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Abstract: The human gastrointestinal system is a complex ecosystem crucial for well-being. During
sepsis-induced gut injury, the integrity of the intestinal barrier can be compromised. Lipopolysaccha-
ride (LPS), an endotoxin from Gram-negative bacteria, disrupts the intestinal barrier, contributing to
inflammation and various dysfunctions. The current study explores the protective effects of limonene,
a natural compound with diverse biological properties, against LPS-induced jejunal injury in mice.
Oral administration of limonene at dosages of 100 and 200 mg/kg was used in the LPS mouse model.
The Murine Sepsis Score (MSS) was utilized to evaluate the severity of sepsis, while serum levels of
urea and creatinine served as indicators of renal function. Our results indicated that LPS injection in-
duced renal function deterioration, evidenced by elevated serum urea and creatinine levels compared
to control mice. However, pretreatment with limonene at doses of 100 and 200 mg/kg mitigated this
decline in renal function, evidenced from the reduced levels of serum urea and creatinine. Limonene
demonstrated anti-inflammatory effects by reducing pro-inflammatory cytokines (TNF-α, IL-1β,
COX-2), suppressing the TLR4/NF-κB/AP-1 but not IRF3 signaling pathways, and modulating ox-
idative stress through Nrf2 activation. The results suggest that limonene holds promise as a potential
therapeutic agent for mitigating intestinal inflammation and preserving gastrointestinal health.

Keywords: TNF-α; IL-1β; iNOS; IRF3; TLR4; intestinal injury; monoterpenes

1. Introduction

The intricate ecosystem of the human gastrointestinal system is crucial for nutrient
absorption, immune function, and overall well-being. Within this complex network, the
jejunum, a vital part of the small intestine, plays a pivotal role in the digestion and ab-
sorption of nutrients [1]. The intestinal barrier is a complex system that protects the body
from harmful substances and pathogens in the intestinal lumen. It consists of several key
elements, such as the mucus layer, the epithelial layer, the tight junctions, and the immune
cells [2].

Inflammation is a fundamental physiological response orchestrated by the immune
system to combat harmful stimuli, such as pathogens, injuries, or irritants. While inflam-
mation is essential for tissue repair and host defense, dysregulated or chronic inflammation
can lead to tissue damage and contribute to the pathogenesis of various inflammatory dis-
eases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and asthma,
among others. Consequently, there is a growing interest in identifying natural compounds
with anti-inflammatory properties that can modulate the inflammatory response and offer
therapeutic benefits [3].
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In sepsis, the injury of the gut is a common pathophysiologic condition, which is
proposed to be the main cause of serious illness due to the resultant malfunction of the
intestinal barrier [4].

Lipopolysaccharide (LPS) is a molecule found in the outer membrane of Gram-negative
bacteria. It enters the bloodstream and can trigger a strong immune response; therefore,
it is known as an endotoxin [5]. Gut barrier dysfunction occurs when intestinal mucosal
lesions occur, allowing the translocation of LPS and other bacterial products into the circula-
tion [6]. This can cause inflammation, oxidative stress, and metabolic disorders, which may
contribute to the development of various diseases, such as colorectal cancer (CRC), inflam-
matory bowel disease (IBD), obesity, diabetes, and liver disease [7]. LPS can contribute to
gut barrier dysfunction via Toll-like receptor activation (TLR4) on the surface of epithelial
cells and immune cells. When TLR4 interacts with a ligand, it forms homodimers. Two
signaling pathways are initiated by this. First, from the plasma membrane, TLR4 induces
the TIR domain-containing adapter protein (TIRAP) and myeloid differentiation primary
response 88 (MyD88) pathway, which ultimately turns on NF-κB and activator protein 1
(AP-1) activation. Second, from the endosome, TLR4 induces the TIR-domain-containing
adaptor protein inducing IFNβ (TRIF). Consequently, the TRIF-associated adaptor molecule
(TRAM) pathway prompts the activation of interferon regulatory factor (IRF3), with subse-
quent production of type I interferons (IFNs) with a late wave of NF-κB stimulation [8].

The activation of the nuclear factor-kappa B (NF-κB) regulates the expression of pro-
inflammatory cytokines, chemokines, and adhesion molecules [9]. These mediators can
disrupt the tight junctions, increase the permeability of the epithelial layer, and recruit
more immune cells to the site of inflammation. Moreover, LPS can also impair the function
of intestinal alkaline phosphatase (IAP), an enzyme that detoxifies LPS in the lumen and
reduces the production of mucus, which provides a physical barrier against bacteria [10].

Limonene, a monocyclic terpene hydrocarbon, is known for its diverse array of biolog-
ical properties and has gained significant attention for its potential therapeutic applications
in various fields [11]. The multifaceted nature of LPS-induced intestinal injury within the
jejunum is a subject that has captivated the scientific community, as it can have far-reaching
implications for gastrointestinal health and, by extension, systemic well-being. The ability
of limonene to intervene in this process and mitigate the destructive effects of LPS is a
promising avenue of research that could potentially lead to innovative preventive and
therapeutic strategies [12]. A recent study showed that limonene can protect the gut barrier
function in mice with colitis, an inflammatory bowel disease, by reducing inflammation,
enhancing tight junctions, and boosting antioxidants in the colon [13]. Limonene has
been used for the relief of heartburn and gastroesophageal reflux disorder because of its
gastric-acid-neutralizing effect and improvement of peristalsis. Limonene has also been
demonstrated to have a chemo-preventive activity against many types of cancer including
gastric [14] and colorectal cancer [15]. Limonene also presents a gastroprotection effect
against ethanol- and indomethacin-induced gastric ulcers [16].

Understanding the molecular mechanisms underlying the anti-inflammatory effects
of limonene could provide valuable insights into its therapeutic potential for managing
inflammatory disorders. Moreover, elucidating its mode of action may pave the way for the
development of novel pharmacological interventions targeting NF-κB/AP-1 signaling in
inflammatory conditions. Therefore, this study holds promise not only for advancing our
understanding of inflammation but also for the development of new therapeutic strategies
aimed at mitigating inflammatory diseases.

This article embarks on an exploration of the intriguing relationship between limonene
and the prevention of LPS-induced intestinal injury in this crucial part of the gastrointestinal
system. The present study aimed at investigating the anti-inflammatory effect of limonene
against LPS-induced jejunal injury in mice.
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2. Materials and Methods
2.1. Reagents

LPS (O55:B5) and limonene were purchased from Sigma Aldrich (Germany). Primers
of TLR4, NF-κB, IRF3, AP-1, iNOS, IL-1β, TNF-α, COX-2, Nrf2, and GAPDH were pur-
chased from Macrogen (Republic of Korea). The kits for urea and creatinine measurements
were bought from Linear Chemicals (Spain).

2.2. Animal Experiments

This study was performed in the College of Pharmacy, University of Baghdad, in
accordance with the guidelines for animal protocols approved by the Institutional Animal
Care and Use Committee (approval number: FCB19722). Male mice with a body weight
(BW) of 24 ± 3 g were raised in an animal facility under controlled conditions of temper-
ature, humidity, and a 12 h light/dark cycle. The mice had free access to water and feed.
Twenty-four albino male mice were randomly divided into four groups (6 in each group):
a control group (CON; group 1), an administration group (LPS group; group 2), and two
treatment groups, where the mice received limonene in two different doses in addition
to LPS. The treatment groups included mice that received limonene at either 100 mg/kg
(LM100 + LPS; group 3) or 200 mg/kg (LM200 + LPS; group 4). Limonene was administered
orally by gavage daily in the morning for 5 consecutive days, while LPS was administered
as a single IP injection (10 mg/kg) on day 5. Mice in the CON and LPS groups received
equal volumes of water orally and daily for 5 days, treated exactly as the treatment groups;
the CON group received an equal volume of phosphate-buffered saline IP injection on
day 5 (instead of LPS). Euthanization was performed on day 6, exactly 24 h after the LPS
injection; blood and tissue samples were then collected for analysis. Figure 1 represents a
schematic illustration of the experimental animal design.

Biomolecules 2024, 14, x FOR PEER REVIEW 3 of 14 
 

2. Materials and Methods 
2.1. Reagents 

LPS (O55:B5) and limonene were purchased from Sigma Aldrich (Germany). Primers 
of TLR4, NF-kB, IRF3, AP-1, iNOS, IL-1β, TNF-α, COX-2, Nrf2, and GAPDH were pur-
chased from Macrogen (South Korea). The kits for urea and creatinine measurements were 
bought from Linear Chemicals (Spain). 

2.2. Animal Experiments 
This study was performed in the College of Pharmacy, University of Baghdad, in 

accordance with the guidelines for animal protocols approved by the Institutional Animal 
Care and Use Committee (approval number: FCB19722). Male mice with a body weight 
(BW) of 24 ± 3 g were raised in an animal facility under controlled conditions of tempera-
ture, humidity, and a 12 h light/dark cycle. The mice had free access to water and feed. 
Twenty-four albino male mice were randomly divided into four groups (6 in each group): 
a control group (CON; group 1), an administration group (LPS group; group 2), and two 
treatment groups, where the mice received limonene in two different doses in addition to 
LPS. The treatment groups included mice that received limonene at either 100 mg/kg 
(LM100 + LPS; group 3) or 200 mg/kg (LM200 + LPS; group 4). Limonene was administered 
orally by gavage daily in the morning for 5 consecutive days, while LPS was administered 
as a single IP injection (10 mg/kg) on day 5. Mice in the CON and LPS groups received 
equal volumes of water orally and daily for 5 days, treated exactly as the treatment groups; 
the CON group received an equal volume of phosphate-buffered saline IP injection on 
day 5 (instead of LPS). Euthanization was performed on day 6, exactly 24 h after the LPS 
injection; blood and tissue samples were then collected for analysis. Figure 1 represents a 
schematic illustration of the experimental animal design. 

 
Figure 1. Schematic presentation of experimental animal design. 

2.3. Blood Collection 
Retro-orbital sampling was used to collect blood on day 6. Subsequently, the blood 

sample was allowed to coagulate at room temperature for 30 min. Following coagulation, 
the samples were centrifuged at 4 °C for 20 min at 3000 rpm. The resulting serum was 
carefully extracted using a micropipette and transferred into labeled micro-centrifuge 

Figure 1. Schematic presentation of experimental animal design.



Biomolecules 2024, 14, 334 4 of 14

2.3. Blood Collection

Retro-orbital sampling was used to collect blood on day 6. Subsequently, the blood
sample was allowed to coagulate at room temperature for 30 min. Following coagulation,
the samples were centrifuged at 4 ◦C for 20 min at 3000 rpm. The resulting serum was
carefully extracted using a micropipette and transferred into labeled micro-centrifuge tubes.
These tubes were then stored at −20 ◦C to determine the urea and creatinine levels, which
was performed 24 h after collection [9].

2.4. Biochemical Measurements

Serum urea and creatinine (Cr) levels were analyzed as pivotal indicators of renal
injury severity. A semi-automated biochemical analyzer was used for the measurements by
adhering to the guidelines provided by the manufacturer.

2.5. The Modified Murine Sepsis Score (MSS) System

The MSS system encompasses the assessment of seven components: appearance, level
of consciousness, activity, response to stimulus, eyes, respiratory rate, and respiratory
quality [17]. The traditional MSS score is derived by averaging these seven components
for each group. This scoring system provides a valuable tool to assess the well-being of
mice and to provide a measure of the general condition of mice. The MSS was determined
by two observers; the first observer carried out the quantitative assessments before the
LPS injection on day 5, and the next observer assessed 24 h after LPS injection, prior to
euthanasia. One of the observers remained unaware of the treatment administered to
ensure a rigorous MSS. Assessments were performed while the mice were inside their cages.
Scores were documented and analyzed by averaging the scores of the 7 parameters for each
group. In addition, the mortality rate was also reported for all groups to provide a further
tool to assess the survival of animals and compare it to the treatment effectiveness.

2.6. Gene Expression Analysis

All animals were euthanized with pentobarbital (50 mg/kg) followed by cervical
dislocation 24 h after LPS injection [18]. The proximal part of the jejunum was extracted
and homogenized [19]. Gene expressions (mRNA) of TLR4, NF-κB, IRF3, AP-1, iNOS,
IL-1β, TNF-α, COX-2, and Nrf2 were measured using qRT-PCR, with GAPDH used as
a housekeeping gene [20–22]. Using the TransZol Up Plus RNA Kit (TransGen, biotech
Beijing 100192, China), total RNA was isolated from the intestinal homogenate using TRIzol;
thereafter, complementary DNA (cDNA) synthesis was carried out using the EasyScript®

one-step gDNA removal and cDNA synthesis (TransGen, biotech). SYBR Green Super-
mix was used to measure the mRNA expression levels (TransGen, biotech). The primer
sequences were listed in Table 1, and they were created using IDT’s PrimerQuest program:

Table 1. Primer sequences.

Primers Sequences 5′→3′ Direction

GAPDH Forward: CGGGTTCCTATAAATACGGACTG
Reverse: CCAATACGGCCAAATCCGTTC

TLR4 Forward: TCCCTGCATAGAGGTAGTTCC
Reverse: TCAAGGGGTTGAAGCTCAGA

NF-κB Forward: AAGACAAGGAGCAGGACATG
Reverse: AGCAACATCTTCACATCCC

IRF3 Forward: CAATTCCTCCCCTGGCTAGA
Reverse: GGGATCCTGAACCTCGTTCG

AP-1 Forward: GCTGCAGGATGATGCGATAG
Reverse: TTCTAGCCAGGACGACTTGC
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Table 1. Cont.

Primers Sequences 5′→3′ Direction

iNOS Forward: GGTGAAGGGACTGAGCTGTT
Reverse: ACGTTCTCCGTTCTCTTGCAG

IL-1β Forward: TGCCACCTTTTGACAGTGATG
Reverse: TGATGTGCTGCTGCGAGATT

TNF-α Forward: TAGCCCACGTCGTAGCAAAC
Reverse: ACAAGGTACAACCCATCGGC

COX-2 Forward: GCTCAGCCAGGCAGCAAATC
Reverse: CACCATAGAATCCAGTCCGGG

2.7. Statistical Analysis

The statistical analyses were carried out utilizing an ANOVA test followed by the
Tukey post-test for multiple groups. To identify significant differences between all groups,
p < 0.05 was used as the threshold for statistical significance. Analyses of data were
performed with the Prism GraphPad 5 software.

3. Results
3.1. Effects of Limonene on Pro-Inflammatory Cytokines in LPS-Induced Intestinal Injury

Inflammatory markers were assessed to shed light on the molecular players in the
event of intestinal inflammation induced by LPS. IL-1β is one of the important inflammatory
markers, and it was measured in this study. Mice injected with LPS showed a significant
elevation in their mRNA expression of IL-1β (33.39 ± 1.87- vs. 3.48 ± 1.54-folds) compared
to the control group, suggesting an activated, ongoing inflammatory event in the jejunal
tissue as shown in Figure 2A. Interestingly, treatment with limonene at 100 mg/kg and
200 mg/kg resulted in a significant attenuation of IL-1β expression levels (18.81 ± 3.14 and
12.28 ± 1.09 vs. 33.39 ± 1.87) compared to non-treated mice, respectively. The injection
of LPS in mice resulted in a significant spike in TNF-α (Figure 2B), iNOS (Figure 2C) and
COX-2 (Figure 2D) mRNA levels compared to the corresponding levels of the control
mice: 35.35 ± 1.47 vs. 2.50 ± 0.96; 35.12 ± 6.99 vs. 1.73 ± 0.70; and 15.75 ± 2.43 vs.
1.38 ± 0.39. Moreover, the pretreatment of mice with limonene (both 100 mg/kg and
200 mg/kg) resulted in a significant decline in TNF-α gene expression (6.97 ± 1.14 and
2.81 ± 0.71 vs. 35.35 ± 1.47), compared to the non-treated LPS-induced mice. Consistently,
the iNOS and COX-2 also showed significant downregulation (9.82 ± 3.48 and 9.41 ± 1.87
vs. 35.12 ± 6.99; 6.41 ± 1.14 and 3.32 ± 0.504 vs. 15.75 ± 2.43) after limonene treatment
with either 100 mg/kg or 200 mg/kg, compared to the non-treated LPS-induced mice.
This result indicates that limonene exerted a strong anti-inflammatory effect in jejunal
inflammation induced by LPS.

3.2. Effects of Limonene on Inflammatory Pathways in LPS-Induced Intestinal Injury

The upstream inflammatory event was examined by measuring TLR4 (LPS receptor)
mRNA levels (Figure 3A). The results showed that a significant upregulation of TLR4
was detected in LPS-challenged mice compared to the control group (1.71 ± 0.75- vs.
25.67 ± 4.16-fold), revealing an amplified inflammatory state. Interestingly, mice pretreated
with either dose of limonene exhibited a significant downregulation of TLR4 (6.48 ± 1.27-
and 2.90 ± 0.20- vs. 25.67 ± 4.16-fold) in jejunal tissue compared to non-treated animals.

Furthermore, our investigation was directed to the downstream pathways of TLR4 in
the inflammatory cascade event that leads to the production of pro-inflammatory cytokines.
Transcription factors from the Myd88-dependent and Myd88-independent pathways were
assessed. In the Myd88-dependent pathway, NF-κB (Figure 3B) and AP-1 (Figure 3D) were
studied to explore a more detailed view of the pathways targeted by limonene. In this
signaling arm, limonene administration (100 and 200 mg/kg) resulted in a remarkable
decline in gene expressions of NF-κB (Figure 3B) compared to non-treated mice (1.98 ± 0.95
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and 0.48 ± 0.17 vs. 24.61 ± 4.22). In the same context, mice treated with limonene (100
and 200 mg/kg) showed a significant attenuation in jejunal AP-1 expression (Figure 3C)
compared to non-treated mice (3.50 ± 1.079 and 1.89 ± 0.56 vs. 25.26 ± 8.78). In the
Myd88-independent pathway, IRF3 was studied to explore a more detailed view of the
pathways targeted by limonene; in contrast to the Myd88-dependent pathway, data showed
that jejunal IRF3 mRNA (Figure 3C) did not change due to limonene treatment compared to
non-treated mice, implying that limonene had no role in the Myd88-independent cascade
post TLR4 activation.
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.

3.3. Effect of Limonene on Oxidative Stress State in LPS-Induced Intestinal Injury

One of the critical regulators of the oxidative stress response is the transcription factor
Nrf2. Our results revealed that limonene at 200 mg/kg significantly amplified Nrf2 gene
expression in the jejunal tissues (Figure 4) compared to tissues from non-treated mice
(18.15 ± 2.87 vs. 5.24 ± 0.308). In contrast, 100 mg/kg of limonene seemed to have an
unnoticeable effect on Nrf2 expression. This result may suggest that limonene regulated the
response of the cells to the oxidative stress by exerting antioxidant action that augmented
its anti-inflammatory effects.
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3.4. Effects of Limonene on Murine Sepsis Score (MMS) and Mortality Rate in LPS-Induced
Intestinal Injury

In this study, the MSS was employed to assess the observed severity of the sepsis
in each group. Figure 5A illustrates a significant increase in MSS in the LPS group com-
pared to the CON group (2.57 ± 0.2 vs. 0.02 ± 0.02), while a significant reduction in the
MSS was observed in groups receiving limonene at doses of 100 mg/kg and 200 mg/kg
(0.8 ± 0.2 and 0.6 ± 0.2 vs. 2.57 ± 0.2) compared to the LPS group. These findings indicate
that limonene reduced the severity of sepsis in mice. In addition to the MSS, the mortality
was also reported in our study. As demonstrated in Figure 5B, a notable increase in the
mortality rate (50%) was reported in the mice challenged with LPS, whereas a remarkable
reduction was observed in the group receiving limonene at 100 mg/kg. Interestingly, there
were no deaths reported in the group treated with 200 mg/kg of limonene. These results
strongly augment the results from the measurement of other parameters in our study that
limonene has the potential to mitigate the severity of sepsis in mice.

3.5. Effect of Limonene on Urea and Creatinine in LPS-Induced Intestinal Injury

Measuring urea and creatinine levels in LPS-induced jejunal injury in mice serves as
a valuable approach to assess the impact of the injury and treatment on kidney function.
Elevated levels of urea and creatinine in the serum are indicative of impaired kidney func-
tion, which can result from various factors, including sepsis-induced injury. The injection
of LPS in mice has been demonstrated to induce renal function deterioration, as evidenced
by a significant increase in serum urea and creatinine levels (serum urea: 116.35 ± 17.35 vs.
34.59 ± 3.55 mg/dL; creatine: 0.916 ± 0.02 vs. 0.26 ± 0.02 mg/dL) compared to those in the
control mice (Figure 6A,B). Moreover, mice treated with limonene at doses of 100 mg/kg and
200 mg/kg had mitigated elevations in urea and creatinine and rescued renal function, as indi-
cated by reduced levels of serum urea and creatinine (serum urea: 54.78 ± 3.31 and 36.26 ± 2.9
vs. 116.35 ± 17.35 mg/dL; creatine: 0.29 ± 0.02 and 0.21 ± 0.01 vs. 0.916 ± 0.02 mg/dL)
compared to those observed in the LPS group.
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.

4. Discussion

Due to the disruption of the intestinal barrier, gastrointestinal damage emerges as
a prevalent pathophysiological concern in cases of sepsis, often regarded as the central
driving force behind critical illness [23]. This phenomenon is characterized by a multi-
faceted interplay involving various factors such as heightened apoptosis, perturbed tight
junctions, augmented cytokine production by the intestinal immune system, and intricated
interactions with commensal bacteria and their byproducts. Despite the complex array of
potential contributors, the precise mechanism underlying the development of intestinal
mucosal lesions remains elusive [24].

In the context of our current investigations, we opted to employ a lipopolysaccharide
(LPS)-induced model of intestinal injury. This experimental paradigm is widely recognized
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and utilized for its effectiveness in elucidating the intricate mechanisms that underlie
inflammation specifically within the jejunum. By selecting this well-established model, we
aimed to delve deeper into the complexities of jejunum inflammation, leveraging the robust
foundation provided by previous research utilizing LPS-induced intestinal injury. [25,26].
Furthermore, the utilization of this model also afforded us the opportunity to explore
and assess novel interventions aimed at ameliorating intestinal injury. By leveraging the
versatility and reproducibility of the LPS-induced intestinal injury model, we were able to
innovate and evaluate potential therapeutic strategies with the ultimate goal of mitigating
the adverse effects associated with intestinal injury. This approach not only contributes
to advancing our understanding of intestinal pathology but also holds promise for the
development of innovative treatment modalities to address this clinical challenge.

The results of our animal experiments provide valuable insights into the potential
health benefits of limonene, especially in the context of mitigating the adverse effects
induced by LPS in mice. One notable observation from this study is that the mice exhibited
signs of illness, including tiredness, lethargy, and overall unwell behavior, following the
administration of LPS. These symptoms are indicative of the immune response triggered by
LPS, which can include inflammation, fever, and a range of behavioral and physiological
changes. What makes this study particularly interesting is the apparent contrast in the
mice’s symptoms when limonene was introduced. The observed improvement in the
mice’s well-being and health when they were given limonene suggests limonene as a
potential agent to counteract the negative effects of LPS. In this study, the well-being of
mice was assessed through measurements of the Murine Sepsis Score (MSS) and mortality
rate. Consistent with previous research, mice injected with LPS showed elevated MSSs
and increased mortality, indicating a deterioration in mouse health. This aligns with
findings from other studies demonstrating that LPS administration induces a high MSS
and increased mortality in mice [27,28].

Treatment with limonene at doses of 100 mg/kg and 200 mg/kg resulted in a decrease
in the MSS and mortality rate compared to the LPS group. This suggests an improvement in
the condition of mice suffering from intestinal inflammation induced by LPS and augment
the findings reported from the measurement of other inflammatory markers. These results
are further supported by the measurement of urea and creatinine levels, which were
found to be elevated in the LPS group, indicating further renal injury, as reported in other
study [29]. Furthermore, limonene administration led to a reduction in urea and creatinine
levels, indicating a protective effect against renal injury. This observation is consistent with
previous research demonstrating the potential therapeutic benefits of monoterpenes in
mitigating sepsis-induced organ dysfunction [30].

The results of our studies also provide a comprehensive view of the potential therapeu-
tic benefits of limonene in mitigating the inflammatory and oxidative stress responses in-
duced by LPS in mice. There are several key points highlighted from our studies. Limonene
treatment effectively reduced the production of inflammatory cytokines, such as TNF-α,
IL-1β, and COX-2, compared to the mice that received LPS alone. These findings align
with previous studies showcasing the anti-inflammatory properties of limonene in vari-
ous animal models [31,32]. TNF-α is a one of the cytokines that cause the activation and
recruitment of inflammatory cells, which eventually lead to the activation of the vascular
endothelium, nitric oxide release, and, hence, local vasodilation, and increase vascular
permeability [33,34]. IL-1β, another cytokine, causes increases in the production of the
adhesion molecules on endothelial cells, such as intercellular adhesion molecule 1 (ICAM-1)
and vascular cell adhesion molecule 1 (VCAM-1) [35]. COX-2 is an enzyme that plays a
significant role in inflammation and pain within the body [36].

LPS injection in group 2 (LPS only) showed a significant increase in TNF-α, IL-1β,
and COX-2 levels, which is consistent with previous studies [37,38]. On the other hand,
limonene treatment in groups 3 and 4 (LM100 + LPS and LM200 + LPS, respectively)
reduced the production of TNF-α, IL-1β, and COX-2 compared to the mice that received
LPS injection in group 2. Our result is consistent with previous studies that showed the



Biomolecules 2024, 14, 334 11 of 14

anti-inflammatory effect of limonene in different animal models [39,40]. Furthermore, there
are other studies that discuss the anti-inflammatory effects of other terpenes in different
experimental models [41].

Nitric oxide (NO) is produced by the enzyme iNOS (inducible nitric oxide synthase)
in response to inflammation or infection. Normally, NO can act as a vasodilator; however,
excessive NO production in the intestines could result in oxidative stress and tissue dam-
age [42]. LPS-induced intestinal injury is accompanied by increased production of NO,
which results from the cytokine-mediated upregulation of iNOS [43]. Therefore, during
sepsis, intestinal function is reduced, causing systemic vasodilatation. For these reasons, the
selective inhibition of iNOS, leaving physiologically present eNOS intact, might be a good
approach for the treatment of sepsis-induced intestinal injury [44]. When group 2 received
10 mg/kg of LPS, their iNOS expression increased significantly. However, 100 mg/kg
or 200 mg/kg of limonene reduced the mRNA expression of iNOS levels significantly.
This shows that limonene has an anti-inflammatory effect and can prevent the excessive
production of NO caused by LPS, as previous studies have also indicated [45,46].

In our study, the mRNA expression of TLR4, NF-κB, AP-1, and IRF3 were measured to
evaluate the effect of limonene on the MyD88-dependent and MyD88-independent signal-
ing pathways. We showed notable results regarding the mRNA expression of TLR4, NF-κB,
AP-1, and IRF3, which show significant upregulation in the LPS group in comparison to the
normal group. These findings align with those of Hu and colleagues, who revealed that LPS
injection in a mouse model induced the gene expression of TLR4, MyD88, and NF-κB in
the intestinal tissue at different time intervals, with maximum upregulation being detected
after 24 h. Furthermore, another study also demonstrates that LPS injection induces the
upregulation of TLR4 [47].

Our results also showed that limonene has a significant anti-inflammatory effect, since
pretreatment with 100 mg/kg and 200 mg/kg of limonene daily for five days significantly
attenuated the gene expression of TLR4, NF-κB, and AP-1 in jejunal tissues. As documented
by many studies, limonene was investigated previously for its anti-inflammatory effect in an
animal model by decreasing NF-κB expression [48,49]. On the other hand, the pretreatment
of mice with low and high doses of limonene showed no significant attenuation in IRF3
levels compared to the LPS group. These findings demonstrate that limonene action focuses
on the Myd88-dependent pathway of the inflammatory cascade event and produces a strong
anti-inflammatory effect, targeting the TLR4/AP-1/NF-κB axis but not IRF3.

In contrast to another study, involving intraperitoneal injections of 10 mg/kg of LPS
in mice, the LPS group had higher NF-κB nuclear translocation in the jejunum but no
significant difference in Nrf2 nuclear translocation [50]. In addition, another study revealed
that Nrf2-related antioxidant genes did not upregulate following LPS challenge [51]. On
the other hand, it appears that the administration of 200 mg/kg of limonene resulted in a
significant increase in Nrf2 levels compared to group 2, while the 100 mg/kg dose did not
show any significant differences. The results suggest a dose-dependent effect, indicating
that the increase in Nrf2 levels is more pronounced with the higher dose of 200 mg/kg, and
this provides further evidence of the intestinal-protective effect of limonene.

A previous study also showed that limonene protects skin keratinocytes from the
damaging effect of UVB radiation. This protection occurs by activating the Nrf2-dependent
antioxidant defense system, which helps the skin cells to defend themselves against oxida-
tive stress and damage caused by UVB exposure [52].

5. Conclusions

In conclusion, limonene exerts strong anti-inflammatory effects, targeting inflamma-
tory TLR4/AP1/NF-κB signaling pathways. Our animal experiments shed light on the
promising role of limonene in ameliorating the effects of LPS-induced intestinal inflamma-
tion in mice. As discovery of effective therapies for sepsis-related conditions is of crucial
importance, limonene offers a reliable solution. Further studies could be conducted to
explore a more detailed effect of limonene on inflammatory events and to investigate the
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effects of limonene on various organs and different sepsis models. In addition, toxicological
studies of limonene are also important. Nonetheless, our studies highlight the impor-
tance of natural compounds like limonene as potential therapeutic agents for conditions
involving excessive inflammation and immune system activation.
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