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Transfer of conserved quantities between two remote regions is generally assumed to be a rather trivial
process: a flux of particles carrying the conserved quantities propagates from one region to another. However, we
demonstrate a flow of angular momentum from one region to another across a region of space in which there is
a vanishingly small probability of any particles (or fields) being present. This shows that the usual view of how
conservation laws work needs to be revisited.

DOI: 10.1103/PhysRevA.110.L030201

Introduction. Conservation laws are some of the most im-
portant laws of physics. Stemming from basic symmetries of
nature, they have been part of all physics theories, classical
and quantum, relativistic and nonrelativistic. At the same
time, the conceptual basis of the conservation laws seemed
well established long ago. Yet quantum mechanics always
comes with surprises. In the present paper, we analyze the way
in which conserved quantities are exchanged between systems
at two remote locations. Hitherto there appeared to be nothing
interesting about this. For example, a flux of particles would
carry angular momentum from one location to another. Here,
however, we show that exchanges of conserved quantities
could occur even across a region of space in which there is a
vanishingly small probability of any particles (or fields) being
present.

The results in this paper follow from the discovery of the
Dynamic Cheshire Cat effect [1]. When describing a particle,
we associate with it various properties: momentum, angular
momentum, spin, energy, and so on. But in a gedanken ex-
periment [2], which seems to come directly from the pages of
Alice in Wonderland, it was shown that (in a pre- and post-
selected setup) physical properties can be disembodied from
the particles to which they belong. This “Quantum Cheshire
Cat” phenomenon was experimentally confirmed in [3–6], and
extended to more properties and particles in [7–13].

The original Cheshire Cat effect was considered in mostly
“static” situations. More recently, however, it has been ex-
tended by showing that the disembodied property has a life of
its own, evolving dynamically over time, making it a Dynamic
Cheshire Cat [1].

The original motivation that led to the discovery of this
dynamic effect was the desire for a better understanding
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of the issue of “counterfactual” information processing—
counterfactual measurements [14–16], counterfactual compu-
tation [17–21], counterfactual cryptography [22,23], and in
particular, counterfactual communication [24–39]. In all of
these, information processing occurs without the particles that
carry the information ever being present in the information
processing devices. For example, in counterfactual commu-
nication a message is transmitted from Bob to Alice despite
a vanishingly small probability of the particle ever being on
Bob’s side. That it is possible to transmit information without
any physical system carrying it seems absurd, yet the counter-
factual protocols seem to do precisely this. The main idea put
forward in [1] is that there actually is an information carrier
in the counterfactual effects, even though the particle that is
supposed to be there is not present: the physical property that
actually carries the information could be present in a “disem-
bodied” way, i.e., without the particle to which it belongs, in
a Cheshire-Cat-like effect.

The implications of this Dynamic Cheshire Cat effect,
however, go well beyond its original motivation. The issue that
interests us here is the connection with conservation laws.

As is well known, due to relativistic constraints, physical
quantities are not only conserved but are conserved locally.
That is, the conserved quantity moves from one place to a
nearby place—technically, there is a current of the conserved
quantity. One may imagine, however, a different mechanism,
namely that a quantity is conserved by disappearing from
one place while reappearing in a remote location. In classical
mechanics, such a global conservation mechanism would be
conceivable. But in relativistic mechanics, even if in one par-
ticular frame conservation could be obeyed in such a global
manner, in a different frame conservation would be violated,
since the disappearance in one place would not be simultane-
ous with reappearance in another place.

The relativistic requirement of local conservation is
reflected also in the nonrelativistic quantum-mechanical limit
in the well-known case of the local probability conservation.
Not only is the total probability of finding the particle at some
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FIG. 1. The Dynamic Cheshire Cat. A spin-1/2 particle starts as
a wave packet on the left side moving towards the right. In the middle
of the box is a slightly transparent and highly reflective partition. The
particle passes through the right side of the box when the spin, not
shown here, is |↑z〉, and is reflected back towards the left when the
spin is |↓z〉.

location always 1, i.e.,
∫ ∞
−∞ |�(x, t )|2dx = 1, but

Schrödinger’s equation implies that the wave function
changes in such a way that the probability distribution flows
from one location to neighboring ones via the probability
current j = i(�∗ ∂�

∂x − � ∂�∗
∂x ).

Although it is rarely discussed in textbooks (in fact, we
found no mention of this at all), we naturally expect that all
quantum-conserved quantities are conserved in this way.

The Dynamic Cheshire Cat effect described in [1], how-
ever, contains a dramatic twist since the information carrier
quantity is a conserved quantity—angular momentum—and
this flows from one location to neighboring ones without any
probability current for the particle itself. How conservation
acts in such a case is a fundamental issue.

Importantly, however, in [1] the disembodied conserved
quantity transfer has only been proved indirectly with use of
weak measurements. Here we give the first direct demonstra-
tion of the effect.

The paper is organized as follows. In the following sec-
tion we describe the setup. In the third and fourth sections we
prove our main result on angular momentum transfer from
one side of a box to the wall on the other side, a transfer
that takes place with infinitesimal probability of any particles
transferring. In the fifth section we demonstrate that no linear
momentum is transmitted to the wall during the process, fur-
ther confirming that particles did not travel there. We end with
our conclusions.

DynamicCheshireCat.We first briefly review the Dynamic
Cheshire Cat [1]. As shown in Fig. 1, this has a spin-1/2
particle moving in a box that has a slightly transparent (and
highly reflective) partition in the middle. The left wall of the
box is completely reflective, while the wall on the right is
spin-dependent. It is fully transparent when the spin is |↑z〉,
and completely reflective when the spin is |↓z〉. The particle
starts at the left side of the box moving towards the right in
the state |L〉|↑z〉. The particle will move back and forth in the
box, as described below. We shall take the mass and velocity
of the particle to be large enough that the spread of the wave
packet remains small for the duration of the experiment.

At the end of the experiment we measure if the particle is in
the left side of the box, where it was initially. When we find it
there—which in our experiment will happen almost always—
we measure its spin. It is the evolution of the spin that
interests us.

More specifically, we define T to be the time for the par-
ticle to travel from the starting point to the central partition,
reflect off it, continue to the left wall, reflect off that, and

return to its starting position. If the particle passes through
the central partition, then since the right wall of the box is
transparent to |↑z〉, at time T it will be just outside the right
side of the box heading to the right, in a state we call |1〉.
Once outside, the particle continues to move away from the
box. This means that once the particle with spin |↑z〉 passes
through the midpartition into the right side of the box, it never
returns to the left side.

At time T the state has evolved as

|L〉|↑z〉 T−→ (cos ε|L〉 + i sin ε|1〉)|↑z〉, (1)

where ε = π/(2N ) for some integer N is a small parameter
describing the transmissivity of the central partition, and the
phase factor i is picked up when passing through the central
partition.

After 2N rounds at time 2NT , the state will have
evolved as

|L〉|↑z〉 2NT−−→
(
cos2N ε|L〉 + i

2N∑
k=1

sin ε cos2N−k ε|k〉
)

|↑z〉,

(2)

where |k〉 is a state moving to the right outside the right wall
at a distance kD from the left wall, where D is the length of
the box. Since cos2N (2π/N ) = 1 − O(1/N ), we have

|L〉|↑z〉 2NT−−→ |L〉|↑z〉 + O(ε). (3)

We can make these corrections as small as desired by settingN
large. Thus we can make the probability of finding the particle
in the left side of the box at the end of the experiment as close
to 1 as desired.

Suppose instead we start with |↓z〉. The right wall now
appears reflective, and we define the state of the particle at
the right side of the box moving towards the left as |R〉. This
evolves as

|L〉|↓z〉 T−→ (cos ε|L〉 + i sin ε|R〉)|↓z〉,
|R〉|↓z〉 T−→ (cos ε|R〉 + i sin ε|L〉)|↓z〉. (4)

At time 2NT this gives

|L〉|↓z〉 2NT−−→ [cos(2Nε)|L〉 + i sin(2Nε)|R〉]|↓z〉 = −|L〉|↓z〉.
(5)

The particle has moved from the left side of the box to the
right side and back again, with a phase factor of −1.

If we started instead with |↑x〉 = 1√
2
(|↑z〉 + |↓z〉), we

would see it flip to |↓x〉. And similarly |↓x〉 flips to |↑x〉. In
itself this seems fine. Indeed, the spin can change because the
particle tunnels to the right side of the box and encounters the
right wall, where it undergoes a spin-dependent interaction.

But now comes the paradox. Suppose we start with |↑z〉
and make the wall almost reflective (i.e., take ε infinitesi-
mally small) so that apart from an infinitesimal probability
the particle does not leave the left side of the box during the
experiment. Then we wait until time 2NT , at which we find
the particle on the left side of the box and measure the spin in
the x direction, σx, and find it |↑x〉. What was σx at the start?

Spin |↑z〉 is a constant of motion so it does not change at
all. The standard view is to say that it makes no sense to ask
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FIG. 2. Our thought experiment has a particle starting on the left,
a highly reflective wall in the middle, and a spin-dependent wall that
has a proper axis w, and which can rotate in the y-z plane, on the
right.

the question about the value of σx; it is completely undefined
when the spin is |↑z〉. However, in [1] it was argued that we
should take the σx flip seriously, hence if at the end of the
experiment we measure σx and find it |↑x〉, at the beginning it
should have been |↓x〉. This implies the spin has flipped due
to the wall on the right, despite the particle never being there.
Similarly, if at the end of the experiment the σx measurement
finds |↓x〉, at the beginning it should have been |↑x〉. This
surprising conclusion was supported by showing that if one
performs a weak measurement of σx at the start, a measure-
ment that only disturbs the original experiment infinitesimally,
then conditional on finding |↑x〉 at time 2NT , we would find
the spin as |↓x〉 at the start. While the measurement is weak
and hence has a large uncertainly in any single experiment, it
can be repeated many times to gather meaningful statistics.

In the next section, we go beyond weak measurement argu-
ments and look directly at the change in angular momentum
of the spin-dependent wall.

AngularMomentumTransfer. To study the angular momen-
tum conservation including the change in angular momentum
of the spin-dependent wall, we introduce our model, a modifi-
cation of the setup of the Dynamic Cheshire Cat. As shown in
Fig. 2, the spin-dependent wall has a “proper” axis, whose
orientation is described by the unit vector w which lies in
the plane of the wall. It is fully transparent for the particle
if this has the spin parallel to w and oriented “up,” and it is
completely reflective if the spin is parallel to w and oriented
“down.”

Let the box be aligned with the x-axis, and the y- and z-axes
perpendicular on it. The walls and the partition are orthogonal
to the x-axis. The difference between our present arrangement
and that in [1] is that we allow the spin-dependent wall to
rotate. This can be realized by letting the wall have a circular
form and be held by a circular frame in which it can slide.
In practice, the “wall” can be constructed by a combination
of a magnetic field and an electric potential, generated by
an arrangement of a magnet and a capacitor, both of which
could rotate together. We denote by θ the angle by which
the wall is rotated around the x-axis, i.e., the angle between
the wall’s proper axis w and the z-axis. Finally, we take its
moment of inertia to be very large, so that for the duration of

the experiment we can ignore its movement. This allows us to
take the free Hamiltonian of the wall to be zero.

The reason we consider a rotating wall is that we want to
be able to measure changes in the x-component of its angular
momentum. In the original setup of [1], the wall’s proper
axis was taken to be along the z-axis. This makes the angular
momentum L̂x completely undefined, however, so a shift of
it is unobservable. (This is also a non-normalizable state, and
impossible to make in practice as there will always be a small
deviation from perfect z in any real physical system.) For this
reason, we take the state of the wall to be

|�〉w =
∫ π

−π

�(θ )|θ〉wdθ, (6)

where �(θ ) is a wave packet with nonzero spread.
The results below apply in fact for any �(θ ). We are

interested, however, in the case in which �(θ ) is nonzero only
in the region −	θ � θ � 	θ , which we can take as narrow
as we want, to approximate our original experiment. (If θ is
large, then there will be significant movement of the particle
from the left side of the box into the right side, which spoils
the original effect.) Note that 	θ is independent of ε: we can
take both to be small independently of one another to achieve
our desired behavior.

We will be interested in the case when initially the particle
is in the left side of the box, with spin “up” along the z-axis.
Putting this all together, the initial state is

|L〉|↑z〉|�〉w =
∫ π

−π

|L〉|↑z〉�(θ )|θ〉wdθ. (7)

The time evolution of the particle when the wall is in
direction |θ〉 is identical to that when the wall was in direc-
tion z (i.e., θ = 0), Eqs. (3) and (5), but with the spin states
also rotated to the corresponding directions ↑θ and ↓θ (see
Appendix).

Suppose that, as in the original scenario, at time 2NT we
measure whether the particle is in the left side of the box,
and if we find it there (which happens almost certainly), we
measure its x-spin component.

If we find the particle with spin σx = +1 the final state of
the wall is (up to normalization) |�+〉w,

|�+〉w = 1√
2

∫ π

−π

e−iθ�(θ )|θ〉wdθ (8)

(see Appendix).
We now arrive at the main result of the paper: The average

of the x component of the angular momentum of the wall
in the state |�+〉w is 〈L̂x〉+ = 〈L̂x〉0 − h̄, where 〈L̂x〉0 is the
initial average angular momentum [Eq. (A7)]. Therefore, the
angular momentum of the wall has changed by −h̄.

This is consistent with the prediction made in [1] where
σx of the particle changes from |↓x〉 to |↑x〉, i.e., from − 1

2 h̄
to 1

2 h̄.
Similarly, when at the end of the experiment the particle

is found on the left-hand side and the spin σx = −1, the
final measurement of 〈L̂x〉− = 〈L̂x〉0 + h̄, consistent with the
prediction that σx of the particle changes from |↑x〉 to |↓x〉,
i.e., from 1

2 h̄ to − 1
2 h̄.

Comment: the angular momentum transfer to the wall is
independent of the initial state of the wall. This allows us to
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approximate as closely as we want the original setup of [1],
and assure that the perturbation that bounces off the wall can
be made as small as we want, while the transfer of angular
momentum to the wall remains finite in each individual case,
−h̄ or +h̄.

Angular Momentum Flux. So far we showed that angular
momentum in the x-direction of ±h̄ transfers from the particle
to the spin-dependent wall in time 2NT . Now we calculate
the flux of this angular momentum, i.e., how much angular
momentum the spin-dependent wall gains in each period of
time T . If we did this by measuring the angular momentum
of the wall at each time nT , for integer n where 1 � n � 2N ,
we would disturb the experiment. Instead we consider having
2N walls, each placed at the right end of the box only for
the period from (n − 1)T to nT . The flux is the momentum
change on each individual wall. In Eq. (4) of the supplemental
material (SM) [40], we show that when the particle is found
on the left-hand side and the spin σx = +1, the flux is

	〈L̂x〉n ≈ −h̄ sin
(2n − 1)π

4N
sin

π

4N
. (9)

It varies over half a period of a sine wave, sin nπ
2N , for

1 � n � 2N . The sum over all n matches the result from the
previous section, −h̄ [SM Eq. (5) [40]]. The flux also matches
that calculated in Eq. (39) of [1] (in that paper, a factor h̄/2
for the particle being spin-1/2 was omitted). That calculation
was based on weak values measured in the right side of this
box: this one is direct as it is based on the angular momentum
received by the spin-dependent wall over time.

LinearMomentum Transfer. In [1] and the present article, it
was argued that there is no particle traveling towards the wall,
only a “disembodied” spin. There is, however, a fundamental
consequence of this that was not noticed in [1]: there should
be no linear momentum transfer to the wall.

When the wall is precisely oriented along z, it is totally
transparent to the particle (which is prepared |↑z〉), so it exerts
no force on it. However, this orientation implies there are
no observational angular momentum transfer effects, so we
gave the wall an initial spread in the angular direction. Now,
however, the particle may sometimes collide with the wall. We
have to show that the observed angular momentum transfer is
not due to these collisions. We will prove this by making the
linear momentum transfer arbitrarily small while keeping the
exchange of angular momentum unchanged at ±h̄.

Thus far the wall was considered to be at a precise location
along the x-axis. To make a change in its linear momentum
observable, we now take the position of the wall to be a wave
packet narrowly localized around the right end of the box.
We denote this as �(xw ), centered around xw = 0, and only
nonzero for −	xw � xw � 	xw. The initial state of the wall
is then

|�〉|�〉 =
∫ π

−π

�(θ )|θ〉wdθ

∫ 	xw

−	xw

�(xw )|xw〉dxw. (10)

In Sec. I of the SM [40], we calculate the average linear
momentum transfer after state evolution. This is [SM Eq. (9)
[40]]

〈p̂ f 〉 − 〈 p̂i〉 = 2p0

∫ ∣∣∣∣sin
(

θ

2

)
�(θ )

∣∣∣∣
2

dθ + O(	xw ), (11)

where p0 is the initial momentum of the particle, and 	xw

is the uncertainty of the position of the wall. The change in
the linear momentum of the wall goes to zero when 	θ and
	xw are small, more precisely 	xw � h̄/(2Np0), which we
achieve by choosing 	xw after N is chosen. This ensures
that even after all 2N rounds, the wave packets remain to
a good approximation in the same phase relation as in the
original unperturbed experiment (SM Sec. II [40]). Crucially,
the angular momentum transfer remains ±h̄ (SM Sec. II [40]).
Thus in every experiment there is a fixed angular momentum
transfer and negligible linear momentum transfer.

Conclusion. In the present paper, we have given direct
evidence of angular momentum transfer between two remote
locations across a region of space where there is a vanishingly
small probability of any particles (or fields) being present.
Although presented in the particular case of angular momen-
tum, it seems obvious that the same phenomenon allows for
disembodied transfer of arbitrary conserved quantities. Our
results provide a new understanding of the way conservation
laws work.

Acknowledgments. D.C. and S.P. are supported by the
European Research Council Advanced Grant FLQuant, ID:
101021085.

Appendix: Angular momentum transfer calculation. Here
we calculate the change in angular momentum of the
spin-dependent wall in the x-direction, as discussed in the
section on angular momentum transfer. The initial state is, as
given in Eq. (7),

|L〉|↑z〉|�〉w =
∫ π

−π

|L〉|↑z〉�(θ )|θ〉wdθ. (A1)

The evolution of the particle was given in Eqs. (3) and
(5) for the case in which the wall was oriented “up” z. Since
the z direction was nothing special, when the wall is oriented
along θ we can write similar expressions for when the spin
was initially polarized |↑θ 〉 and |↓θ 〉:

|L〉|↑θ 〉 2NT−−→ |L〉|↑θ 〉 + O(ε),

|L〉|↓θ 〉 2NT−−→ −|L〉|↓θ 〉. (A2)

Note that since the direction θ is in the y-z plane, the states
|↑z〉 and |↓z〉 can be decomposed as

|↑z〉 = cos
θ

2
|↑θ 〉 + i sin

θ

2
|↓θ 〉,

|↓z〉 = i sin
θ

2
|↑θ 〉 + cos

θ

2
|↓θ 〉. (A3)

The time evolution then is∫ π

−π

|L〉|↑z〉�(θ )|θ〉wdθ

=
∫ π

−π

|L〉
(
cos

θ

2
|↑θ 〉 + i sin

θ

2
|↓θ 〉

)
�(θ )|θ〉wdθ

2NT−−→
∫ π

−π

|L〉
(
cos

θ

2
|↑θ 〉 − i sin

θ

2
|↓θ 〉

)
�(θ )|θ〉wdθ

+ O(ε), (A4)

where we used Eq. (A2).
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Suppose we measure at the end of this evolution whether
the particle is in the left side of the box or not, and if we
find it there we measure the spin along the x-axis. The spin
measurement can yield σx = +1 or −1. We are interested in
the average angular momentum of the wall for each of these
two outcomes.

When the particle is found in the left-hand side and the spin
σx = +1, the state of the wall, |�+〉w, is (up to normalization)∫ π

−π

(
cos

θ

2
〈↑x|↑θ 〉 − i sin

θ

2
〈↑x|↓θ 〉

)
�(θ )|θ〉wdθ

= 1√
2

∫ π

−π

e−iθ�(θ )|θ〉wdθ, (A5)

where we used the scalar products

〈↑x|↑θ 〉 = 〈↑x|
(
cos

θ

2
|↑z〉 − i sin

θ

2
|↓z〉

)

= 1√
2

(
cos

θ

2
− i sin

θ

2

)
= 1√

2
e−i θ

2 ,

〈↑x|↓θ 〉 = 〈↑x|
(
cos

θ

2
|↓z〉 − i sin

θ

2
|↑z〉

)

= 1√
2

(
cos

θ

2
− i sin

θ

2

)
= 1√

2
e−i θ

2 . (A6)

The average of the x component of the angular momentum
of |�+〉w, 〈L̂x〉+ is 〈L̂x〉0 − h̄, where 〈L̂x〉0 is the initial aver-
age angular momentum. Indeed

〈L̂x〉+ =
∫ π

−π

eiθ�∗(θ )(−ih̄)
∂

∂θ
e−iθ�(θ )dθ

=
∫ π

−π

�∗(θ )(−ih̄)
∂

∂θ
�(θ )dθ − h̄

×
∫ π

−π

�∗(θ )�(θ )dθ = 〈L̂x〉0 − h̄. (A7)

Now to calculate the change in angular momentum, we
need to take the difference between the initial and final mo-
mentum. It is tempting to simply state that the initial angular
momentum of the wall along the x-axis is 〈L̂x〉0. However,
we have made a postselection of 〈↑x| that changed the initial
angular momentum of the particle along the x-axis from 0 to
− 1

2 h̄. Therefore, we need to check whether the initial angular
momentum of the wall, conditional on the postselection, has
also changed.

To do this, we start from the final state of the particle, 〈↑x|,
and the final state of the wall as given in Eq. (A5), and we
evolve the joint state backwards in time to the start. Then we
preselect on the particle starting |↑z〉, and we calculate the
initial angular momentum of the wall. This goes as follows:

1√
2

∫ π

−π

eiθ�∗(θ )〈θ |wdθ〈↑x|

= 1

2

∫ π

−π

eiθ�∗(θ )〈θ |wdθ
(〈↑z| + 〈↓z|

)

= 1

2

∫ π

−π

eiθ�∗(θ )〈θ |wdθe−i θ
2 (〈↑θ | + 〈↓θ |)

2nT−−→ 1

2

∫ π

−π

ei
θ
2 �∗(θ )〈θ |wdθ (〈↑θ | − 〈↓θ |)

= 1

2

∫ π

−π

ei
θ
2 �∗(θ )〈θ |wdθe−i θ

2
(〈↑z| − 〈↓z|

)

→ 1

2

∫ π

−π

�∗(θ )〈θ |wdθ under preselection on |↑z〉, (A8)

i.e., the postselection has not changed the original state of the
wall.

Thus the initial angular momentum of the wall conditional
on the postselection is still 〈L̂x〉0, and the change in the angular
momentum along the x-axis of the wall is −h̄.
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