

)|α|

≤ ρ|α|
(

1 +
3ρ2

r

)|α|

�

One could also consider

Or,ρ,R =
{
x ∈ R

4 ; r < |x2
1 + t(x2

2 + x2
3)| < R and |xu| < ρ, u = 0, 1, 2, 3

}
(6.5)

The following is the counterpart of [15, Proposition 5.1].

Proposition 6.2. Let (cα)α∈N
3
0

be a family of positive fnumbers such that

∑
α∈N

3
0

cα>0

M
|α|
r1,R1,ρ1

cα
< ∞

for all r1, ρ1 such that

0 < r < r1 and 0 < ρ1 < ρ.

Then the function

kc(x, y) =
∑

α∈N
3
0

cα 	=0

μα
t (x)(μα

t (y))�

cα
(6.6)

converges in Or,ρ, and is the reproducing kernel of the reproducing kernel
Krein space of power series of the form (6.1) endowed with the symmetric
form [·, ·]�, namely

H(kc) =

⎧⎪⎪⎨
⎪⎪⎩

f =
∑

α∈N
3
0

cα 	=0

μα
t fα, fα ∈ Ht

2 |
∑

α∈N
3
0

cα 	=0

cα‖fα‖2
op < ∞

⎫⎪⎪⎬
⎪⎪⎭

(6.7)

Proof. We leave the proof to the reader, as it is a straightforward generaliza-
tion of our work [15]. �
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Proposition 6.3. Elements of H(kc) are Vt-regular in

O(kc) =

⎧⎪⎪⎨
⎪⎪⎩

x ∈ R
4\ {(0, 0, 0, 0)} |

∑
α∈N

3
0

cα 	=0

‖μα
t ‖2

op

cα
< ∞

⎫⎪⎪⎬
⎪⎪⎭

(6.8)

Proof. See our work [15] for the t = −1 case, this follows from Theorem 3.4.
�

Similar considerations hold for power series of the form
∑

α∈N
3
0

cα 	=0

μα
t (x)(μα

t (y))[∗]

cα
(6.9)

The case cα = α! will correspond to the counterpart of the Arveson
space.

6.2. Blaschke Factor (µt Variables)

We now denote the vector μt of Vt-Fueter variables by:

μt =
(
μ1,t μ2,t μ3,t

)
, (6.10)

where μl,t are defined in Eq. (3.4).
We first remark that for a ∈ R

4 such that
3∑

j=1

‖μj,t(a)‖ < 1 (6.11)

one can define the squareroots√
1 − μt(a)μt(a)� and (IH3

t
− μt(a)�μt(a))−1/2,

where
μt(a)� =

(
μ�

1,t μ�
2,t μ�

3,t

)T
,

via the power series (5.4). Since

μt(a)(μt(a)�μt(a))n = (μt(a)μt(a)�)nμt(a), n = 1, 2, . . .

we furthermore have

(1 − μt(a)μt(a)�)1/2μt(a)(1H3
t
− μ(a)�μt(a))−1/2 = μt(a). (6.12)

Definition 6.4. Assume that a ∈ R
4 satifies (6.13). We define

ba(qt) =
√

1 − μt(a)μt(a)� � (1 − μt(qt)μt(a)�)−� � (μt(qt)

−μt(a)) · (IH3
t
− μt(a)�μt(a))−1/2

Similarly, for a ∈ R
4 such that

3∑
j=1

‖μj,t(a)‖ < 1 (6.13)

one can define the square roots√
1 − μt(a)μt(a)[∗] and (IH3

t
− μt(a)[∗]μt(a))−1/2,
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where
μt(a)[∗] =

(
μ

[∗]
1,t μ

[∗]
2,t μ

[∗]
3,t

)T

,

via the power series (5.4). Since

μt(a)(μt(a)[∗]μt(a))n = (μt(a)μt(a)[∗])nμt(a), n = 1, 2, . . .

we furthermore have

(1 − μt(a)μt(a)[∗])1/2μt(a)(1H3
t
− μ(a)[∗]μt(a))−1/2 = μt(a). (6.14)

Definition 6.5. Assume that a ∈ R
4 satifies (6.13). We define

βa(qt) =
√

1 − μt(a)μt(a)[∗] � (1 − μt(qt)μt(a)[∗])−� � (μt(qt) − μt(a))

·(IH3
t
− μt(a)[∗]μt(a))−1/2

Remark 6.6. It is worth noting that this analysis can be written equivalently,
for the corresponding Fueter ζt variables, and we have the same type of results
as in the previous section, but with

ζt(qt) =
(
ζ1,t ζ2,t ζ3,t

)
instead of μl,t.

7. Rational Functions

In this section we discuss rational functions in the case of the qt, μu,t and ζu,t

variables. We begin with a prologue, where the main features of the classical
case are reviewed.

7.1. Prologue

The easiest way to define a matrix-valued rational function in one or sev-
eral complex variables is certainly to characterize it by having entries being
quotient of polynomials (in the corresponding number of variables). Another
approach was developped in the theory of linear systems, Schur analysis and
operator theory, and is called the state space method; see e.g. [22]. There the
emphasis is on the notion of transfer function. These various concepts make
sense and a corresponding theory of linear system can be developped, when
the complex numbers are replaced by a (possibly non-commutative) ring; see
for instance [24,47,48]. This provides one motivation for the present section,
where we consider the counterpart of rational functions in the setting of the
Ht algebras, both for power series and Fueter-like series. We conclude and
remark that rational functions with respect to the � product will be defined
independently of the adjoint, but some of their properties will be fundamen-
tally different depending on the chosen adjoint.

We begin with the following definition, taken from [13, Definition 2.1,
p. 60], but of course of a much earlier origin, restricted to Ht.

Definition 7.1. A rational (Hn×m
t -valued function of d real variables x1, . . . , xd,

regular at the origin of Rd is an element of the minimal subring of the (Hn×m
t -

valued function real analytic in a neighborhood of the origin which contains
the constant functions the real variables and is closed under inversion.
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Theorem 7.2. (see [13, Theorem 2.2 p 61]) A H
n×m
t -valued function real an-

alytic in a neighbourhood of the origin of RN is rational if and only if it can
be written as

f(x1, . . . , xd)

= D + C(I
HN

t
− x1A1 − x2A2 − · · · − xdAd)−1(x1B1 + x2B2 + · · · + xdBd),

(7.1)

where N ∈ N, D ∈ H
n×m
t , C ∈ H

n×N
t , and Aj ∈ H

N×N
t , Bj ∈ H

N×m
t ,

j = 1, . . . , d.

When N = 1 one rewrites usually (7.1) as

f(x) = D + xC(IHN
t

− xA)−1B. (7.2)

Expressions (7.1) and (7.2) are called realizations of the corresponding
function f .When d > 1, they correspond to transfer functions of a linear
system of the Fornasini-Marchesini type; see [33,34] for the latter.

In terms of power series expansion (7.1) can be rewritten as, in multi-
index notation,

f(x) =
∑
k∈N

d
0

xkfk (7.3)

where

fk =
(|k| − 1)!

k!
C
(
k1A

k1−e1 k2A
k−e2 · · · kqA

k−ed
)
B, (7.4)

where ek, k = 1, . . . , d, is the multi-index with all entries equal to 0, besides
the k-th one, equal to 1. For d = 1 we have

fk = CAk−1B, k = 1, 2, . . . (7.5)

In this section, we take N = 1 and N = 3, and wish to replace in (7.1)
x1 = x by qt (for N = 1) and by the Fueter variables μ and ζ for N = 3,
and use the � product rather than the pointwise product. We give equivalent
definitions in terms of backward-shift operators and related tools.

7.2. Rational Function: Power Series in qt

Theorem 7.3. Let f(qt) =
∑∞

k=0 qk
t fk be a converging power series with coef-

ficients fn ∈ H
n×m
t . Then, the following are equivalent:

(1) There exist N ∈ N0 and matrices (A,B,C) ∈ H
N×N
t × H

N×m
t × H

n×N
t

such that, with D = f(0),

f(qt) = D + qt � C � (IN − qt � A)−� � B (7.6)

(2) With A,B,C as above

fk = CAk−1B, k = 1, 2, . . . (7.7)

(3) The real linear span M(f) of the functions Rk
0fb, when n = 0, 1, . . . and

b runs through H
N×1
t is a finite dimensional real vector space.
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(4) f is the � quotient of two matrix-valued polynomials

f = P1 � P−�
2 = P−�

3 � P4

such that the denominator polynomials P2 and P3 do not vanish at the
origin.

(5) The restriction of f to the real line is a rational function with no pole
at the origin and with coefficients being block matrices with entries in
Ht.

Proof. We proceed into a number of steps.
STEP 1: (1), (2) and (5) are equivalent.
Assume that (1) holds. Letting qt = x ∈ R we get the power series

expansion of f(x) and obtain (7.7). Assume (2), then for real x near the
origin, and with f(0) = D,

f(x) = f(0) +
∞∑

k=1

fkxk = D + xC(IN − xA)−1B (7.8)

and this proves (5). Assume now (5). By the classical theory it admits a re-
alization of the form (7.8), which determines f(qt) in a unique way via the
power expansion in power of x.

STEP 2: (1) and (3) are equivalent.
Assume that (1) holds. Then

Rk
0fb = C � (IHN

t
− qt � A)−�Ak−1B, k = 1, 2, . . .

and so the span in question has dimension at most the span (as a real vector
space) of the vectors of the form

Ak−1Bb (7.9)

which is finite, and so (3) holds. Assume now (3). Then we take v1, . . . , vN a
basis of M(f), and let

M(qt) =
(
v1(qt) v2(qt) · · · vN (qt)

)
Since M(f) is R0-invariant, there is a matrix A ∈ R

N×N such that

R0M = MA

from which we get

M(qt) = qt � M(qt)A + M(0)

and so1 M(qt) = M(0) � (IHN
t

− qtA)−�. To conclude we note that for every
u ∈ H

N
t there exists a v ∈ H

N
t such that

R0fu = M(qt)v

and so

R0f = M(qt)B

for some matrix in ∈ H
N×m
t , and hence (1) holds.

1Since this specific A has real entries we could write M(0)(I
HN

t
− qtA)−1
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STEP 3: (3) and (5) are equivalent.
Assume (3). Then the restriction of f to the real axis is a rational

function of a real variable, with coefficients matrices with entries in Ht. It
admits thus a realization of the form (7.8), and so is the restriction of a
uniquely determined function of the form (7.6). The converse is proved by
remarking that (IHN

t
− xA)−1 is the quotient of two polynomials. �

Definition 7.4. The power series f(qt) =
∑∞

k=0 qk
t fk is called rational if it

satisfies either of the conditions in the previous theorem.

Using the classical properties of realizations one proves:

Theorem 7.5. The sum and product of two rational functions of compatible
sizes are rational. Assuming its value at the origin invertible the inverse of a
rational function is invertible.

Proof. For the inverse, we need to have n = m and D invertible. Then (see
e.g. [21]), with f(x) as in (7.2), we have det f(x) �≡ 0 and

f(x)−1 = D−1 − xD−1C(IHN
t

− xA×)−1BD−1, where A× = A − BD−1C.

It follows that the function

D−1 − qtDC−1 � (IHN
t

− qtA
×)−�BD−1

is the �-inverse of f(qt). Similarly, still relying on the formulas from [21], we
have (with matrices of compatible sizes)

(D1 + qtC1 � (I
H

N1
t

− qtA1)−�B1) � (D2 + qtC2 � (I
H

N2
t

− qtA2)−�B2)

= D + qtC � (IHN
t

− qtA)−�B

with N = N1 + N2 and

A =
(

A1 B1C2

0 A2

)

B =
(

B1D2

B2

)

C =
(
C1 D1C2

)
D = D1D2.

�
Theorem 7.6. A function is rational if and only if it can be obtained after a
finite number of � operations involving polynomials

Proof. The result is true when restricted to the real line and follows by re-
placing x by qt and the pointwise product by the � product. �

As we noted above, the notion of rational function is the same for the two
adjoints � and [∗], but some of their properties are completely different, in
view of the different properties of the two adjoints. In the present discussion,
in the case of � one can go one step further:

Theorem 7.7. The power series f(qt) =
∑∞

k=0 qk
t fk is rational if and only if

it is the quotient of a matrix-polynomial and of a real scalar polynomial
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Proof. Assume first that f is H
a×b
t -valued and rational. So each entry fij ,

i = 1, . . . a and j = 1, . . . b is rational. Using Corollary 2.35 write

fij(qt) = qij(qt) � (pij(qt))−�

=
(qij � p�

ij(qt))(qt)

(pij � p�
ij)(qt)

,

The result follows by taking as denominator P (qt) =
∏

i,j(pij � p�
ij)(qt) Each

entry fij can be rewritten as

fij(qt) =

qij(qt) �
∏

k=1,...,a
�=1,...b

k 	=i
� 	=j

(pk� � p�
k�)(qt)

︸ ︷︷ ︸
real polynomial

P (qt)

�

This characterisation is not possible for [∗] since qtq
[∗]
t is not, in general,

a scalar matrix.

Example 7.8. The function ΘN defined by (4.24) is rational with a realization
(4.27) given by (4.28)–(4.31). Furthermore, this realization is �-unitary with
respect to G� in the sense that(

A B
C D

)� (
G� 0
0 IHN

t

)(
A B
C D

)
=
(
G� 0
0 IHN

t

)
(7.10)

This follows Step 2 in the proof of Theorem 4.13, since one has to verify
equalities (4.33)–(4.34).

We note that (7.11) is equivalent to

(
A B
C D

)−1 (G�
−1 0

0 IHN
t

)((
A B
C D

)�)−1

=
(
G�

−1 0
0 IHN

t

)

and so is equivalent to(
A B
C D

)(
G�

−1 0
0 IHN

t

)(
A B
C D

)�
=
(
G�

−1 0
0 IHN

t

)
, (7.11)

In particular the matrix G�
−1 satisfies the Stein equation

G�
−1 − AG�

−1A� = BB�. (7.12)

The following result hints to the fact that the theory of structured ra-
tional functions can be extended to the present setting; as was shown by a
counterexample in [11, (62.38), p. 1767] one cannot directly force conditions
on the boundary, but one has to consider conditions in terms of multiplica-
tion operators, or symmetric on the real line replacing the metric boundary
conditions by operator-type conditions.
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Proposition 7.9. In the notation of (7.11) define Θ by (4.27),

Θ(qt) = D + qtC � (IHN
t

− qtA)−�B.

Then the operator of � multiplication by Θ on the right is an isometry from
the Hardy space H2,� into itself.

Proof. The proof is the same as the proof of Step 5 in the proof of Theo-
rem 4.13, where only equality (7.11) is used, and not the specific form of
A,B,C,D. �

Similar considerations hold for the second adjoint. Similar claims hold
for the Blaschke factor associated to [∗], as we now check, and for the Blaschke
factors associated to the Fueter variables; see next subsection for the latter.

Proposition 7.10. The formula

A = a[∗] (7.13)
B = Γ−1

α Kα (7.14)
C = 1 (7.15)
D = −αKα (7.16)

provide a realization of Bα, which satisfies moreover
(

A B
C D

)[∗] (Γα 0
0 1

)(
A B
C D

)
=
(

Γα 0
0 1

)
(7.17)

(
A B
C D

)(
Γ−1

α 0
0 1

)(
A B
C D

)[∗]

=
(

Γ−1
α 0
0 1

)
(7.18)

Proof. From (5.6) we have

Bα(qt) = −αKα +
∞∑

n=1

qn
t α[∗](n−1)Γ−1

α Kα

= −αKα + qt � (1 − qtα
[∗])−�Γ−1

α Kα,

and hence we get the realization (7.13)–(7.16). To check (7.17) amounts to
check the following three equalities

αΓαα[∗] + 1 = Γα, (7.19)
αKα − αKα = 0, (7.20)

KαΓ−1
α Kα + Kαa[∗]aKα = 1. (7.21)

The first one is the Stein equation (5.7) and the second one is a tautology.
The third one can be rewritten as

Γ−1
α + a[∗]a = K−2

α = L−1
α

and is just (5.5). To get (7.18) we rewrite (7.17) as
(

A B
C D

)[∗] (Γα 0
0 1

)(
A B
C D

)(
Γ−1

α 0
0 1

)
= IH4

t
,
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so that (
A B
C D

)(
Γ−1

α 0
0 1

)(
A B
C D

)[∗] (Γα 0
0 1

)
= IH4

t
,

and the result follows. �

For the above computations in the setting of complex matrices see the
arXiv preprint [9, Theorem 3.12].

7.3. Rational Functions for Fueter Variables

We will consider this topic in greater details in a future publication but
mention the following: For the μt variables, the �-product is defined by

μα
t u � μβ

t v = μα+β
t uv, α, β ∈ N

3
0, u, v ∈ Ht. (7.22)

The corresponding rational functions regular at the origin are the expressions
of the form

f(x) = D + C � (IHN
t

−
3∑

k=1

μk,tAk)−� �

(
3∑

k=1

μk,tBk

)
. (7.23)

With

μt =
(
μ1,t μ2,t μ3,t

)
and

A =

⎛
⎝A1

A2

A3

⎞
⎠ , B =

⎛
⎝B1

B2

B3

⎞
⎠ ,

we rewrite (7.1) as

f(x) = D + C � (IHN
t

− (μt ⊗ IN )A)−1)−�(μt ⊗ IN )B (7.24)

which we write as

f(x) = D + C � (IHN
t

− μtA)−1)−�μtB (7.25)

Note that this function is not defined at the origin of R4.
For the ζt variables, the �-product is defined by

ζα
t u � ζβ

t v = ζα+β
t uv, α, β ∈ N

3
0, u, v ∈ Ht. (7.26)

f(x) = D + C �

(
IHN

t
−

3∑
k=1

ζk,tAk

)−�

�

(
3∑

k=1

ζk,tBk

)
. (7.27)

The formulas are the same as for the previous subsection, and were
developped in [19] for the case t = −1.

In both cases the corresponding Blaschke factors (6.4) and (6.5) are ra-
tional. More precisely, and using (6.14), we can rewrite ba(qt) as (see also [16,
(4.4), p. 12])

ba(x) = −μt(a)+

+ (1 − μt(a)μt(a)�)1/2 � (1 − μt(x)μt(a)�)−�

� μt(a)(IH3
t
− μ(a)�

t μt(a))1/2.

(7.28)
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The realization is equal to

A = μt(a)�

B = (IH3
t
− μt(a)�μt(a))1/2

C = (1 − μt(a)μt(a)�)1/2

D = −μt(a),

(7.29)

where, as earlier, the squareroots are defined by the power expansion of√
1 − t for a ∈ R

4 such that ‖μt(a)μt(a)�‖op < 1. We repeat the argument:
with

√
1 − t = 1+

∑∞
n=1 cntn, where c1, c2, . . . ∈ R (see also (5.4)), the series

1 +
∞∑

n=1

cn(μt(a)μt(a)�)n and IH3
t
+

∞∑
n=1

cnμt(a)�(μt(a)μt(a)�)n−1μt(a)

converge since the operator norm is sub-multiplicative.
The realization is �-unitary in the sense that

(
A B
C D

)(
A B
C D

)�
=
(

A B
C D

)� (
A B
C D

)
= I

H
4×4
t

.

Equality (6.14) is used to prove this equality.

Remark 7.11. Besides the case just encountered, there are three other cases
for the Fueter variables, namely the classical Fueter variables, for the two
adjoints, and the new Fueter variables, for the [∗] adjoint.
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Appendix A. Pontryagin and Krein Spaces

Having in view the needs for the present work we briefly review the main rel-
evant definitions and results on Pontryagin spaces and Krein spaces. For fur-
ther information we refer in particular to [20,23,30,39]. Let therefore (V, [·, ·])
be a vector space on K where K = R or K = C, endowed with a symmetric
form (when K = R) or an Hermitian form (when K = R). The discussion
below is done for the complex setting and we choose the convention

[av, bw]V = b[v, w]Va, v, w ∈ V, and a, b ∈ C, (A.1)

for the anti-linear variable. The real case is directly adapted. One can also
consider the case of quaternions, but we prefer to include it in the following
section, pertaining to modules.

Definition A.1. The space (V, [·, ·]V) is called a Krein space if it can be written
in the direct and orthogonal sum

V = V+

·
+ V− (A.2)

where
(1) The spaces (V+, [·, ·]V) and (V−,−[·, ·]V) are Hilbert spaces.
(2) The sum (A.2) is direct, meaning that V+ ∩ V− = {0}.
(3) The sum (A.2) is orthogonal, meaning that

[v+, v−]V = 0, ∀v+ ∈ V+ and v− ∈ V−. (A.3)

(A.2) is called a fundamental decomposition and is not unique, but in
the case where one of the component reduces to the zero vector space. Every
fundamental decomposition generates a Hilbert space structure on V via

〈v, w〉 = [v+, w+]V − [v−, w−]V , (A.4)

where v = v+ + v− and w = w+ + w− are the corresponding fundamental
decompositions of v, w ∈ V.

Proposition A.2. (see [23, p. 102 and Corollary IV.6.3, p. 92]) The space
(V, 〈·, ·〉) is a Hilbert space, and norms arising from orthogonal decompositions
are equivalent, and define therefore the same topology on V.

In particular, Riesz theorem for the representation of bounded functions
still holds in Krein spaces and the notion of bounded point evaluation in a
Krein space of functions leads to the notion of reproducing kernel Krein space.

When V− is finite dimensional the space V is called a Pontryagin space,
and dimV− is its index of negativity.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Example A.3. Let J ∈ C
n×n satisfy J = J∗ = J−1 (a signature matrix), and

define on C
n

[z, w] = w∗Jz, z, w ∈ C
n. (A.5)

Then, (Cn, [·, ·]J ) is a finite dimensional Pontryagin space with negativity
index equal to the number of negative eigenvalues of J . The adjoint A[∗] of
the matrix A ∈ C

n×n with respect to this adjoint is

A[∗] = JA∗J. (A.6)

One should be aware that there may be more than one given Krein (as
opposed to Hilbert or Pontryagin) space of functions with a given reproducing
kernel; this was proved in Laurent Schwartz paper [45, §13] and another
counterexample can be found in [1, §4].

In our work Pontryagin, and Hilbert spaces appear in a natural way as
described in Sect. 2 and Krein spaces appear in Sect. 4 and beyond, see, for
example, Theorem 4.4.

Appendix B. Pontryagin and Krein Right Ht
2-Modules

We assume now that V is a right Ht
2-module, and now replace (A.1) by

[vq, wp]V = p�[v, w]Vq, v, w ∈ H, and p, q ∈ Ht
2, (B.1)

or

[vq, wp]V = p[∗][v, w]Vq, v, w ∈ H, and p, q ∈ Ht
2, (B.2)

depending on the chosen adjoint.

Definition B.1. Let K be a vector space which is also a right Ht
2-module, and

let [·, ·]K be a Ht
2-valued form which satisfies (B.1) or (B.2). Then, K is called

a Ht
2 module if it is moreover a real Krein space when endowed with the

symmetric form

〈v, w〉 = Tr [v, w]K︸ ︷︷ ︸
∈Ht

2

.

Definition B.2. In the notation of the previous definition, assume that K is
a space of Ht

2-valued functions defined on a set Ω. Then, K is a reproducing
kernel Krein space if there exists a function K(z, w) defined for z, w ∈ Ω and
with the following property

Tr [f(·),K(·, w)p]K︸ ︷︷ ︸
∈Ht

2

= Tr p�f(w), w ∈ Ω, p ∈ Ht
2, (B.3)

or
Tr [f(·),K(·, w)p]K︸ ︷︷ ︸

∈Ht
2

= Tr p[∗]f(w), w ∈ Ω, p ∈ Ht
2, (B.4)

depending on the chosen adjoint.
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Proposition B.3. In the previous notation, it holds that

[f(·),K(·, w)b]K = b�f(w), w ∈ Ω, b ∈ Ht
2 (B.5)

or
[f(·),K(·, w)b]K = b[∗]f(w), w ∈ Ω, b ∈ Ht

2 (B.6)
depending on the chosen adjoint.

Proof. We consider the case of the first adjoint; the case of [∗] is treated
similarly. From (B.1) we can rewrite (B.3) as

Tr b�[f(·),K(·, w)]K = Tr b�f(w), w ∈ Ω, b ∈ Ht
2. (B.7)

To conclude we use Corollary 2.15. �

These definitions are readily extended to the case of matrix-valued func-
tions with entries in Ht

2. As already earlier in Sect. 5, the matrix-valued case
already has differences with the scalar case in the quaternionic setting; see [11,
p. 1767 (and in particular (62.38)].
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