
Chapman University Digital Chapman University Digital 

Commons Commons 

Mathematics, Physics, and Computer Science 
Faculty Articles and Research 

Science and Technology Faculty Articles and 
Research 

6-14-2024 

Fundamental Mechanisms of Energy Exchanges in Autonomous Fundamental Mechanisms of Energy Exchanges in Autonomous 

Measurements Based on Dispersive Qubit-Light Interaction Measurements Based on Dispersive Qubit-Light Interaction 

Nicolò Piccione 

Maria Maffei 

Xiayu Linpeng 

Andrew N. Jordan 

Kater W. Murch 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles 

 Part of the Quantum Physics Commons 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F1059&utm_medium=PDF&utm_campaign=PDFCoverPages


Fundamental Mechanisms of Energy Exchanges in Autonomous Measurements Fundamental Mechanisms of Energy Exchanges in Autonomous Measurements 
Based on Dispersive Qubit-Light Interaction Based on Dispersive Qubit-Light Interaction 

Comments Comments 
This article was originally published in Physical Review A, volume 109, in 2024. https://doi.org/10.1103/
PhysRevA.109.063707 

Copyright 
American Physical Society 

Authors Authors 
Nicolò Piccione, Maria Maffei, Xiayu Linpeng, Andrew N. Jordan, Kater W. Murch, and Alexia Auffèves 

https://doi.org/10.1103/PhysRevA.109.063707
https://doi.org/10.1103/PhysRevA.109.063707


PHYSICAL REVIEW A 109, 063707 (2024)
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Measuring an observable which does not commute with the Hamiltonian of a quantum system usually modifies
the mean energy of this system. In an autonomous measurement scheme, coupling the system to a quantum meter,
the system’s energy change must be compensated by the meter’s energy change. Here, we theoretically study
such an autonomous meter-system dynamics: a qubit interacting dispersively with a light pulse propagating in a
one-dimensional waveguide. The phase of the light pulse is shifted, conditioned to the qubit’s state along the z
direction, while the orientation of the qubit Hamiltonian is arbitrary. As the interaction is dispersive, photon
number is conserved so that energy balance has to be attained by spectral deformations of the light pulse.
Building on analytical and numerical solutions, we reveal the mechanism underlying this spectral deformation
and display how it compensates for the qubit’s energy change. We explain the formation of a three-peak structure
of the output spectrum and we provide the conditions under which this is observable.

DOI: 10.1103/PhysRevA.109.063707

I. INTRODUCTION

In quantum mechanics, measurements of observables
which do not commute with the system’s bare Hamiltonian are
ubiquitous, a paradigmatic example being the measurement of
a free particle’s position. Recently, such measurements have
been investigated as fuel for quantum engines, in which the
measurement channels are analogous to hot thermal baths
[1–11]. In these setups, the system’s energy change due to
the measurement has been dubbed quantum heat [12] or mea-
surement energy [13]. Following von Neumann’s description
[14], a quantum measurement primarily arises from a pre-
measurement, i.e., a closed-system interaction between the
measured system and a second one called a quantum meter.
Further insights about the energy transfers happening during
a measurement can be gained by studying the premeasure-
ment dynamics [8,15]. When the premeasurement features a
scattering-type dynamics [16], i.e., the system-meter interac-
tion Hamiltonian is time independent and autonomously turns
on and off, the sum of the system’s and meter’s bare energies is
the same at the beginning and at the end of the process. Hence,

*nicolo’.piccione@units.it

the measurement energy is conserved and it is balanced by the
meter’s energy change.

A perfect platform to analyze scattering-type premeasure-
ments in quantum optics is given by an electromagnetic pulse
that interacts dispersively with a qubit [14,17–23]. In this
setting, the electromagnetic field features the quantum meter
and the dispersive interaction induces a phase shift of the light
pulse, conditioned to the qubit’s state along the z axis: this
provides a premeasurement of the latter. Moreover, the pulse
propagation allows one to autonomously turn on and off the
coupling between the light and the qubit. In the standard dis-
persive readout, the qubit’s bare Hamiltonian is proportional
to σz and hence commutes with both the interaction Hamil-
tonian and the measured observable. This kind of dispersive
measurement is ubiquitous in circuit QED [14,23].

Here we consider this dispersive premeasurement scenario
when the qubit’s bare Hamiltonian is tilted with respect to the
z axis by an arbitrary angle �. This implies that the measured
observable (σz) and the qubit’s bare Hamiltonian do not com-
mute, giving rise to an energy exchange between qubit and
meter. Remarkably, the dispersive interaction forbids a direct
energy exchange via creation and/or annihilation of photons.
Hence, the field’s energy change manifests through spectral
deformations, redshifts, and blueshifts, while the photon num-
ber remains the same.
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We analytically solve the joint qubit-field dynamics and
use our solution to characterize the mechanism underlying the
spectral deformation of the scattered pulse. We find conditions
under which the deformation leads to a spectrum comprising
three peaks whose positions are determined by the qubit’s bare
frequency and the pulse’s carrier frequency. Importantly, the
peaks do not depend on the intensity of the light pulse, as
opposed to Mollow triplets [24,25]. While Mollow triplets
arise from the direct exchange of excitations between the
qubit and the field, the spectral deformation under study stems
from the dispersive interaction and is due to the noncommuta-
tion condition. The experimental observation of a three-peak
spectrum in the noncommuting dispersive regime has been
recently reported in Ref. [15].

Eventually, using Gaussian coherent pulses, we compute
output spectra in various configurations, verifying the accu-
racy of our predictions. The pulses used to plot the spectra
have long duration compared to the qubit’s typical timescale.
Indeed, short pulses lead to accurate measurements in the σz

basis but, simultaneously, the spectrum of the scattered field
does not show any visible change; on the contrary, according
to the WAY theorem [26] (named after Wigner, Araki, and
Yanase), long pulses lead to bad measurements but allow one
to resolve the scattered pulse’s spectral deformation providing
access to the energy change induced by the premeasurement
(or measurement energy).

The paper is organized as follows. In Sec. II, we present
the model, display the working mechanism of the dispersive
readout, and provide the formal solution of the joint qubit-
field dynamics. In Sec. III, the paper’s core, we analyze the
mechanism underlying the spectral deformation building on
the formal solution derived in Sec. II. We explain why the
final spectrum exhibits a visible three-peak structure becom-
ing more and more visible as the frequency dispersion of the
incoming pulse becomes smaller and smaller with respect to
a quantity determined by the qubit’s bare frequency and the
photon number. In Sec. IV, using Gaussian coherent pulses as
quantum meters, we numerically solve the premeasurement
dynamics and we show the spectral deformation visible for
long pulses. Finally, in Sec. V we draw conclusions on our
paper.

II. SYSTEM AND MODEL

A. Physical model

Our system consists of a qubit dispersively coupled to an
electromagnetic field in a one-dimensional waveguide (see
Fig. 1). A probe pulse travels along the waveguide and its
purpose is to measure the qubit in the σz basis. Due to the
waveguide’s linear dispersion and chirality, the probe pulse
travels with constant velocity v0 from left to right. The pulse
is on the left of the qubit at the initial time t = −T and on its
right at the final time t = +T . In this setting, the observable
that we want to measure is the qubit’s σz and the electromag-
netic field in the waveguide represents the quantum meter.

The Hamiltonian HQ of the qubit is given by

HQ = h̄ωq

2
σ�, σ� = cos(�)σz + sin(�)σx, (1)

FIG. 1. Pictorial representation of the system under investiga-
tion. The traveling probe pulse is on the left of the qubit at t = −T
and on its right at t = +T . During this time, the premeasurement
takes place.

where ωq is the qubit’s frequency, σx and σz are Pauli matrices,
and � quantifies how much the qubit’s Hamiltonian is tilted
with respect to (h̄ωq/2)σz, which we refer to as the “nontilted
Hamiltonian.” The qubit is located at position x = 0 inside the
waveguide and is considered to be pointlike.

The bare Hamiltonian of the electromagnetic field in the
waveguide is a reservoir of electromagnetic modes of different
frequencies [27]:

HF = h̄
∫ +∞

−∞
dkωka†

kak, with [ak, a†
k′ ] = δ(k − k′), (2)

where ωk is the frequency of the mode associated with the
wave vector k, ak and a†

k are respectively creation and anni-
hilation operators of the bosonic mode with wave vector k, and
δ(k) is the Dirac delta. Notice that we neglect the polarization
degree of freedom of the propagating light. Assuming linear
dispersion for all relevant field frequencies around the carrier
frequency ω0, i.e., ωk � ω0 + v0k, and exploiting the fact
that the field propagates in one direction (k > 0), the above
Hamiltonian can be cast into the following form [see Ref. [28]
and Appendix A for more details]:

HF =
∫ +∞

−∞
dx[h̄ω0a†(x)a(x) − ih̄v0a†(x)∂xa(x)], (3)

where a(x) and a†(x) are bosonic operators creating and de-
stroying photons at position x and satisfying the commutation
relation [a(x), a†(y)] = δ(x − y). They are defined as follows:

a(x) ≡ 1√
2π

∫ +∞

−∞
dkake+ikx,

a†(x) ≡ 1√
2π

∫ +∞

−∞
dka†

ke−ikx. (4)

Finally, the dispersive interaction between qubit and field is
given by

V =
∫ +∞

−∞
dx f (x)a†(x)a(x) ⊗ H1, H1 ≡

[
h̄χ0

2

]
σz, (5)

where χ0 represents the coupling strength between qubit and
field while f (x) represents the shape of the interaction region
between them. Since the qubit is treated as pointlike, from
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now on we will consider the case f (x) → Lδ(x), where L is
the effective length of the space occupied by the qubit.

We assume that the pulse is far on the left of the qubit at
the initial time t = −T so that they are in a product state at
that time and their interaction takes place for +T > t > −T .
We write the initial state of the system in the following form:

|ψ (−T )〉 =
[
β0 +

∞∑
n=1

βn√
n!

∫ +∞

−∞
dxnφn(
xn)A†

n(
xn)

]

× |0F 〉|ψQ(−T )〉, (6)

where |0F 〉 is the electromagnetic vacuum and |ψQ(0)〉
is the initial qubit’s state. The coefficients βn are the
amplitudes associated to each photon-number subspace,
and satisfy

∑
n |βn|2 = 1. In addition, we have de-

fined A†
n(
xn) ≡ a†(x1)a†(x2) . . . a†(xn), 
xn ≡ x1, x2, . . . , xn,

and dxn ≡ dx1dx2 . . . dxn. The wave function φn(
xn) is the
probability density amplitude for the n-photon subspace, it is
normalized (i.e.,

∫ +∞
−∞ dxn|φn(
xn)|2 = 1), and it is invariant for

exchange of variables.
Let us notice that, due to the linear dispersion, we can

equivalently express the operators a(x) in terms of the time
t = −(T + x/v0) at which a photon that was in the position
x < 0 at the time t = −T arrives at the qubit’s position x = 0.
Hence, with a notation abuse, the operator a†(t ) = a†[x =
−v0(T + t )] creates a photon at time t in the qubit’s position
x = 0. Hereafter, we will use this time notation to simplify the
interpretation of the dynamics. In this notation, the initial state
reads

|ψ (−T )〉 =
[
β0 +

∞∑
n=1

βn√
n!

∫ +∞

−∞
dtnψn(
tn)A†

n(
tn)

]

× |0F 〉|ψQ(−T )〉, (7)

where we have defined A†
n(
tn) ≡ a†(t1), a†(t2), . . . , a†(tn),


tn ≡ t1, t2, . . . , tn, and dtn ≡ dt1dt2 . . . dtn. Finally, the wave
function ψn(
tn) is the analog of φn(
xn).

B. Dispersive readout

Let us display the measurement’s mechanism in the sim-
plest possible scenario where � = 0 and the field is prepared
in a coherent state |α〉. Let us consider the time T at which
the pulse has completely gone from the left to the right of the
qubit. The dynamics then gives rise to the following map:

U (T,−T )|ez〉|α〉 = |ez〉|e−iφ/2α〉,
U (T,−T )|gz〉|α〉 = |gz〉|e+iφ/2α〉, (8)

where U (T,−T ) is the unitary operator evolving the system
from t = −T to +T , |ez〉 and |gz〉 are eigenstates of σz, and the
angle φ is given by φ = χ0L/v0. Let us notice that the interac-
tion leaves the eigenstates of σz unchanged and therefore, the
measurement process is repeatable because the observable’s
eigenstates are left unvaried by the premeasurement dynam-
ics. This is a quantum nondemolition (QND) measurement
[18]. After the premeasurement, a classical observer can read
out the qubit’s state by measuring the field’s state, so that
the measurement accuracy depends on the overlap between
the pointer states, |〈e−iφ/2α | eiφ/2α〉|2 = e−2n̄(1−cos φ), where

n̄ = |α|2. The smaller the overlap between the pointer states,
the more distinguishable they will be in a classical readout
and hence the more accurate the measurement of σz will be.
The pointer states’ overlap can be made arbitrarily small by
increasing the number of photons, unless φ = 0. Such repeat-
able and accurate measurements of qubits are ubiquitous in
circuit QED where dispersive interactions are widely used
to measure superconducting (transmon) qubits in microwave
resonators [20,23,29]. We remark that in the standard situation
described so far, [HQ,V ] = 0 so that no energy exchanges
between system and meter occur.

In the general case, [HQ,V ] �= 0 but, since our dynamics is
of the scattering type,1 we have the following property [16]:
[HQ + HF ,U (T,−T )] = 0. Therefore, the sum of the bare
energies is conserved when considering the whole dynamics.
In this case, the interaction can change the qubit’s internal
energy, i.e., EQ = 〈HQ〉T − 〈HQ〉−T �= 0 and, consequently,
the field’s energy has to change of an equal and opposite
amount, EF = 〈HF 〉T − 〈HF 〉−T = −EQ. As the interac-
tion conserves the field’s number of photons, the energy
change EF corresponds to a deformation of the scattered
light spectrum: the spectrum’s mean frequency shifts towards
blue or red according to the sign of EQ.

Noncommuting dispersive interactions can also be im-
plemented in circuit QED: the meter is still the microwave
field in the resonator dispersively coupled to the qubit, while
the Hamiltonian HQ with � �= 0 can be implemented by
driving the transmon qubit with a resonant classical field
[15,17,19,21–23]. The natural qubit Hamiltonian along the
z axis is eliminated by studying the dynamics in the rotat-
ing frame with the driving frequency. This strategy has been
recently used in the experiment reported in Ref. [15] to inves-
tigate energy exchanges in dispersive measurements of a qubit
whose Hamiltonian is tilted by � = π/2.

C. Formal solution of the dynamics

As the interaction [Eq. (5)] conserves the photon number, it
is possible to show (see Appendix B) that the formal expres-
sion of the joint qubit-field state at time t , in the interaction
picture with respect to the qubit’s bare Hamiltonian and in the
frame rotating with the input field’s frequency ω0, reads

|ψ (t )〉 =
[
β0 +

∞∑
n=1

βn√
n!

∫ +∞

−∞
dtnψn(
tn)

× Ũn(
tn, t )A†
n(
tn)

]
|0F 〉|ψQ(−T )〉, (9)

which is the same as Eq. (7) with the addition of the unitary
operators2 Ũn(
tn, t ), which are defined as follows:

Ũn(
tn, t ) =
n∏

j=1

e
it↑j
h̄ H0 e−�H (t−t↑

j ) iφ
2 σz e− it↑j

h̄ H0 , (10)

1The dynamics is of scattering type because, with extremely good
precision, V |ψ (t )〉 ≈ 0 for t � −T and t � +T .

2In Appendix B, the operator Ũn(
tn, t ) is given in a more general
form valid for any interaction shape f (x).
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FIG. 2. Pictorial representation of the solution of the joint system
dynamics leading to Eq. (9). For each photon number subspace, the
dynamics can be seen as a collection of sequences of free evolution
and instantaneous interactions (or collisions). The amplitudes of
these sequences correspond to the wave-packet wave function ψn(
tn)
and they have to be summed accordingly. Notice that, in the picture,
the bosonic nature of the propagating field is accounted for by the
Heaviside function. This is also the reason why the term 1/

√
n! does

not appear in the picture.

where the times t↑
j are an increasingly ordered permutation

of the times t j (t↑
1 is the lowest of the t j , and t↑

n is the
highest) and the Heaviside function �H is needed so that, if
t j > t , the interaction does not take place. The factor 1/

√
n! in

Eq. (9) erases all cases in which the same dynamics is counted
multiple times and stems directly from the indistinguishability
property of bosons.

The dynamics can be understood through the pictorial
representation shown in Fig. 2 whose interpretation is the
following: for each photon subspace with fixed n, the photons
collide with the qubit at times t1, t2, . . . , tn with t j � t j−1.
These collisions are instantaneous, but the qubit undergoes
free evolution between them, and the probability amplitudes
of these processes have to be summed over all the possible
n-tuples of times.

III. ANALYSIS OF THE FIELD’S SPECTRAL
DEFORMATION

A. Single-photon pulses

Here we explicitly solve the dynamics of the joint system
when the initial state of the field |ψF (−T )〉 is a single-
photon wave packet: |ψF (−T )〉 = ∫ +∞

−∞ dtψ1(t )a†(t )|0F 〉
with ψ1(t ) being an arbitrary (normalized) temporal pro-
file. The initial state of the joint system is defined
to be |ψ (−T )〉 = |ψQ(−T )〉|ψF (−T )〉, with |ψQ(−T )〉 =
bg|g�〉 + be|e�〉, where |g�〉 and |e�〉 are, respectively, the
ground and excited state of HQ. The explicit wave function
(the qubit’s interaction picture) arising from Eq. (9) for β1 = 1

is derived in Appendix C. In the long-time limit, when the
field’s scattering is complete, it reads

|ψ (T )〉 = [bgIgg|g�〉 + beIee|e�〉]|ψF (0)〉
+ bgIge|e�〉|ψF,ge〉 + beIeg|g�〉|ψF,eg〉, (11)

where Iεε ≡ 〈ε�|e−i(φ/2)σz |ε�〉 with ε, ε ∈ {e, g}. The explicit
values are

Igg = I∗
ee = cos(φ/2) + i cos(�) sin(φ/2),

Ige = Ieg = i sin(�) sin(φ/2). (12)

Finally, the field’s distorted states are given by

|ψF,eg〉 =
∫ +∞

−∞
dtψ1(t )e−iωqt a†(t )|0F 〉,

|ψF,ge〉 =
∫ +∞

−∞
dtψ1(t )e+iωqt a†(t )|0F 〉. (13)

By rewriting these states in the frequency domain we can
see that the phases correspond to a shift of the light’s spec-
trum:

|ψF,eg〉 =
∫ +∞

−∞
dωψ̃1(ω − ωq)a†(ω)|0F 〉,

|ψF,ge〉 =
∫ +∞

−∞
dωψ̃1(ω + ωq)a†(ω)|0F 〉, (14)

where we used the equality a†(t ) =
(1/

√
2π )

∫ +∞
−∞ dωe+iωt a†(ω) [cf. Eq. (4)] and defined

ψ̃1(ω) ≡ (1/
√

2π )
∫ +∞
−∞ dtψ1(t )e+iωt , as the input field’s

wave function in the frequency domain.
Equation (11) shows that, as expected, the scattering with

a single-photon pulse can change the qubit’s energy. Since
the interaction [Eq. (5)] is such that V |ψ (±T )〉 = 0, the
qubit’s energy change must be compensated by the field’s
energy change. Equations (13) and (14) reveal the microscopic
mechanism underlying this energy balance: the field’s wave
functions associated with an increase, resp. decrease, of the
qubit’s energy acquire a time-dependent phase correspond-
ing to a frequency redshift, resp. blueshift. Hence, Eq. (11)
features the superposition of the three possible systems’ tra-
jectories:

(1) The qubit’s state does not change and the field’s state
remains |ψF (0)〉.

(2) The qubit’s state changes increasing its energy and the
field ends in the redshifted state |ψF,ge〉.

(3) The qubit’s state changes losing energy and the field
ends in the blueshifted state |ψF,eg〉.
Let us notice that when {�,φ} = {π/2, π} we have that
Igg = Iee = 0 and Ige = Ieg = i; only the trajectories featuring
the qubit’s excitation or deexcitation have nonzero amplitude.
Indeed, in the regime of π -per-photon interaction (φ = π ),
any qubit-photon interaction leads to a π rotation around the z
axis of the qubit’s Bloch sphere; when the qubit tilt is maximal
(� = π/2), this π rotation swaps ground and excited states.

Figure 3 shows the spectra related to the three states ap-
pearing in Eq. (11). The plot is realized by considering an
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FIG. 3. Spectral components of the possible field’s final states for
a single-photon pulse. The field’s initial state has central frequency
ω0 and a Gaussian profile of time dispersion σt [see Eq. (15)]. In this
case, σtωq = 5. For better comparison with the plots of Sec. III B, the
plot already uses the nomenclature introduced later. For reference
with quantities of this section, Input ↔ |ψ̃1(ω)|2, GJ ↔ |ψ̃1(ω +
ωq )|2, and EJ ↔ |ψ̃1(ω − ωq )|2.

input pulse with the following Gaussian profile:

ψEnv(t ) = 1

(2π )1/4√σt
exp

[
−
(

t

2σt

)2]
. (15)

The spectrum Sout (ω) of the scattered field can be calcu-
lated easily by computing Sout (ω) = 〈� f |a†(ω)a(ω)|� f 〉. The
result is

Sout (ω) = |Igg|2Sin(ω) + |Ige|2[|bg|2Sin(ω + ωq)

+ |be|2Sin(ω − ωq)] + 2Re{b∗
gbeIegI∗

gg[ψ̃∗
1 (ω)ψ̃1

× (ω − ωq) − ψ̃∗
1 (ω + ωq)ψ̃1(ω)]}, (16)

where we exploited the fact that Igg = I∗
ee, Ige = Ieg, I∗

ge = −Ige,
and Sin(ω) = |ψ̃1(ω)|2. Let us denote by σt the temporal dis-
persion of the pulse (i.e., effectively, its temporal length) and
by σω its frequency dispersion, recalling that they are linked
by the Heisenberg uncertainty principle σtσω � 1/2. When
ωq � σω, the spectrum presents a three-peak structure. Let
us notice that, for Gaussian pulses, for which σtσω ≈ 1, the
condition for the three-peak structure becomes σtωq � 1.

The first three terms of the spectrum in Eq. (16) come
from the three possible trajectories (1–3), while the last term
features an interference between shifted and nonshifted wave
functions. When σω � ωq, the interference term vanishes
and the three-peak structure becomes clearly visible. In other
words, the three-peak structure becomes clearly visible when
it is possible, by measuring the photon frequency in the out-
put, to infer with great accuracy which path the qubit followed
(jump |g�〉 → |e�〉, jump |e�〉 → |g�〉, or no jump), i.e., the
spectrum presents a clear three-peak structure when it carries
which-path information.

Importantly, the three peaks appearing in the output spec-
trum are not due to processes akin to those generating the
Mollow triplet [24,25]. In that case, the spectral deformation
arises from the exchange of excitations between the qubit
and the resonant field driving it. As a consequence, the po-
sition of the Mollow triplet peaks depends on the intensity
of the driving. In our model, on the contrary, the qubit-field
interaction is dispersive so that no excitations are exchanged
between field and qubit, and the side peak position depends
on the qubit’s bare frequency and not on any of the pulse’s
properties. We will see that this property is maintained, under
certain conditions, even when the probe pulse contains more
than one photon.

The case in which {�,φ} = {π/2, π} deserves a special
mention as in this case |Igg| = 0 and |Ige| = 1 so that the output
spectrum is

Sout (ω)|{�,φ}={ π
2 ,π} = |bg|2Sin(ω + ωq) + |be|2Sin(ω − ωq),

(17)

which presents a two-peak structure regardless of the length
of the pulse. Indeed, the two peaks are separated and therefore
clearly identifiable as two separate peaks when σω � ωq.

B. Multiphoton pulses

Here we consider the case where the field is a multiphoton
pulse and display the mechanism underlying the appearance,
in the spectrum of the scattered field, of peaks that can be
located in ω0 and/or ω0 ± ωq. In this subsection, we will con-
sider Gaussian pulses for which frequency and time dispersion
are linked by σtσω ≈ 1.

We start by considering pulses with exactly n photons.
Then, we extend our reasoning to pulses containing a su-
perposition of states with different photon numbers, such as
the coherent states considered in Sec. IV. Let us start from a
physical consideration following the schematics in Fig. 2 and
the analytical results obtained on the single-photon pulses.
Equation (16) shows that when a single photon interacts with
the qubit its final spectrum contains in general three distin-
guishable peaks if σtωq � 1. This latter can be interpreted as
a condition on the effective light-matter interaction time: the
photon should interact with the qubit for a time σt long enough
to “measure” the qubit’s bare dynamics whose timescale is
1/ωq. For a pulse of n photons, we can estimate an “average
time dispersion per photon” as σt/n, where σt is the time
dispersion of the pulse. Figure 2 shows that for a generic initial
field’s state, the system’s dynamics can be interpreted as a
superposition of all the possible processes where each photon
of the field collides with the qubit at a different time. Then we
expect the side peaks in ω0 ± ωq to appear when the average
interaction time per photon is long enough, i.e., σt/n � 1/ωq

or, equivalently, σtωq � n. The results presented below prove
that this intuition is correct.

For pulses containing an arbitrarily large number of pho-
tons, finding the explicit analytical expression of Eq. (9) is
quite complex. Here, we analyze the final spectrum for fields
prepared in Fock states with n � 3 by computing numerically
the spectrum of the final field’s wave functions associated
to the different possible trajectories of the qubit. To denote
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FIG. 4. Spectral components of the possible field’s final states
for a two-photon pulse. The field’s initial state has central frequency
ω0 and a Gaussian profile of time dispersion σt [see Eq. (15)]. Every
spectral component is normalized to 1 and σtωq = 5. We recall that
the above plots do not depend on either � or φ.

these trajectories and the corresponding field’s states, we use
a sequence of n + 1 letters where n is the number of photons
in the field. The first letter is either “G” or “E” and denotes
whether the qubit’s initial state is the ground or the excited
state of HQ. The other letters denote if the qubit’s state flips
(i.e., |e�/g�〉 → |g�/e�〉) or not in the interaction with the ith
photon of the pulse. If the qubit flips we write “J” standing for
“jump,” otherwise we write “N” standing for “no jump.” For
example, for a three-photon pulse the state GJNN denotes the
trajectory where the qubit started in the ground state of HQ, got
flipped by the interaction with the first photon, and remained
in the excited state after the interaction with the other two
photons of the pulse. Once the field’s states are computed
in the frequency domain, they can be used for the calcula-
tion of the corresponding spectral component (more details
are given in Appendix D). Importantly, let us notice that the
wave functions (and thus their spectrum) corresponding to the
possible system’s trajectories do not depend on the values of
� and φ, as the latter parameters only control the weight that
every wave function has in the overall output state of the field.
This is already visible in the single-photon wave functions of
Eq. (11), where � and φ only appear in the coefficients Ige and
Igg. Finally, it is worth noting that when {�,φ} = {π/2, π}
each photon interaction leads to a jump of the qubit’s state so
that only the states with all jumps3 have nonzero amplitudes
in front of them at t = T . We will see that this, as expected,
leads to spectra with only the two peaks instead of three.

Figure 3 refers to a field carrying just one photon (n = 1). It
shows the spectra of the field’s wave functions corresponding
to the trajectories EJ and GJ, respectively |ψF,eg〉 and |ψF,ge〉
of Eq. (14), alongside the input spectrum (GN and EN have
the same spectrum of the input pulse). The plot is realized

3For example, with three photons, only the states GJJJ and EJJJ will
appear in the final state of the field-qubit system.

FIG. 5. Spectral components of the possible field’s final states
for a three-photon pulse and the qubit starting in the ground state
|g�〉. The field’s initial state has central frequency ω0 and a Gaussian
profile of time dispersion σt [see Eq. (15)]. Every spectral component
is normalized to 1 and σtωq = 5. We recall that the above plots do not
depend on either � or φ.

by considering an input pulse with the Gaussian profile of
Eq. (15). For input pulses carrying n > 1 photons, we set their
initial temporal profile to be ψn(
tn) = ∏n

j=1 ψEnv(t j ).
Figure 4 refers to a field carrying two photons (n = 2)

and shows the spectra of the six possible fields’ final states
corresponding to the trajectories GNJ, GJN, ENJ, EJN, GJJ,
and EJJ.

Finally, Figs. 5 and 6 refer to a field carrying three photons
(n = 3) and the qubit starting respectively in the ground and in
the excited state. As it is clear by comparing the two plots, the
trajectories where the qubit starts in the ground state (Fig. 5)
give spectral contributions being the mirrorlike images of
those where the qubit starts in the excited state (Fig. 6). Again,
as expected, all the spectral contributions have peaks around
ω0 and ω0 ± ωq. Interestingly, here we can see that the shapes
of the spectral components do not depend uniquely on the
number of qubit jumps, but also on when they happen: the
spectral component corresponding to GNNJ is different from
that of GNJN, and so the spectral components coming from
the trajectories GNJJ, GJNJ, and GJJN are different among
each other.

When the input field is a superposition of multiphoton
pulses with different photon numbers n, the final spectrum
can be computed as the weighted sum of the spectrum coming
from each multiphoton pulse separately. Then, when each
of these spectral components presents the peaks in the same
three positions (ω0, and ω0 ± ωq), the resulting spectrum will
also have peaks in these positions. Following the qualitative
analysis presented at the beginning of this section, we expect
that the condition for having well-defined peaks in ω0 ± ωq

is σtωq � n̄, where n̄ is the average number of photons in
the pulse. Figure 7 shows the output spectra in the case of
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FIG. 6. Spectral components of the possible field’s final states for
a three-photon pulse and the qubit starts in the excited state |e�〉 The
temporal shape of the input pulse is given in Eq. (15). Every spectral
component is normalized to 1 and σtωq = 5. We recall that the above
plots do not depend on either � or φ.

a coherent input pulse with4 n̄ = 20, {�,φ} = {π/2, π},
changing the pulse’s duration and starting from the qubit’s
state |gz〉. As {�,φ} = {π/2, π}, the qubit’s state flips at
each photon-qubit interaction. As expected, we observe a
two-peak structure (no central peak) for σtωq � 20. On the
other hand, for σtωq = 10, the spectrum has a pronounced
plateau between the peaks in ω0 ± ωq, and for σtωq = 5 it
exhibits a big central peak in ω0.

IV. COHERENT PULSES

In this section, we numerically compute the spectrum of
the scattered field assuming that the input field is a coherent
pulse with n̄ = 4 photons on average. We chose this value as,
for n̄ = 4 and � = 0, the pointer states’ overlap, |〈e−iφ/2α |
eiφ/2α〉|2 = e−2n̄(1−cos φ), is very small for any value of φ ∈
[π/3, π ]. This means that, at � = 0, a coherent pulse with
n̄ = 4 is a good quantum meter for σz, i.e., it leads to distin-
guishable pointer states. We stress that the formulas given in
this section are valid only when the probe pulse is a coherent
state. These formulas provide access to fast numerical compu-
tations for the qubit’s dynamics and the output spectra.

In order to compute the spectrum of the scattered
pulse, we first derive the qubit’s master equation (details
are given in Appendix E). The qubit’s master equation5

4Obtaining such spectra with the methods of Sec. III B would be
computationally prohibitive, We explain how to obtain the output
spectra with coherent input pulses in Sec. IV.

5Despite the appearances, the master equation is in Lindblad form
because the jump operator is unitary.

FIG. 7. Spectra of the scattered field when the field is prepared
in a coherent pulse containing 20 photons on average varying the
pulse’s duration. The plots are obtained for � = π/2 and φ = π .
The two-peak structure is clearly visible when σtωq � 20.

reads

ρ̇(t ) = i
ωq

2
[ρ(t ), σ�] + |α(t )|2[e−i φ

2 σzρ(t )e+i φ

2 σz − ρ(t )
]
,

(18)

where ρ(t ) is the qubit density matrix and α(t ) is the wave
function associated to the coherent pulse [30]. In our case the
pulse has a Gaussian shape:

α(t ) =
√

n̄

(2π )1/4√σt
exp

[
−
(

t

2σt

)2]
, (19)

with
∫

dt |α(t )|2 = n̄ being the average photon number. From
the master equation we can compute the autocorrelation func-
tion of the output pulse as follows (see Appendix E):

g(s, t ) = α∗(s)α(t )Tr
{
e+i φ

2 σzEt,s
[
e−i φ

2 σzρ(t )
]}

, (20)

where the superoperator Et,s evolves its argument from t to
s according to Eq. (18). This expression is valid for s � t ,
and for s < t we exploit the fact that g(s, t )∗ = g(t, s). The
spectrum of the scattered field is obtained by computing the
integral:

S(ω) = 1

2π

∫ +∞

−∞
dtdse−iω(s−t )g(s, t ). (21)

Figures 8 and 9 show the spectra of the scattered fields
for long pulses (σtωq = 5) and different values of � and φ

starting from the states6 exp[i(T/h̄)HQ]|gz〉 and |g�〉, respec-
tively. They also show, for comparison, the input spectrum as

6This state is chosen so that the qubit would be in state |gz〉 at time
t = 0 if it were not for the pulse. The reason we do this is that it
improves the measurement performance, as argued later in the text.
See also Fig. 1.
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FIG. 8. Spectrum of the scattered pulse for σtωq = 5. The initial
state of the qubit is exp[i(t/h̄)HQ]|gz〉. The black thick line is the
input spectrum, and its central frequency ω0 is set as the zero of the
axis. We can observe the presence of side peaks around ±σtωq.

a black continuous line. We observe the occurrence of peaks
around the three values ω0 = 0, and ω0 ± ωq as explained
in the previous section. Moreover, we see that for {�,φ} =
{π/2, π} we do not have the central peak, as expected. We see
that, when � = π/2, the spectra remain symmetric around
ω0 = 0, while they become asymmetric when � = π/6. This
is explained by the fact that, at � = π/2, the evolution con-
serves the average qubit’s energy: the initial qubit’s state,
exp[i(t/h̄)HQ]|gz〉, and the final one, the completely mixed
state,7 have the same energy. Consequently the spectrum of
the scattered field remains symmetric around ω0 = 0 and pro-
vides the same average energy as the initial field’s state. This
is not the case when � = π/6. In Fig. 9, the initial qubit state
is the ground state of the Hamiltonian HQ. In this case, the
qubit always acquires energy from the pulse and this is why
the spectra present an average redshift in all cases.

We have seen that spectral deformations are visible only
when σω/ωq � 1. According to the WAY theorem [26,31], in
this case, the qubit’s measurement cannot be projective, i.e.,
accurate and repeatable. In Appendix F, we give more details
about the WAY theorem and how its statement applies to our
system. However, a thorough quantitative benchmark of the
quantum measurement in terms of accuracy, repeatability, and
signal-to-noise ratio is beyond the scope of the present paper.

V. CONCLUSIONS

We investigated an autonomous premeasurement dynam-
ics where a qubit interacts dispersively with a light pulse
propagating in a one-dimensional waveguide. We considered
different statistics of the field, as well as different cases where
the qubit’s Hamiltonian does not commute with the measured
observable (σz). In this scenario, the spectrum of the scattered
field gets deformed by the interaction leading to a change of
the field’s average energy balancing the qubit’s energy change

7Despite the fact that we simulate a premeasurement dynamics, the
final qubit state is practically completely mixed because the pulse is
long and, therefore, the measurement has bad performances.

FIG. 9. Spectrum of the output pulse for σtωq = 5. The initial
state of the qubit is |g�〉. The black thick line is the input spectrum,
and its central frequency ω0 is set as the zero of the axis. We can
observe the presence of side peaks around ±σtωq.

while keeping the excitation number constant. We solved the
qubit-field dynamics and explored the mechanism underlying
the field’s spectral deformation. In particular, we identified
configurations of pulses’ duration and photon number such
that the spectrum of the scattered field has three peaks, one
centered around the input field’s carrier frequency and the
other two shifted of ±ωq with respect to it, ωq being the
qubit’s frequency, in agreement with the behavior observed
in Ref. [15]. Finally, we numerically tested this prediction by
using a coherent field as quantum meter.
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APPENDIX A: FREE HAMILTONIAN
OF THE WAVEGUIDE FIELD

In this Appendix, for convenience of the reader and follow-
ing Ref. [28], we report the calculation needed to write the
Hamiltonian of Eq. (2) in the form given in Eq. (3). Then, we
introduce the general form for the field wave function needed
to find the general solution of the dynamics in Appendix B.

063707-8



FUNDAMENTAL MECHANISMS OF ENERGY EXCHANGES … PHYSICAL REVIEW A 109, 063707 (2024)

We are interested in pulses which are narrow in frequency and centered around ω0, i.e., ω/ω0 � 1, where ω is the
frequency dispersion of the pulse. We then write ωk � ω0 + v0k, where we write just k and not kR as in Ref. [28] because the
waveguide we consider is chiral and we consider only right-moving pulses. Finally, we define the creation and annihilation
operators at position x as follows:

ak ≡ 1√
2π

∫ +∞

−∞
dxa(x)e−ikx, a†

k ≡ 1√
2π

∫ +∞

−∞
dxa†(x)e+ikx, (A1)

which in turn imply that

a(x) ≡ 1√
2π

∫ +∞

−∞
dkake+ikx, a†(x) ≡ 1√

2π

∫ +∞

−∞
dka†

ke−ikx, [a(x), a†(y)] = δ(x − y). (A2)

We can now write

HF /h̄ =
∫ +∞

−∞
dxdya†(x)a(y)

∫ +∞

−∞

dk

2π
(ω0 + v0k)e+ik(x−y)

=
∫ +∞

−∞
dxdya†(x)a(y)(ω0 − iv0∂x )

∫ +∞

−∞

dk

2π
e+ik(x−y) =

∫ +∞

−∞
dxdya†(x)a(y)(ω0 − iv0∂x )δ(x − y)

= ω0

∫ +∞

−∞
dxa†(x)a(x) − ih̄v0

∫ +∞

−∞
dxa†(x)∂xa(x), (A3)

which corresponds to Eq. (3).
An arbitrary state of the electromagnetic field in the waveguide can be written as follows:

|ψF (t )〉 =
∑

n

βn|nF (t )〉 =
[
β0 +

∞∑
n=1

βn√
n!

∫ +∞

−∞
dxnφn(
xn, t )A†

n(
xn)

]
|0F 〉, (A4)

where dxn ≡ dx1dx2 . . . dxn, 
xn ≡ x1, x2, . . . , xn, and A†
n(
xn) ≡ a†(x1)a†(x2) . . . a†(xn). Equation (A4) is a decomposition of

the field in subspaces with fixed numbers of photons; i.e., introducing the number operator n̂ ≡ ∫ +∞
−∞ dka†

kak , we have that
n̂|nF (t )〉 = n|nF (t )〉 so that |nF (t )〉 is the projection of |ψF (t )〉 on a specific photon-number subspace. |0F 〉 is the vacuum
state, and

∑
n |βn|2 = 1 so that for any photon number we have written a proper normalized state because we also assume

that
∫ +∞
−∞ dxn|φn(
xn, t )|2 = 1. Moreover, the φn(
xn, t ) are invariant to permutations of the xi because we are describing a bosonic

field. Finally, the factor 1/
√

n! is needed to normalize the state: for any number of photons, we do not want to count multiple
times the same state due to the indistinguishability of bosons. Formally, according to Wick’s theorem, we have that

〈0|An(
yn)A†
n(
xn)|0〉 =

∑
{P(i)}

∏
i

δ(yi − xP(i) ),⇒ βnφn(
xn, t ) = 1√
n!

〈0|A†
n(
xn)|ψF (t )〉, (A5)

where {P(i)} are the permutations of the index i. The number of permutations is equal to n!, thus proving that
√

n! is the correct
normalization factor.

APPENDIX B: FORMAL SOLUTION OF THE DYNAMICS

In this section, we present the formal solution to the dynamics determined by the Hamiltonian H = HF + H0 + V , where
HF is given in Eq. (3), V is given in Eq. (5), and H0 is a generic Hamiltonian for the fixed scatterer (system S). Notice that,
in the treatment presented here, also the Hamiltonian H1 appearing in Eq. (5) can be completely arbitrary. Notice that, in this
Appendix, the initial time is taken to be t = 0 instead of t = −T in order to lighten the notation. The formulas reported in the
main text are written considering the initial time to be t = −T .

Since V does not change the number of photons, if the initial state of the whole system is a product state |ψF (0)〉 ⊗ |ψS (0)〉,
we can study the dynamics as divided in each photon number subspace. Therefore, we write [see Eq. (A4)]

|ψ (t )〉 =
[
β0e− it

h̄ H0 +
∞∑

n=1

βn√
n!

∫ +∞

−∞
dxnφn(
xn, t )Ṽn(
xn, t )A†

n(
xn)

]
|0〉|ψS (0)〉, (B1)

where Ṽn(
xn, t ) is a unitary operator on the Hilbert space of system S with Ṽn(
xn, 0) = I. Deriving the state with respect to time
in a given n-photon subspace as done in the Schrödingerequation leads to

ih̄∂t |ψ (t )〉 = βn√
n!

∫ +∞

−∞
dxn[ih̄Ṽn(
xn, t )∂tφn(
xn, t ) + ih̄φn(
xn, t )∂tṼn(
xn, t )]A†

n(
xn)|0〉|ψS (0)〉. (B2)
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In the same way, the application of HF to the state |ψ (t )〉 now reads

HF |ψ (t )〉 = βn√
n!

∫ +∞

−∞
dxn

⎧⎨
⎩
⎡
⎣h̄ω0n − ih̄v0

⎛
⎝ n∑

j=1

∂x j

⎞
⎠
⎤
⎦φn(
xn, t )Ṽn(
xn, t )

⎫⎬
⎭A†

n(
xn)|0〉|ψS (0)〉. (B3)

By making again use of the commutation relation [c(x), c†(y)] = δ(x − y) and Wick’s theorem, we now compute the effect
of V on |ψ (t )〉, obtaining

V |ψ (t )〉 =
∑

n

βn√
n!

∫ +∞

−∞
dydxn f (y)φn(
xn, t )[H1Ṽn(
xn, t )]c†(y)c(y)A†

n(
xn)|0〉|ψS (0)〉

=
∑

n

βn√
n!

∫ +∞

−∞
dydxn f (y)φn(
xn, t )[H1Ṽn(
xn, t )]

⎛
⎝ n∑

j=1

δ(x j − y)

⎞
⎠A†

n(
xn)|0〉|ψS (0)〉

=
∑

n

βn√
n!

∫ +∞

−∞
dxn

⎛
⎝ n∑

j=1

f (x j )φn(
xn, t )[H1Ṽn(
xn, t )]

⎞
⎠A†

n(
xn)|0〉|ψS (0)〉. (B4)

Finally, from the Schrödingerequation we get, for a specific n-photon subspace,

ih̄∂t [Ṽn(
xn, t )φn(
xn, t )] =
⎡
⎣h̄ω0n − ih̄v0

⎛
⎝ n∑

j=1

∂x j

⎞
⎠+ H0 +

⎛
⎝ n∑

j=1

f (x j )H1

⎞
⎠
⎤
⎦φn(
xn, t )Ṽn(
xn, t ). (B5)

The above equation can be simplified by going in the waveguide field rotating frame at frequency ω0. We do this as follows:

φn(
xn, t ) = ψn(
xn − v0t )e−iω0nt , where 
xn − v0t ≡ x1 − v0t, . . . , xn − v0t . (B6)

By inserting the above ansatz into Eq. (B5) one gets

ih̄∂tṼn(
xn, t ) = −ih̄v0

⎛
⎝ n∑

j=1

∂x j

⎞
⎠Ṽn(
xn, t ) + H̃ (
xn)Ṽn(
xn, t ), (B7)

where H̃ (
xn) ≡ H0 +∑n
j=1 f (x j )H1. The above equation resembles one that could be derived by the so-called clock Hamiltonian

[32–35] for many moving clocks. By writing Ṽn(
xn, t ) = Ũn(
xn; 
xn − v0t ) and making the substitution xi → xi + v0t we arrive at

ih̄∂tŨn(
xn + v0t ; 
xn) = H̃ (
xn + v0t )Ũn(
xn + v0t ; 
xn),⇒ Ũn(
xn + v0t ; 
xn) = T exp

[
− i

h̄

∫ t

0
dsH̃ (
xn + v0s)

]
, (B8)

where T denotes the time-ordering operator. The above solution is, in fact, a generalization of the clock Hamiltonian solution in
the n-particle case. Notice that H̃ (
xn) is invariant to permutations of xi and the same follows for Ũn(
xn + v0t ; 
xn). The dynamics
of the full system is therefore given by

|ψ (t )〉 =
[
β0e−(it/h̄)H0 +

∞∑
n=1

βn√
n!

e−iω0nt
∫ +∞

−∞
dxnψn(
xn)Ũn(
xn + v0t ; 
xn)A†

n(
xn + v0t )

]
|0F 〉|ψS (0)〉. (B9)

Notice that the above equation implies that the wave packet is not deformed during the dynamics. This can be easily seen by the
fact that functions |ψn(
xn)|2 do not depend on time.
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When f (x) = Lδ(x), the unitary operator Ũn(
xn + v0t ; 
xn) can be cast into the form given in Eq. (10) by making the
substitution t j = −x j/v0. The time ordering appears in Eq. (10) under the form of the impact times ordering, i.e., by the ordering
imposed by writing t↑

j . For later uses and ease of lecture, we rewrite Eq. (A5) in the time domain:

〈0|An(
sn)A†
n(
tn)|0〉 =

∑
{P(i)}

∏
i

δ(si − tP(i) ), (B10)

where {P(i)} are the permutations of the index i and we recall that the number of permutations is equal to n!.
We can easily obtain the reduced state of system S at time t by considering that

TrF [A†
n(
tn)|0F 〉〈0F |An(
sn)] = 〈0F |An(
sn)A†

n(
tn)|0F 〉. (B11)

Exploiting the permutation invariance of ψn(
tn) and Ũn(
tn, t ) we get that

ρS (t ) =
∑

n

|βn|2
∫ +∞

−∞
dtn|ψn(
tn)|2Ũn(
tn, t )|ψS (0)〉〈ψS (0)|Ũ †

n (
tn, t ). (B12)

APPENDIX C: SOLUTION OF THE DYNAMICS FOR ONE-PHOTON PULSES

Here we report the full solution of the system dynamics in the case when the pulse contains exactly one photon. Notice that,
in this Appendix, the initial time is taken to be t = 0 instead of t = −T in order to lighten the notation. The formulas reported
in the main text are written considering the initial time to be t = −T .

In the interaction picture, we write the state at time t as follows [see Eqs. (9) and (10)]:

|ψ (t )〉 =
[∫ t

−∞
dt1ψ1(t1)Ũ1(t1)a†(t1) +

∫ +∞

t
dt1ψ1(t1)a†(t1)

]
|0F 〉|ψQ(0)〉, (C1)

where we wrote Ũ1(t1) instead of Ũ1(t1, t ) because we dealt with the Heaviside function by separating the integral in two parts.
By substituting in the above expression the actual Hamiltonians involved in the dynamics, we get that

|ψI (t )〉 = |ψ ′′
F (t )〉|ψQ(0)〉 + {[bgIgg|g�〉 + beIee|e�〉]|ψ ′

F (t )〉 + bgIge|e�〉|ψF,ge(t )〉 + beIeg|g�〉|ψF,eg(t )〉}, (C2)

where Iεε ≡ 〈ε�|e−i(φ/2)σz |ε�〉 with ε, ε ∈ {e, g}, their explicit values being

Igg = I∗
ee = cos(φ/2) + i cos(�) sin(φ/2), Ige = Ieg = i sin(�) sin(φ/2), (C3)

and

|ψ ′
F (t )〉 =

∫ t

−∞
dt1ψ1(t1)a†(t1)|0F 〉, |ψ ′′

F (t )〉 =
∫ +∞

t
dt1ψ1(t1)a†(t1)|0F 〉,

|ψF,eg(t )〉 =
∫ t

−∞
dt1ψ1(t1)e−iωqt1 a†(t1)|0F 〉, |ψF,ge(t )〉 =

∫ t

−∞
dt1ψ1(t1)e+iωqt1 a†(t1)|0F 〉. (C4)

We obtain Eq. (11) by taking the limit t → +∞, and renaming |ψ ′
F (t )〉 into |ψF (0)〉.

To compute the state of the qubit at time t we exploit Eq. (B12) so that we have

ρQ(t ) =
[∫ +∞

t
dt1|ψ1(t1)|2

]
ρQ(0) +

∫ t

−∞
dt1|ψ1(t1)|2Ũ1(t1)ρQ(0)Ũ †

1 (t1), (C5)

where ρQ(0) = |ψQ(0)〉〈ψQ(0)| is the initial state of the qubit. In the basis {|e�〉, |g�〉} we have that

Ũ1(t1)ρQ(0)Ũ †
1 (t1)

=
( |be|2|Iee|2 + |bg|2|Ige|2 − 2Rebgb∗

eIggIegeit1ωq eiωqt IeeIge(|bg|2 − |be|2) + I2
eebeb∗

g + b∗
ebg|Ige|2e2iωqt

e−iωqt IggIge(|be|2 − |bg|2) + I2
ggbgb∗

e + b∗
gbe|Ige|2e−2iωqt |bg|2|Igg|2 + |be|2|Ieg|2 + 2Rebgb∗

eIggIegeit1ωq

)
. (C6)

APPENDIX D: GENERAL FORMULA OF THE SPECTRUM

In this section we derive the formula of the light spectrum at any time. Notice that, in this Appendix, the initial time is taken
to be t = 0 instead of t = −T in order to lighten the notation. The formulas reported in the main text are written considering the
initial time to be t = −T .
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We begin by rewriting the state of Eq. (9) in the frequency domain by exploiting a(t ) = (1/
√

2π )
∫ +∞
−∞ dωe−iωt a(ω) and

a†(t ) = (1/
√

2π )
∫ +∞
−∞ dωe+iωt a†(ω), obtaining (in the interaction picture with respect to field and system bare Hamiltonians)

|ψ (t )〉 =
[
β0 +

∞∑
n=1

βn√
n!

∫ +∞

−∞
dωn�n(
ωn, t )A†

n(
ωn)

]
|0F 〉|ψS (0)〉, (D1)

where we defined

�n(
ωn, t ) ≡ 1

(2π )n/2

∫ +∞

−∞
dtnψn(
tn)Ũn(
tn, t )ei

∑
j ω j t j . (D2)

We now compute the spectrum S(ω, t ) = 〈ψ (t )|a†(ω)a(ω)|ψ (t )〉 as follows:

S(ω, t ) =
∞∑

n=1

|βn|2
n!

∫ +∞

−∞
dωndγ n〈ψS (0)|�†

n (
γn, t )�n(
ωn, t )|ψS (0)〉〈0F |An(
γn)a†(ω)a(ω)A†
n(
ωn)|0F 〉. (D3)

The field average can be written exploiting Wick’s theorem as follows:

〈0F |An(
γn)a†(ω)a(ω)A†
n(
ωn)|0F 〉 =

n∑
j,l=1

δ(ω j − ω)δ(γl − ω)

⎡
⎣ ∑

P(l ′ �=l )

∏
j′ �= j

δ(ω j′ − γP(l ′ ) )

⎤
⎦. (D4)

The number of terms in the above expression is n2 × (n − 1)! = n × n!. All the terms in the sum lead to the same integral
because of the permutation invariance of the indices. Therefore, we can always reorder the variables in such a way that we can
write

S(ω, t ) =
∞∑

n=1

n|βn|2
∫ +∞

−∞
dγ n−1〈ψS (0)|�†

n (
γn−1, ω, t )�n(
γn−1, ω, t )|ψS (0)〉. (D5)

The final spectrum Sout (ω) is obtained by taking the limit t → ∞ in the above equation.

Application to the qubit case

In the case analyzed in the main text, we have a pointlike qubit interacting with the field in the waveguide. We can write
|ψS (0)〉 = bg|b�〉 + be|b�〉, so that the final spectrum is always the sum of three parts:

Sout (ω) = |bg|2Sgg(ω) + |be|2See(ω) + 2Reb∗
gbeSge(ω), (D6)

where

Sgg(ω) =
∞∑

n=1

n|βn|2
∫ +∞

−∞
dγ n−1〈g�|�†

n (
γn−1, ω, t )�n(
γn−1, ω, t )|g�〉,

See(ω) =
∞∑

n=1

n|βn|2
∫ +∞

−∞
dγ n−1〈e�|�†

n (
γn−1, ω, t )�n(
γn−1, ω, t )|e�〉,

Sge(ω) =
∞∑

n=1

n|βn|2
∫ +∞

−∞
dγ n−1〈g�|�†

n (
γn−1, ω, t )�n(
γn−1, ω, t )|e�〉. (D7)

Looking at Eq. (10), we can write (in the scattering limit)

lim
t→+∞ e

it↑j
h̄ H0 e−�H (t−t↑

j ) iφ
2 σz e− it↑j

h̄ H0 = Igg|g�〉〈g�| + Iee|e�〉〈e�| + e−iωqt↑
j Ige|g�〉〈g�|e� + e+iωqt↑

j Ieg|e�〉〈e�|g�, (D8)

where Iεε ≡ 〈ε�|e−i(φ/2)σz |ε�〉 with ε, ε ∈ {e, g}, their explicit values being

Igg = I∗
ee = cos(φ/2) + i cos(�) sin(φ/2), Ige = Ieg = i sin(�) sin(φ/2). (D9)

This implies that in a multiphoton pulse with a fixed number n of photons, each photon can make the qubit change state or not.
When it does, a phase is associated to the state, but notice that the Iεε are independent of ω or t . Therefore, we can write the
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following:

�n(
ωn)|g�〉 = ψ (n)
gg (
ωn)|g�〉 + ψ (n)

ge (
ωn)|e�〉, �n(
ωn)|e�〉 = ψ (n)
ee (
ωn)|e�〉 + ψ (n)

eg (
ωn)|g�〉, (D10)

where

ψ (n)
gg (
ωn) =

∑
{J.P.}

I (n)
gg (J.P.)

1

(2π )n/2

∫ +∞

−∞
dtnψn(
tn) exp

[
−iωq

∑
J.P.

(−1)N[J.P.]t↑
J.P.

]
ei
∑

j ω j t j ,

ψ (n)
ge (
ωn) =

∑
{J.P.}

I (n)
ge (J.P.)

1

(2π )n/2

∫ +∞

−∞
dtnψn(
tn) exp

[
−iωq

∑
J.P.

(−1)N[J.P.]t↑
J.P.

]
ei
∑

j ω j t j ,

ψ (n)
ee (
ωn) =

∑
{J.P.}

I (n)
ee (J.P.)

1

(2π )n/2

∫ +∞

−∞
dtnψn(
tn) exp

[
+iωq

∑
J.P.

(−1)N[J.P.]t↑
J.P.

]
ei
∑

j ω j t j ,

ψ (n)
eg (
ωn) =

∑
{J.P.}

I (n)
eg (J.P.)

1

(2π )n/2

∫ +∞

−∞
dtnψn(
tn) exp

[
+iωq

∑
J.P.

(−1)N[J.P.]t↑
J.P.

]
ei
∑

j ω j t j . (D11)

In the above expressions, the I are numerical factors depending on � and φ while J.P. stands for “jump points,” i.e., it denotes the
precise sequence of jumps and nonjumps due to the interaction between photons and qubit. Using the notation of Sec. III B J.P.
can stand, for example, for NJNJ, for a four-photon pulse. N[J.P.] denotes instead the counting in the jump points. Then, in the
four-photon pulse example of before, one has

J.P. = NJNJ ⇒ exp

[
+iωq

∑
J.P.

(−1)N[J.P.]t↑
J.P.

]
= exp{+iωq[(−1)1t↑

2 + (−1)2t↑
4 ]}. (D12)

Finally, {J.P.} denotes the collection of possible jump points, so that, again using the notation introduced in Sec. III B for a pulse
containing two photons, we get

ψ (2)
gg (ω1, ω2) = I (2)

gg (GNN )ψGNN (ω1, ω2) + I (2)
gg (GNJ )ψGNJ (ω1, ω2) + I (2)

gg (GJN )ψGJN (ω1, ω2) + I (2)
gg (GJJ )ψGJJ (ω1, ω2).

(D13)

As the last example, we explicitly write the three-photon wave functions ψGNJJ and ψGNJJ (notice that they are not equal):

ψGNJJ(ω1, ω2, ω3) = 1

(2π )3/2

∫ +∞

−∞
dt1dt2dt3ψ3(t1, t2, t3) exp[−iωq((−1)1t↑

2 + (−1)2t↑
3 )] exp[i(ω1t1 + ω2t2 + ω3t3)],

ψGJNJ(ω1, ω2, ω3) = 1

(2π )3/2

∫ +∞

−∞
dt1dt2dt3ψ3(t1, t2, t3) exp[−iωq((−1)1t↑

1 + (−1)2t↑
3 )] exp[i(ω1t1 + ω2t2 + ω3t3)]. (D14)

We recall that t↑
1 are the increasingly ordered time variables and are therefore functions of all time variables. In a more explicit

notation, for example, t↑
1 (0.3, 5, 0) = 0 and t↑

2 (0.3, 5, 0) = 0.3.
The spectrum of a photonic wave function with exactly n photons is equal to nρ1(ω,ω), where ρ1(ω,ω′) is the single-photon

reduced density matrix in the frequency domain. In our case, to compute the spectrum of the wave functions given above, it is
easier to first compute ρ1(t, t ′), the single-photon reduced density matrix in the time domain, and then Fourier transform it to get
the spectrum.

APPENDIX E: DYNAMICS AND SPECTRUM BYMEANS OF THE COLLISION MODEL APPROACH

In this section, we briefly describe how to derive the differential equations presented in Sec. IV of the main text from a
collision model approach. Notice that, in this Appendix, the initial time is taken to be t = 0 instead of t = −T in order to lighten
the notation. The formulas reported in the main text are written considering the initial time to be t = −T .

First of all, we briefly show how to factorize a coherent state in discrete time steps, starting by its definition [30]:

|α(t )〉 = exp(a†
α − aα )|0F 〉, a†

α ≡
∫ +∞

−∞
dtα(t )a†(t ) �

∫ 2t0

0
dtα(t )a†(t ) �

N∑
n=0

αna†
n, (E1)

where we consider the pulse to be practically zero outside of t ∈ [0, 2t0] and we discretized the time by steps of δt = 2t0/N .
We also defined the quantity αn ≡ α(tn)

√
δt and the operators a†

n = a†(tn)
√

δt . Then, the discretization proceeds as follows
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[36,37]:

|α(t )〉 = exp(a†
α − aα )|0F 〉 � exp

(
N∑

n=0

αna†
n − α∗

nan

)
|0F 〉 =

N∏
n=0

exp(αna†
n − α∗

nan)|0F 〉 =
N⊗

n=0

D(αn)|0n〉, (E2)

where D(αn) is the displacement operator acting on the ground state of the field in the nth time cell, whose vacuum we denote
by |0n〉. When N is high enough (δt → 0), we can assume that we only need the ground and first excited level of each temporal
mode. Hereafter in this Appendix, we will always work under this assumption.

The interaction between a time cell and the qubit is given by

Un = exp

[
−i

ωq

2
δtσ� − i

φ

2
σzn̂n

]
(E3)

where n̂n is the number operator for the nth discretized temporal mode. Then, for the qubit evolution, after tracing out the field
temporal mode, we get

ρn+1 � e−|αn|2 [K0ρnK†
0 + |αn|2K1ρnK†

1 ], where K0 ≡ e−i
ωq
2 δtσ�, K1 ≡ exp

[
−i

ωq

2
δtσ� − i

φ

2
σz

]
� e−i φ

2 σz . (E4)

From the above equations we can now obtain differential equations by considering that

e−|αn|2 � 1 − |α(tn)|2δt, K0 � 1 − i
ωq

2
σ�δt, K1 � e−i φ

2 σz − i
ωq

2
δt

[
cos(�)σze

−i φ

2 σz + sin(�)
sin(φ/2)

φ
σx

]
. (E5)

By inserting the above expansions and then dividing by δt we get [also considering that t = nδt and ρn → ρ(t )]

ρ̇(t ) ≡ lim
δt→0

ρn+1 − ρn

δt
= −i

ωq

2
[σ�, ρ(t )] + |α(t )|2[e−i φ

2 σzρ(t )e+i φ

2 σz − ρ(t )
]
. (E6)

To compute the phase quadrature Im[〈a(t )〉] we have to compute the discretized operator an on the coherent state at the end
of its interaction with the qubit. Thus, we get

〈a(tn)〉 � 1√
δt

Tr{anUn(ρn ⊗ |αn〉〈αn|)U †
n } � e−|αn|2 αn√

δt
TrK1ρnK†

0 . (E7)

Again, from the above formula we can get a continuous version by inserting the expansions of Eq. (E5) and keeping only the
zeroth-order terms we get

〈aout (t )〉 = α(t )Tre−i φ

2 σzρ(t ). (E8)

Regarding the computation of the final spectrum, to obtain it we first compute the autocorrelation matrix
〈�|a†(tm)a(tn)|�〉(1/δt )〈a†

man〉 and then compute the spectrum from it. We get

〈=|a†
man|=〉Tr

⎧⎪⎨
⎪⎩a†

man

⎛
⎝ N∏

j=0

Uj

⎞
⎠ρ0

⎛
⎝ N⊗

j=0

|α j〉〈α j |
⎞
⎠
⎛
⎝ N∏

j=0

Uj

⎞
⎠

†
⎫⎪⎬
⎪⎭

= Tr

⎧⎪⎨
⎪⎩a†

m

⎛
⎝ m∏

j=n+1

Uj

⎞
⎠[anUn(ρn ⊗ |αn〉〈αn|)U †

n ]

⎛
⎝ m⊗

j=n+1

|α j〉〈α j |
⎞
⎠
⎛
⎝ m∏

j=n+1

Uj

⎞
⎠

†
⎫⎪⎬
⎪⎭

= αne−|αn|2 Tr{a†
mUmEm,n(K1ρnK†

0 )U †
m} = α∗

mαne−|αm|2−|αn|2 Tr{K0Em,n(K1ρnK†
0 )K†

1 }, (E9)

where the superoperator Em,n(ρ) represents the evolution due to the collisions between n and m, i.e.,

Em,n(ρ) = TrF

⎧⎪⎨
⎪⎩
⎛
⎝ m−1∏

j=n+1

Uj

⎞
⎠
⎛
⎝ρ

m−1⊗
j=n+1

|α j〉〈α j |
⎞
⎠
⎛
⎝ m−1∏

j=n+1

Uj

⎞
⎠

†
⎫⎪⎬
⎪⎭. (E10)

The above formula can be again greatly simplified by inserting the expansions of Eq. (E5) and keeping only the zeroth-order
terms. We get

〈=|a†(s)a(t )|=〉α∗(s)α(t )Tr{e+i φ

2 σzEt,s[e
−i φ

2 σzρ(t )]}, (E11)

where the superoperator Et,s evolves its argument from t to s according to Eq. (E6).
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We can go further in our theoretical analysis by investigating the density matrix dynamics in the Bloch basis. We write
2ρ(t ) = I + X (t )σx + Y (t )σy + Z (t )σz and we arrive at the following equation system:

Ẋ = −|α(t )|2[1 − cos(φ)]X − [cos(�)ωq + |α(t )|2 sin(φ)]Y − sin(�)ωqZ,

Ẏ = [cos(�)ωq + |α(t )|2 sin(φ)]X − |α(t )|2[1 − cos(φ)]Y,

Ż = sin(�)ωqY. (E12)

Moreover, we notice that

e−i φ

2 σzσx = cos(φ/2)σx + sin(φ/2)σy, e−i φ

2 σzσy = − sin(φ/2)σx + cos(φ/2)σy, (E13)

e−i φ

2 σzσz = cos(φ/2)σz − i sin(φ/2)I, e−i φ

2 σzI = −i sin(φ/2)σz + cos(φ/2)I. (E14)

It follows that the formula for the quadrature can be written as

〈=|aout (t )|=〉α(t )Tre−i φ

2 σzρ(t ) = [cos(φ/2) − i sin(φ/2)Z (t )]α(t ), (E15)

which shows that only the imaginary part depends on the qubit’s state.

APPENDIX F: WAY THEOREM

In their seminal works, Wigner, Araki, and Yanase (see
Refs. [38–40], respectively) showed that an observable that
does not commute with an additive conserved quantity of the
joint system (measured system plus quantum meter) cannot
be measured projectively, projectively meaning with per-
fect accuracy and repeatability. This result goes under the
name of the WAY (Wigner-Araki-Yanase) theorem and is at
the origin of an active research field with a vast literature
[26,31,41–45] dealing with the problem of setting fundamen-
tal constraints to the accuracy of quantum measurements.
Within an autonomous meter-system interaction, the addi-
tive conserved quantity is the sum of the bare meter’s and
system’s energies. The WAY theorem shows that, in this
case, the measurement’s quality is bounded by a function
of the meter’s energy variance [26,31]: it can be fully accu-
rate and repeatable, i.e., projective, only when this energy
variance is much higher than the system’s bare energy. It
follows that a macroscopic measurement apparatus can still
achieve a projective measurement. The limitations given by
the WAY theorem literature have practical consequences for
general quantum technologies. Although macroscopic meters
make these limitations negligible, this is not so when quan-
tum meters (sometimes called ancillas) are used [46,47]. For
convenience of the reader, we present here the main con-
cepts related to the WAY theorem, adapted to our specific
situation.

Let us consider a quantum measurement aiming to deter-
mine whether a qubit is in the |+〉 or |−〉 eigenstate of an
observable OS . The qubit (S) is coupled with its quantum
meter (M) forming a closed bipartite system with Hamiltonian
HSM = HS + HM + V , with HS(M ) being the qubit’s (meter’s)
bare Hamiltonian and V being their interaction. The system
we consider is autonomous and in such a way that the inter-
action V turns on and off autonomously during the dynamics.
In other words, we consider a scattering-type dynamics. Input
and output states are then connected by the scattering operator
S, which is formally defined as S ≡ limt→+∞ U (+t,−t ),
where U (t2, t1) is the unitary operator between times t1 and
t2 in the interaction picture with respect to H0 = HS + HM .
It is a general result of scattering theory that [H0,S] = 0

[16]. In practice, the scattering operator can be defined as
S = U (T,−T ) because V ≈ 0 for t � −T and t � T .

At the initial time t = −T , the joint system is in a product
state with |ψM (−T )〉 being the initial meter’s state. An ideal
premeasurement dynamics leads to

U (T,−T )|+〉|ψM (−T )〉 = |+〉|ψM,++〉,
U (T,−T )|−〉|ψM (−T )〉 = |−〉|ψM,−−〉, (F1)

with 〈ψM,++|ψM,−−〉 = 0. A classical measurement on the
meter let us infer with perfect accuracy what was the qubit
state at t = −T and a subsequent measurement would give
the same result. However, more in general, their interaction
leads to the premeasurement map:

U (T,−T )|+〉|ψM (−T )〉
= c++|+〉|ψM,++〉 + c+−|−〉|ψM,+−〉,

U (T,−T )|−〉|ψM (−T )〉
= c−+|+〉|ψM,−+〉 + c−−|−〉|ψM,−−〉. (F2)

We say that the premeasurement is repeatable when c+− =
c−+ = 0 as it leaves unaffected the eigenstates of OS so that a
subsequent ideal measurement would get the correct result; it
is accurate when 〈ψF,++|ψF,−−〉 = 0 as the states |ψF,−−〉 and
|ψF,++〉, i.e., the pointer states, can be perfectly distinguished
by some classical measurement performed on the quantum
meter later on [48] and thus determining with perfect accuracy
what was the qubit’s state at t = −T .

Let us denote with LS a second qubit’s operator, and
with LM a meter’s operator; the WAY theorem [38] states
that perfect accuracy and repeatability cannot be simultane-
ously attained if (i) [LS, OS] �= 0 and (ii) [LS + LM,S] = 0.
This seminal result, corroborated by later and more quanti-
tative results [26,31], shows that accuracy and repeatability
of the measurement generally increase when increasing the
dispersion of the meter’s operator LM , until getting to the
limit of the classical measurement apparatus where a nearly
projective measurement can be achieved even if (i) and (ii)
are verified. Indeed, since in our system [HS + HM,S] = 0,
the above results apply upon the identification LS = HS and
LM = HM .
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