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Predicting FFAR4 agonists using 
structure‑based machine learning 
approach based on molecular 
fingerprints
Zaid Anis Sherwani 1, Syeda Sumayya Tariq 1, Mamona Mushtaq 1, Ali Raza Siddiqui 2, 
Mohammad Nur‑e‑Alam 3, Aftab Ahmed 4 & Zaheer Ul‑Haq 1*

Free Fatty Acid Receptor 4 (FFAR4), a G‑protein‑coupled receptor, is responsible for triggering 
intracellular signaling pathways that regulate various physiological processes. FFAR4 agonists 
are associated with enhancing insulin release and mitigating the atherogenic, obesogenic, pro‑
carcinogenic, and pro‑diabetogenic effects, normally associated with the free fatty acids bound to 
FFAR4. In this research, molecular structure‑based machine‑learning techniques were employed 
to evaluate compounds as potential agonists for FFAR4. Molecular structures were encoded into 
bit arrays, serving as molecular fingerprints, which were subsequently analyzed using the Bayesian 
network algorithm to identify patterns for screening the data. The shortlisted hits obtained via 
machine learning protocols were further validated by Molecular Docking and via ADME and Toxicity 
predictions. The shortlisted compounds were then subjected to MD Simulations of the membrane‑
bound FFAR4‑ligand complexes for 100 ns each. Molecular analyses, encompassing binding 
interactions, RMSD, RMSF, RoG, PCA, and FEL, were conducted to scrutinize the protein–ligand 
complexes at the inter‑atomic level. The analyses revealed significant interactions of the shortlisted 
compounds with the crucial residues of FFAR4 previously documented. FFAR4 as part of the complexes 
demonstrated consistent RMSDs, ranging from 3.57 to 3.64, with minimal residue fluctuations 5.27 
to 6.03 nm, suggesting stable complexes. The gyration values fluctuated between 22.8 to 23.5 nm, 
indicating structural compactness and orderliness across the studied systems. Additionally, distinct 
conformational motions were observed in each complex, with energy contours shifting to broader 
energy basins throughout the simulation, suggesting thermodynamically stable protein–ligand 
complexes. The two compounds CHEMBL2012662 and CHEMBL64616 are presented as potential 
FFAR4 agonists, based on these insights and in‑depth analyses. Collectively, these findings advance 
our comprehension of FFAR4’s functions and mechanisms, highlighting these compounds as potential 
FFAR4 agonists worthy of further exploration as innovative treatments for metabolic and immune‑
related conditions.

Keywords FFAR4, Bayesian network algorithm, Structure-based machine learning, Molecular dynamics 
simulations

FFAR4, also known as Free Fatty Acid Receptor 4 is a G-protein-coupled receptor (GPR120) found in humans. It 
is predominantly present in the gastrointestinal system, adipose tissue, and immune cells. FFAR4 plays a crucial 
role in mediating the effects of long-chain fatty acids, particularly omega-3 fatty acids, in various tissues. When 
activated by these fatty acids, FFAR4 triggers intracellular signaling pathways that regulate various physiological 
processes, such as glucose and lipid metabolism, inflammation, and insulin  sensitivity1. Consequently, FFAR4 
has garnered significant attention as a potential target for conditions like obesity, diabetes, and inflammatory 
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 disorders2. Understanding the functions and mechanisms of FFAR4 in humans may offer valuable insights into 
the development of novel treatments for metabolic and immune-related diseases.

The role of FFAR4 in regulating blood glucose levels has been established since long. FFAR4 activators are 
purported to be useful in treating type 2  diabetes3. In a recent study, several FFAR4 agonists were stimulated 
to release insulin from murine pancreatic islets and the resultant post-prandial glucose peak was found to be 
mitigated. In another study, a co-agonist small molecule at FFAR1 and FFAR4, enhanced the uptake of glucose 
by mouse adipose cells in diabetic models in rodents, as a result, insulin secretion was stimulated significantly 
and blood glucose levels were  lowered4. In mice, blood glucose and insulin profiles were improved by a differ-
ent co-agonist of FFAR1 and FFAR4. A significant finding in related studies suggests a release of glucagon-like 
peptide-1 (GLP), gastric inhibitory peptide (GIP), and muted ghrelin secretion by FFAR4 agonists as a result 
of insulin stimulation, which is attributed to the anti-glycemic  effects5. People with higher insulin and lower 
HbA1c levels have higher amounts of FFAR4 in their pancreatic islets. It was also found that FFAR4-knocked-out 
mice are severely glucose intolerant. FFAR4 activators do not require free fatty acids, and can enhance insulin 
release and mitigate other atherogenic, obesogenic, pro-carcinogenic, and pro-diabetogenic effects attributed 
to free fatty  acids6. This rationale has been the driving force to seek out potentially therapeutic FFAR4 agonists.

For this research, machine learning techniques based on molecular structures were used to screen com-
pounds as potential FFAR4 agonists. In contrast to descriptor-based screening, which involves the calculation 
of numerous physicochemical descriptors submitted to machine learning algorithms for pattern recognition, 
the structure-based approach encodes molecular structures into bit arrays based on the specific location, atom 
type, and topology. These assembled bit arrays, representing the molecules’ structures, are then subjected to 
machine learning algorithms to establish patterns for the selected  compounds7,8. By presenting derived finger-
prints about the structures of known activators, and inhibitors of FFAR4, and a decoy dataset, a training set was 
used to train our machine learning model. Bayesian network algorithm was used in this study as the fingerprints 
were encoded bit arrays and the Bayesian algorithm calculates the posterior probability of values appearing in 
the training dataset to conclude what ‘might be required in the structure for it to be an activator. The model so 
trained was used to filter compounds from a large screening  dataset9. The shortlisted hits were proceeded to 
ADME prediction, Molecular Docking and post-docking analysis (to verify appropriate binding affinities and 
binding poses of the hits) and molecular dynamics of the Membrane-bound FFAR4—ligand complexes were 
carried out to document the stability of human FFAR4 with the hits.

Materials and methods
Structure based machine learning
Structure-based machine learning protocols were employed to find activators of Human FFAR4 (Free Fatty Acid 
Receptor 4), active compounds were retrieved (activators with documented EC50s) and inactive (inhibitors with 
documented IC50s) from the ChEMBL  database10. A total of 467 active compounds and 1200 inactive compounds 
were downloaded in a catenated SDF format. Decoys were generated by inputting the SMILES of actives in the 
DUDE DECOYS  webserver11 and randoms were taken from the ChEMBL Database. The ChemDes  webserver12 
was then used to calculate Morgan fingerprints of actives, inactive, decoys and random compounds.

The training set file was then put through WEKA software using  BayesNET13 to generate our learning model. 
After evaluation of the best model via evaluation indices (performance metrics like kappa statistic, recall, preci-
sion, MCC, and F1 SCORE), the model that was deemed satisfactory was used to screen the test set. The test set 
was obtained by applying the Lipinski rule of 3, and calculating the Morgan fingerprints of all the compounds 
in the ChEMBL database, narrowing down the 6 million compounds in CHEMBL database to a total of 32,000 
compounds. After screening through our learning model, a total of 693 compounds were shortlisted as actives 
from the screening database.

Swiss ADME analysis
The Swiss ADME web server was utilized in order to assess the vital characteristics of the selected hits. These 
critical properties include physicochemical attributes, pharmacokinetic parameters, bioavailability considera-
tions, permeability across the blood−brain barrier, adherence to Lipinski’s Rule of 5, synthetic accessibility, and 
the potential toxicity of small molecules. For the evaluation, the structural coordinates of the shortlisted hits 
were imported in 1D formats (SMILES notation) and were then submitted for an in-depth analysis via the server.

Molecular docking
The structure of Human FFAR4 (Free Fatty Acid Receptor 4) was retrieved from RCSB PDB with the PDB ID-
8ID314. The protein preparation tool within Molecular Operating Environment (MOE v2019.01)15 was employed 
to optimize the protein structure for molecular docking, including processes such as assigning precise bond 
orders, removing redundant water molecules, applying terminal capping, supplementing any absent atoms, 
utilizing the AMBER99 force field, assignment of partial charges and minimization of energy etc. Additionally, 
any missing hydrogen atoms were added in accordance with pH 7’s typical protonation state.

Triangle Matcher was employed as the main docking placement method for molecular docking, and Affini-
tydG was used as the placement scoring mechanism. The 50 resulting poses were refined using the "Induced Fit 
Receptor" method, and the top 10 poses determined by the GBVI/WSA dG technique were then subjected to 
additional study. In order to visualize, detect, and further evaluate protein–ligand interactions, the binding poses 
of the top-ranked compounds were examined using the Protein–Ligand Interaction Fingerprinting (PLIF) and 
Protein–Ligand Interaction Profiler (PLIP). In-depth analysis of the protein–ligand interactions and visualiza-
tion of the structures and interactions are made possible by PLIP, which also serves to validate the docking data.
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Molecular dynamic simulation
Membrane Molecular dynamic simulations of FFAR4 with the 3 shortlisted compounds, with CHEMBL IDs 
CHEMBL2012662, CHEMBL1903952, CHEMBL64616 and Apo protein were so carried out using  Amber2216. 
Since FFAR4 is a membrane receptor, the membrane protein–ligand systems were constructed via CHARMM-
GUI  webserver17. The protein was uploaded onto the server and subsequently, its transmembrane PDB was 
oriented within a lipid bilayer mimicking the typical constitution of a human cell membrane, comprising 95% 
POPC and 5% cholesterol. These systems were constructed to span 140 angstroms in both length and breadth. 
To simulate physiological conditions, TIP3P water was utilized along with the addition of ions in the form of 
KCl at a concentration of 0.15 mM, mirroring the typical molarity of human body fluids. Following this, the 
structural components including the protein, membrane, water, and ions were assembled, generating the system 
in PDB format. Using the CHARMM-GUI webserver, system files were prepared to undergo MD simulations 
in AMBER22. To ensure system stability, a brief 1 ns NPT ensemble minimization was conducted to alleviate 
any strains. Subsequently, the systems underwent 100 ns MD runs utilizing CHARMM36m force  field18 while 
general Amber force field (GAFF) was employed for the  ligand19.

Initially, the systems underwent conjugate gradient minimization and energy minimization using the steepest 
descent method with 2500  steps20. The protein was held in place using position constraints, and the procedure 
was repeated six times with a progressive reduction in the amount of restraint. At last, the imposed constraint 
was removed, and the systems underwent an additional energy minimization cycle. The systems were heated 
under a continuous volume, temperature (NVT) ensemble for 500 ps to reach the goal temperature of 300 K. 
Two iterations of the procedure were conducted, with a progressive reduction in positional constraints from 30 
to 10 kcal mol. In the next steps, the equilibration was done for around 3.5 ns at constant pressure and tempera-
ture (NPT) ensemble. Finally, a production run lasting 100 ns for each complex was carried out using periodic 
boundary conditions. Thanks to isotropic position scaling and Langevin dynamics, the temperature and pres-
sure were managed. Using the Particle Mesh Ewald (PME) technique, long-range electrostatic interactions were 
 studied21. The SHAKE algorithm was utilised to restrict the interactions involving H atoms, and a cutoff of 10 Å 
was applied to determine the non-bonded  interactions22. At a time step of two fs, the numerical integration was 
configured.  VMD23 and the  CPPTRAJ24 programme were used to examine the simulated trajectories. Root mean 
square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (RoG) are among the 
stability measures taken into consideration here. The donor and acceptor atoms’ cutoff distance for an H-bond 
was determined to be 3.5 Å, with a bond angle of 120. The percentage of the simulation run that H-bonds formed 
was used to compute occupancy showed in Table S3.

Principal component analysis
The intricate data from MD Simulation underwent simplification via Principal Component Analysis (PCA) 
to condense the dimensions of the intricate data, aiming to unveil pivotal patterns and connections within the 
dataset. Its purpose extended to analyzing protein conformational changes and extracting meaningful insights 
from the intricate motions observed in MD trajectories. By aligning MD trajectories as part of the default set-
tings, PCA was strongly grounded. The Essential Dynamics (ED) method was applied to compute eigenvectors, 
eigenvalues, and their projections by diagonalizing the matrix. Emphasizing the two principal components, 
the analysis was conducted using the PCA module within the MDAnalysis  tools25. Additionally this principal 
components data were used to construct free energy profile of the simulated system.

Free energy landscape
After evaluating the conformational landscape and the molecular motions investigated by the simulations, the 
GROMACS software package’s gmx sham plugin was used to construct the free-energy  landscape26. Based on 
the first two primary components, the following equation shows the possible protein conformations during 
molecular dynamics simulations in relation to Gibbs free energy.

In this equation KB and T are the Boltzmann constant and absolute temperature and P(PC1, PC2) is the prob-
ability distribution of the molecular system along with two principal components. The free energy landscape is a 
visual representation of the system’s energy distribution, that provides an insight into the kinetics and thermody-
namic stability of the molecules, revealing various energy states and their associated conformational probabilities.

A flowchart detailing methodology workflow is available in in supplementary as in Fig. S1.

Results and discussion
Structure based machine learning
In the present study, the CHEMBL was used to assemble a training set of 437 FFAR4 actives (activators), in-
actives (inhibitors), decoys (the molecules with the same physicochemical formula of actives but different 
topology and no activity at the receptor) and randoms. Chemopy Morgan fingerprints were calculated using 
CHEMDES  webserver27 and all subsets were assembled into one training set file (Supplementary Information).

The classification algorithm BayesNET which works on Bayesian network theory was chosen to derive a model 
as it is most suitable for data with bit arrays entries. Bayesian network algorithm takes the entries and calculates 
a posterior probability (the model so created is based on the preponderance of occurrence of similar entries and 
hence taken as features which mostly recur in a particular labelled compounds and hence likely to be essential 
for the behavior of this compound). The WEKA software based Bayesian network classification reported the best 
model with the kappa statistic of 0.7. The confusion Matrix resulting from BayesNET algorithm classification 
and resultant model is shown in Fig. 1.

�G = −KBTlnP(PC1, PC2)
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Kappa statistic is the measure of predictability and generalizability of the model. It is a gauge of the extent to 
which a huge amount of data can be utilized to provide an accurate result i.e. it denotes the degree to which the 
study’s data accurately reflect the factors under investigation.

It is possible to calculate Cohen’s kappa using the following formula:

where Pr(e) denotes chance agreement and Pr(a) is the actual observed agreement.
In other words, the kappa statistic of 0.821 indicates that the best model has the generalization ability (for a 

model applied to an external dataset with what accuracy it is likely to pick a true-active) of around 82%. Other 
evaluation metrics (F1 score, Mathew Correlation Coefficient (MCC), Precision vs Recall) are presented in table 
and speak of good predictive accuracy of the model. The detailed statistics of the model are shown in Table 1.

After verification, this model was proceeded to screen the test set. The test set contained 32,000 compounds 
having applied Modified Lipinski Rule of 3 to 6 million compound in CHEMBL Database. These had Chemopy 
Morgan fingerprints calculated as per the training set. Upon screening this dataset, 693 compounds were picked 
up as actives as shown in Fig. 2.

Molecular interactions
Molecular docking was applied to the 693 hits that came from structure-based screening using machine learning 
at the target protein’s active site within the designated grid. When choosing the possible hits, docking interactions 

κ =

Pr(a)− Pr(e)

1− Pr(e)

Figure 1.  The confusion matrix for the best model trained.

Table 1.  Evaluation metrics attained by best trained model by BayesNET classifier algorithm employed on 
training set of known Actives, In-actives, Decoys and Randoms in Weka software.

Kappa statistic Precision Recall F-Measure MCC Roc area Precision area

0.821 0.944 0.947 0.944 0.843 0.977 0.470

Figure 2.  The sorted result of screening by applying the best trained model under the BayesNET algorithm. All 
the entries in the screening dataset were labelled in-actives at first. Total 693 compound were predicted to be 
actives.
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with important residues in the target site were evaluated. The MOE-implemented PLIF module was used to ana-
lyze the shortlisted compounds through protein–ligand interactions fingerprinting (PLIF) analysis. The major 
interactions between ligand and protein are identified using PLIF, which is regarded as a potent technique. The 
resulting hits were further narrowed down to 127. The compounds that were shortlisted had binding energies 
ranging from − 8.85 to − 4.0 kcal/mol. The Protein–Ligand Interaction Profiler (PLIP) was employed to examine 
the binding poses of the highest-ranked compounds, facilitating the visualization, identification, and in-depth 
analysis of protein–ligand interactions. Three compounds were finally shortlisted based on the interactions 
reported  earlier14. Interactions of the compounds with the residues Leu196 and Trp198 of FFAR4 were com-
monly observed in case of all three complexes, while residues Phe25, Glu204, Asp208 also took part in hydrogen 
bonding. The PLIP interactions of the final 3 compounds shortlisted based on interactions with crucial residues 
are shown in Fig. 3.

Swiss ADME
Swiss ADME server was used to examine the pharmacokinetic and physicochemical characteristics of 127 hit 
compounds that were derived from the docking studies. Lipinski’s rule of five, a compound’s solubility, lipophilic-
ity, flexibility, and ability to penetrate the blood–brain barrier are among the factors taken into account in this 
work. As a result, 27 hit compounds were chosen. All of the compounds’ molecular weights were discovered 
to fall within the typical range of 95% of the medicines that were tested. It was discovered that every chemical 
complied with the Lipinski criterion of five drug likelihood with no exceptions. Based on the optimal combina-
tions of PLIP, PLIF (Fig. S2), and ADME profiles identified, three compounds were selected. As shown in Fig. 4, 

Figure 3.  Molecular Interactions observed as a result of molecular docking of the three shortlisted compounds 
(Compound 1: Maroon, Compound 2: Green, Compound 3: Orange) with FFAR4. The interacting residues are 
represented as sticks, while black dotted lines represent the hydrogen bonds.
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the three compounds projected high oral absorption rate and moderate to well blood–brain barrier permeability. 
Table S1 provides a comprehensive explanation of the pharmacokinetic parameters for these compounds. In 
conclusion, it can be deduced that these compounds exhibit favorable ADME profiles, making them promising 
candidates for further exploration. Additionally, the toxicity profiles of these compounds were also calculated 
via Protox 3.0 webserver. The three compounds were found to be very non-toxic, representing appropriate safety 
profiles, as can be seen in Table S2.

Molecular binding interactions
In order to observe the molecular binding pattern within the complexes, the resultant trajectories of the simula-
tions were examined with a distance limited at 4 Å. Figure 5 depicts the molecular binding interactions observed 
after the molecular dynamic simulation of the membrane-bound FFAR4 with compounds 1, 2, and 3. Upon 
examining the intermolecular interactions, it becomes apparent that the stability of protein–ligand complexes 
in all three simulated systems primarily relies on a multitude of hydrogen bonds.

Compounds 1 and 3 both primarily showed hydrogen bonding interactions with FFAR4 residues including 
Leu196, Trp198, Glu204 and Asn291 in common at a distance of 2.73, 2.33, 2.73, 2.33 Å and 1.85, 3.25, 2.01, 
2.22 Å respectively. These observations are in-line with the interactions observed via molecular docking studies 

Figure 4.  ADME profiles in web diagrams of the three final hits along with their structures. The pink area in 
the web diagrams are acceptable ranges for the values of lipophilicity, solubility, flexibility, unsaturation and 
molecular size while the white area are disallowed regions. which primarily determine the pharmacokinetic 
profiles of drug-like compounds.
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in our present work, as well as the previous  reports14. Compound 1 showed an additional bonding with hydrogen 
atom involving Arg22 at a distance of 3.42 Å and hydrophobic interactions with residue Phe27 and Phe115, while 
residues Trp277, Ile261, Ile284, Phe211 showed hydrophobic interactions with compound 3. Compound 2 on 
the other hand only showed one hydrogen bond interaction involving Thr119 at a distance of 1.95 Å.

Structural stability and flexibility
To assess the structural stability, flexibility, and overall dynamics of the FFAR4 complexes, RMSDs of the 100 ns 
simulated trajectories were calculated and shown in Fig. 6A. The RMSD of any simulated bio molecular system 
serves as an essential parameter to gauge the system’s stability. In the context of structural biology when study-
ing the atomic coordinates, the lower RMSD values indicate greater system stability whereas larger RMSD val-
ues correspond to less stable  complexes28. Throughout the simulation, all three systems exhibited fluctuations, 
with consistent RMSDs. FFAR4 as part of complex 1, 2, and 3 demonstrated an average RMSD of 3.57 ± 0.23, 
3.64 ± 0.46, and 3.51 ± 0.34 nm respectively, while Apo FFAR4 exhibited an average of 3.57 ± 0.29 nm deviation. 
As can be observed in the plot, throughout the entirety of the simulation, comparable RMSDs with minimal 
fluctuations were observed. Although the fluctuation varied slightly across the three complexes, they remained 
within the consistent range comparable with the unbound FFAR4.

Moreover, further visual analysis of the trajectories was also performed to assess the stability of the bound 
ligands. The ligands as part of complex 1, 2, and 3 projected an average RMSD of 1.19 ± 0.19 1.91 ± 0.61, and 
2.03 ± 0.30 nm, respectively. As depicted in Fig. 6B, compound 2 exhibited the most deviations throughout the 
simulation, while compound 1 and 3 remained comparatively steady and showed fewer deviations, indicating 
stable protein–ligand complexes. During the simulations, consistent deviations in the same regions were observed 
for compound 1 and compound 3, indicating stable binding modes relative to their initial positions. However, 
the magnitude of deviations is higher in case of complex 3 as compared to others. The instability observed in case 
of compound 2 can be explained by the inconsistent intermolecular interactions observed (Fig. 5), suggesting 
instable protein–ligand complex. RMSD of FFAR4 backbone carbon atoms as part of protein–ligand complex 

Figure 5.  Molecular binding interactions observed after the molecular dynamic simulation of the membrane 
bound FFAR4 with the three compounds (Compound 1: Maroon, Compound 2: Green, Compound 3: Orange). 
The interacting residues are represented as sticks, while black dotted lines represent the hydrogen bonds.
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1, 2, 3, and reference ligand compared to Apo FFAR4 (Fig. S3), and the RMSD of the selected compounds when 
compared with the reference ligand (Fig. S4), indicate similar structural stability.

In order to assess the inherent flexibility of the FFAR4 residues during the course of simulation, Root Mean 
Square Fluctuations (RMSF) of the simulated trajectories, were computed. The RMSF provides information 
regarding residue-level perturbations where higher values within a bio molecular system signify flexibility and, 
consequently a less stable  state29. On the other hand, reduced fluctuation imparts greater stability to the  system29. 
The average RMSF (Fig. 7) experienced by the FFAR4 residues in complex 1, 2, and 3 were noted as 6.03 ± 0.57, 
5.77 ± 0.66, and, 5.27 ± 0.87 while Apo FFAR4 exhibited an average of 7.34 ± 0.82 nm. As can be observed in 
the plot, throughout the entirety of the simulation, comparable RMSFs with minimal fluctuations in the same 
regions were observed with all the complexes, with the exception of complex 1 which showed higher fluctua-
tions. The observed fluctuations can be attributed to the residues involved in binding the ligands and forming 
the protein–ligand complex. The RMSF of the selected compounds when compared with the reference ligand 
(Fig. S3), indicates similar flexibility of the FFAR4 residues during the course of simulation. The RMSF plots of 
the key residues of the FFAR4 binding pocket are provided in Supplementary as Fig. S5.

Structural compactness
The time-dependent convergence of the radius of gyration (RoG), representing the structural properties of the 
simulated ensembles, was further examined and illustrated in Fig. 8. RoG, reflecting the compactness of the 
protein, is defined as the root-mean-squared distance of the components within an object relative to its center of 
mass. After computing the influence of ligand binding to the receptor at molecular level, the folding behavior of 
the protein with respect to time was studied via RoG. A properly folded conformation in general features constant 

Figure 6.  (A) RMSD of FFAR4 backbone carbon atoms as part of protein–ligand complex 1, 2 and, 3 compared 
to Apo FFAR4, for the entire duration of the simulation. (B) RMSD of the three compounds as part of protein–
ligand complex 1, 2 and, 3 during the course of 100 ns of simulation.

Figure 7.  RMSF of FFAR4 backbone carbon atoms as part of protein–ligand complex 1, 2, and 3, as compared 
to Apo FFAR4, for the entire duration of the simulation.
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gyration values, while on the other hand, distortion in the folding behavior induces the RoG values to change 
over  time30. The gyration values observed for the studied systems displayed fluctuations spanning from 22.8 to 
23.5 nm highlighting the divergence in the structural compactness. The mean values of 23.04 ± 0.09, 22.98 ± 0.10, 
23.20 ± 0.10, 23.09 ± 0.12, were observed for the Apo FFAR4 and the three complexes, respectively. The RoG data 
shows that all three complexes were structurally compact, ordered. The RoG of the selected compounds when 
compared with the reference ligand (Fig. S3), indicates similar compactness in case of complex 1 and 3, while 
complex 2 showed fluctuations.

Conformational motions and thermodynamic stability
To capture the substantial conformational changes with respect to free energy, PCA and FEL were computed for 
all of the simulated systems. We generated 2D FEL plots for both the ligand-free state and ligand-bound complex, 
utilizing principal component values with a color-coded contour map indicating energy levels and simulation 
extremes. All three systems demonstrated different conformational patterns with various energy basins.

In general, all of the systems demonstrated different conformational patterns with various energy basins. In 
Apo state, the membrane bound receptor protein showed a high degree of variance in PC1 and PC2 during both 
the initial and final MD conformations suggesting instability. As can be observed in Fig. 9A, initially, the PCs 
values decrease but towards the end of the 100 ns simulation an increase can be observed. Conversely, the stability 
of the protein backbone in complex 1 is evident from much smaller values of PC1 and PC2 towards the end of 
simulations as can be seen in Fig. 9B as compared to Apo in which initial variances of PC1 and PC2 begin at -40 
and -50 respectively. Complex 2 also demonstrates much smaller values at − 10 and − 40 as seen in Fig. 9C. For 
complex 3, the final steps show PC1 and PC2 variances at 20 and 40 again indicating a more stabilized complex 
as seen in Fig. 9D. It can be inferred from the PCA plots, that all three compounds confer stability to the complex 
which is in-line with the RMSD observations.

The FEL plot of the Apo FFAR4 show the best free energy profiles at around PC1 and PC2 variances. As can 
be observed in Fig. 9E, the Apo FFAR4 shows fewer high free energy basins, as compared to the protein–ligand 
complexes as seen in Figs. 9F–H which show higher free energies and lower variances, which can be attributed 
to the binding of the ligand. The highest free energy states for the first compound complex lies in in range of 
10 to 0 (PC1) and 20 to 0 (PC2) Fig. 9F. In case of the compound 2 these values are − 2 to − 22 (PC1) and − 5 to 
0 (PC2) Fig. 9G, while for the third complex, FEL contour hovers around 20 to -5 (PC1) and 20 to − 10 (PC2) 
Fig. 9H. As can be observed via the FEL plots, the contours shift to wider energy basins, inferring stable pro-
tein–ligand complex.

Conclusion
In this study, we utilized structure-based machine learning techniques that rely on molecular fingerprinting 
to screen compounds as potential FFAR4 agonists. This approach involves encoding molecular structures into 
bit arrays using specific criteria, known as molecular fingerprinting. These bit arrays represent the structural 
features of the molecules, which are then processed by machine learning algorithms to identify patterns among 
the selected compounds. To train our machine learning model, we utilized a training set composed of derived 
fingerprints from the structures of known FFAR4 activators, inhibitors, and a decoy dataset. The fingerprints were 
encoded into bit arrays, and the Bayesian network algorithm was employed to calculate the posterior probability 
of values appearing in the training dataset. This allowed us to draw conclusions about the structural require-
ments for a compound to act as an activator. Subsequently, the trained model was applied to filter compounds 
from a large screening dataset. The compounds that passed this initial screening were subjected to ADME and 
Toxicity prediction, Molecular Docking, and post-docking analysis to verify their binding affinities and binding 
poses. Additionally, Molecular Dynamics simulations of the membrane-bound FFAR4-ligand complexes were 
conducted to assess the stability of the human FFAR4 with the selected compounds.

Figure 8.  The compactness of FFAR4 as part of protein–ligand complexes 1, 2, ad 3, as compared to FFAR4, 
during the course of entire simulation.
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Comprehensive molecular analyses, including investigations into protein–ligand binding interactions, RMSD, 
RMSF, RoG, PCA, and FEL, were performed. These analyses provided insights into the interaction between the 
identified compounds (1 and 3) and critical residues of FFAR4, corroborating previous reports. When compared 
to the Apo FFAR4, RMSD and RMSF analyses indicated minimal structural deviation and fluctuations for these 

Figure 9.  The Conformational PCA plots computed from the backbone atoms of (A) Apo FFAR4. (B) Complex 
1 (C) Complex 2 (D) Complex 3 next to the corresponding Free energy landscapes (FELs) of (E) Apo FFAR4 (F) 
Complex 1 (G) Complex 2 (H) Complex 3.
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compounds. Furthermore, RoG measurements suggested the formation of stable complexes between these com-
pounds and FFAR4. PCA and FEL analyses yielded similar results. Collectively, these findings enhance our under-
standing of the functions and mechanisms of FFAR4, while also highlighting compounds CHEMBL2012662 
and CHEMBL64616 as potential FFAR4 agonists. These compounds show promise as innovative treatments for 
metabolic and immune-related conditions. Further investigation into their potential is warranted to explore their 
therapeutic value. By deepening our comprehension of FFAR4’s functions and mechanisms, these findings shed 
light on the development of novel treatments for metabolic and immune-related diseases.
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