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Experimental realization of supergrowing fields
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Supergrowth refers to the local amplitude growth rate of a signal being faster than its fastest Fourier mode.
In contrast, superoscillation pertains to the variation of the phase. Compared to the latter, supergrowth can have
exponentially higher intensities and promises improvement over superoscillation-based superresolution imaging.
Here, we demonstrate the experimental synthesis of controlled supergrowing fields with a maximum growth rate
of ∼19.07 times the system bandlimit. Our work is an essential step toward realizing supergrowth-based far-field
superresolution imaging.

DOI: 10.1103/PhysRevResearch.6.L032043

Introduction. Superresolution in optical imaging refers
to approaches that can boost spatial resolution beyond the
diffraction limit of light. The diffraction limit defines the
smallest feature size that can be resolved in a standard optical
imaging system and is determined by the lights wavelength
and the optical system’s numerical aperture (NA) [1]. One
way to resolve subwavelength features in far-field imaging is
by using superoscillatory optical spots, a phenomenon where
complex fields can locally oscillate at a rate greater than their
cut-off spatial frequency [2–5]. Nonetheless, superoscillations
have the inherent disadvantage of very small intensity com-
bined with substantial side lobes, leading to poor imaging
quality. Both numerical optimization schemes [6] and sophis-
ticated optical setups [7–9] have been investigated for the
mitigation of sidelobe intensity. However, supergrowth [10], a
recently introduced physical concept, offers a promising route
to solve this issue.

In supergrowing fields, the local amplitude growth rate of a
complex field is higher than the highest spatial frequency in its
Fourier spectrum, thereby also providing access to subwave-
length features [11]. This concept has parallels to near-field
microscopy with evanescent waves [12,13]. Supergrowing
optical field spots can contain exponentially more intensity
compared to superoscillating regions and have been shown
theoretically to be able to image subwavelength objects [14].
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Moreover, theoretical frameworks for systemic generation of
both supergrowing/superoscillating fields have been studied
[15]. Currently, supergrowth exists as a purely theoretical
construct and has not been realized experimentally.

In this work, we achieve a critical step toward the goal
of superresolution using supergrowth, i.e., the synthesis and
characterization of supergrowing fields in the laboratory. To
accomplish this objective, we elucidate the concept of super-
growth in a diffraction-limited system and identify the critical
constraints that can limit supergrowth in an experiment. We
also furnish comprehensive methods and tools to quantify
supergrowth in any experimental setup effectively. The ex-
perimental demonstration lays the foundation for generating
supergrowing fields that can be utilized for superresolution
imaging.

Supergrowing strength. The local growth rate κ (x) and
local wave number k(x) of a bandlimited normalized complex
field f (x) are defined as κ (x) = � ∂x log [ f (x)] and k(x) =
� ∂x log [ f (x)] [11]. Therefore, k(x) denotes the local rate of
change of the phase of f (x), while κ (x) refers to the local
amplitude growth rate. The field has supergrowth (superoscil-
lation) at x = x0 when |κ (x0)| � k f

max(|k(x0)| � k f
max), where

k f
max denotes the highest wavenumber of the field. To charac-

terize the amount of supergrowth, we define the supergrowing
strength �(x) = | κ (x)

k f
max

|; f (x) is supergrowing at x = x0 when
�(x0) � 1.

The intensity I (x) = | f (x)|2 has a bandlimit of 2k f
max and

the local intensity growth rate κI (x) = 2κ (x). The supergrow-
ing strength �(x) can be obtained from the intensity as

�(x) =
∣
∣
∣
κI (x)

2k f
max

∣
∣
∣. (1)

Equation (1) has significant implications in the experiment,
as we need only the transverse intensity information, which
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can be obtained using a CCD camera. For field-based exper-
imental characterization of growth rate, one needs full-field
reconstruction involving more complicated interferometry.

Supergrowth in a diffraction-limited optical system. The
wavelength of illumination λ and an optical system’s NA
define its diffraction-limited response and maximum spatial
frequency (ks

max ≈ 2π
λ

NA) that can pass through the system
[1]. The bandlimit of the optical system might be different
from the field bandlimit k f

max, although the latter must be
upper bounded by the former (i.e., k f

max � ks
max). We note that

superresolution imaging using superoscillation/supergrowth
is only possible when the local wavenumber/growth rate of
the illumination field is higher than the bandlimit of the sys-
tem ks

max. For k f
max � |k|, |κ| < ks

max, superresolution cannot
be achieved.

For supergrowth in experiments, the appropriate definition
is |κ (x)| � ks

max, so that the benefit of supergrowth can outper-
form the diffraction-limited performance of an optical system.
The supergrowing strength of an optical field in an experiment
is

�s(x) =
∣
∣
∣
κI (x)

2ks
max

∣
∣
∣, (2)

where the subscript s in �s indicates that it is defined with
respect to the bandlimit of the system. According to this
definition, the field f (x) is supergrowing when �s � 1. The
optical fields realized in our experiment are supergrowing
with respect to both definitions. For convenience, we define
the bandlimit ratio b = (k f

max)/(ks
max), such that �s = b �.

Figure 1 provides an example of an optical field with dif-
ferent �s(x) and �(x). One can observe that at some points
x = x0, the optical field is supergrowing in a mathematical
sense (� � 1), but not supergrowing (�s < 1) based on the
definition we use. From here onwards, we stick to the defini-
tion of supergrowth strength as �s.

Experiment. The schematic of the optical setup used to
generate supergrowing optical fields is shown in Fig. 2: A
computer-generated phase-only pixelated hologram (CGPPH)
created using a liquid-crystal-based SLM (Hamamatsu
LCOS). An intensity-stabilized 795 nm linearly polarized col-
limated laser beam (Toptica TA 100) is expanded using lenses
L1 and L2 to ensure it overfills the active area of the SLM. As
a result, the CGPPH sees less spatial variation in the inten-
sity of the illuminating laser and a nearly uniform phase. To
stabilize the laser intensity, an acousto-optic modulator with a
PID controller is used, and polarization optics and attenuators
are used to control the polarization and intensity of the laser
beam (not shown in the schematic). The diffraction from the
CGPPH is Fourier processed using a classical 4 f processor
consisting of lenses L3 and L4, and a precision pinhole P
(Thorlabs P1000K). The intensity distribution of the complex
field at the image plane (ZI ) is measured using a CCD camera.
We have ensured the output intensity lies within the linear
response of the detector.

Phase and amplitude of the optical field at coordinates
(u, v) in the transverse plane ZF determine the phase and
amplitude of image plane (ZI ) Fourier components at fx = u

λ f
and fy = v

λ f [1]. The maximum spatial frequency at the image

FIG. 1. Conceptual illustration of the dependence of supergrowth
on field and system bandlimits. The optical source (shown as a black
box) of bandlimit ks

max synthesizes a supergrowing complex field (of
bandlimit k f

max) at the image plane. Horizontal line cut of intensity
I (x), and supergrowing strength parameters �(x) from Eq. (1) and
�s(x) from Eq. (2) are plotted for a sample function. Since ks

max �
k f

max in any diffraction-limited optical system, the condition �s � 1
is more restrictive in comparison to � � 1. This fact is manifested in
the plot since a smaller region is identified by �s � 1.

plane is limited by the diameter d of the precision pinhole at
ZF , and the system bandlimit is ks

max = πd
λ f .

Generation of supergrowing functions. The CGPPH used
in the experiment for generating a supergrowing function
uses encoding techniques described in [16]. The function to
be prepared in the experiment must satisfy two criteria: (i)
bandlimit—k f

max < ks
max; and (ii) spatial limit—the distribu-

tion of the supergrowing field at the image plane ZI must
remain within the image of the SLM active area at ZI . It
is a challenge to satisfy both of these criteria as limitations
imposed in the spatial domain demand a scaling up in the
frequency domain. Larger values of k f

max are necessary to
ensure maximum supergrowth �s � 1 within the spatial limit.
Theoretically, k f

max = ks
max is possible, but due to experimental

imperfection and uncertainties, one cannot achieve this upper
limit for a field in experiments.

We use two different ways of constructing supergrowing
functions: (i) heuristic analytical method, and (ii) numeri-
cal optimization method. In the first approach, we use an
analytical function f (x, y) = f1(x, y) f2(x, y). The function
f1(x, y) = exp( −x2−y2

2c2 ) utilizes the constant c to confine the
spatial extent of f (x, y), and f2(x, y) = cos(k f2 [ρ − ρ0]) +
ia sin(k f2 [ρ − ρ0]) is normalized to unit maximum amplitude,
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FIG. 2. Optical setup schematic. Notations: L, lens; SLM, Spatial
light modulator; f , focal length of lens; ZF ; transverse back focal
plane of L3; P, precision pinhole; M, mirror; D, CCD camera; ZI ,
image plane; (u, v), Cartesian coordinates representing any point on
the plane ZF ; (x, y), Cartesian coordinates representing any point on
the plane ZI ; d , diameter of P; and fx1 and fx2, are horizontal (x)
Fourier coordinate of ZI . The inset shows an expanded view of the
transverse cross section of P.

where a is another constant. Here, ρ is defined as ρ2 =
x2 + y2 to ensure circular symmetry, and as ρ = x to facilitate
supergrowth horizontally. The shift ρ0 can ensure the maxi-
mum or minimum of | f2(x, y)| to be at ρ = 0. The inspiration
behind f2(x, y) comes from the 1D function f (x) = (cos x +
ia sin x)N , whose supergrowing properties have been studied
in [11,14]. We choose k f2 � k f1 , where k f1 is four times the
full width half maximum of the Fourier transform of f1(x, y).
The bandlimit criterion is satisfied as k f2 + k f1 = bks

max, where
0.75 � b � 0.95. Then, f (x, y) supergrows locally when
a � 1.

For experiments, we need optical fields with high su-
pergrowing area (defined later) and high fractional intensity
within the supergrowing regions. The analytical functions,
characterized by only three parameters, have a limited ability
to generate such fields. The numerical optimization method
helps us overcome this obstacle. To find the appropriate fields
that supergrow within the frequency and space limit on the
image plane ZI , we perform simulations using the Zernike
polynomial-Bessel function basis for circular symmetric func-
tions, and simultaneously adopt the Helmholtz equation-based
definition of local wavenumber/growth rate (Appendices E
and F of Ref. [15]). A multiobjective cost optimization is
performed to ensure (i) optimum extent of supergrowing re-
gion within the image plane, (ii) optimization of the ratio of
maximum intensity within the supergrowing region and the
maximum intensity in the image plane. The second condition
ensures the effect of enhanced sidelobes, a limitation ob-
served in superoscillation-based superresolution imaging, is
curtailed [6].

FIG. 3. Theory [(a) and (c)] and experimental [(b) and (d)] con-
struction of optical fields with and without supergrowth. The upper
row [(a) and (b)] depicts a field exhibiting supergrowth. The lower
row [(c) and (d)] illustrates a field without supergrowth. Each plot
[(a)–(c)] shows x-line cut of I and κI , along with 2ks

max, identifying
the supergrowing regions [Eq. (2)]. These plots substantiate our
capability to engineer and manipulate supergrowth in optical fields
experimentally.

Supergrowing area ϒs of measured image. Supergrowing
area denotes the fraction of the area of a complex field that
is supergrowing at the image plane. ϒs is another tool for
quantifying the quality of the supergrowing field—a higher
value of ϒs is better. But this definition of ϒs is inadequate
for images obtained from the experiment due to noise. Let
f (x, y) be the complex field at the image plane (Fig. 2). In
the experiment, the CCD measures the spatially discretized
and noisy version of intensity I (x, y) = | f (x, y)|2 as I0(m, n),
where m, n are matrix indices of the matrix representing CCD
pixels. We have ensured the maximum spatial frequency of the
field is much smaller than the frequency of the CCD pixels
so that the Nyquist criterion is not violated. One can express
I0(m, n) = ηd (m, n)I (m, n) + Iξ (m, n), where ηd (m, n) is the
detection efficiency of the pixel (m, n), Iξ (m, n) is the noise,
and I (m, m) is discretized I (x, y). The intensity quantization
at each pixel is ignored in this representation.

Let the maximum value of the noise Iξ (m, n) be Iξ0.
One cannot consider pixels with intensities I0(m, n) � Iξ0.
The supergrowing area of measured images can be defined
as

ϒs = ζs

ζ
, (3)

where ζ is the total number of pixels with I0(m, n) � Iξ0,
and ζs is the total number of pixels with �s(m, n) � 1 and
I0(m, n) � Iξ0.

Results. We have prepared multiple bandlimited complex
functions with finite spatial extent using analytical expression
and numerical optimization methods. The fields realized in the
experiment have a diverse range of supergrowing strength �s

and area ϒs.
Figure 3 demonstrates the ability to control supergrowth in

the experiment. It shows representative fields with and without
supergrowth, both in theory and in experiment. Both fields are
synthesized using analytical functions, with c = 3 mm, ρ =
x, ρ0 = 0, and b = 0.75. For supergrowing fields, a = 109; for
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FIG. 4. Intensity of a synthesized field at the image plane zI (Fig. 2), measured using the CCD, is shown in (a) and the corresponding
analytical function is shown in (b). Panels (c) and (d) identify the supergrowing regions of measured and theoretical fields, respectively, in
white. Supergrowing strength �s of supergrowing regions identified in (c) along a horizontal line cut (highlighted using a semitransparent
dashed green line) is shown in (e). We have averaged four adjacent rows of pixels to get this line cut to reduce the effect of noise. Panel (f)
shows the quality of supergrowth of multiple fields, synthesized in the experiment, represented here by plotting supergrowing area ϒs and
maximum supergrowing strength �s along the x linecut of each field. Here, red (green) spheres (stars) represent the function obtained using the
numerical optimization method (heuristic analytical method). The field shown in (a)–(e) is highlighted using a red square in (f). We observe
that numerical optimization enhances the range of the supergrowing area, achieving experimental ϒs values ranging from 19.5% to 29.8%.

nonsupergrowing fields, a = 0.9. Row (1) of the figure shows
a supergrowing field with a maximum of �s ≈ 37.22 (≈18.28,
in the experiment). The field shown in row (2), however,
is not supergrowing [�s(x) < 1, ∀ x], both in theory and
experiment.

A transverse distribution of intensity and corresponding
supergrowing regions at the image plane ZI [Fig. 2] of a
representative complex field (both in theory and experiment)
are demonstrated in Figs. 4(a)–4(d). The supergrowing area
of this field is ϒs ≈ 23.6% (≈20.16%, in the experiment).
The experiment exhibits lower ϒs and double-ring patterns
[Fig. 4(c)] because pixels with intensities less than the cut-
off Iξ0 [Eq. (3)] are ignored. Note, for such 2D images of
intensity I (x, y), we calculate the local intensity growth rate
as κI (x, y) = |∇ log [I (x, y)]|. By definition, supergrowth is
more sensitive to fluctuations at low intensities. In the ex-
periment, noise/distortions present at intensities comparable
to the noise floor can lead to identifying more supergrow-
ing regions than the analytical field. The definition of ϒs

[Eq. (3)] reduces this effect by neglecting low-intensity
pixels.

Measured values of the supergrowing area ϒs and the
maximum values of supergrowing strength �s for multiple
supergrowing fields synthesized in the experiment are shown
in Fig. 4(f). One can observe that the functions obtained
from the numerical optimization method, in general, can
attain larger values of ϒs. See the Supplemental Material
[17] for further information on the numerical optimization
method, comparison with fields generated by the analytical
method, and additional details about the optical fields used
in the experiment. This is consistent with the multiobjective

optimization conditions described previously. We have
achieved a significantly larger supergrowing area (up to ϒs ≈
29.84%) as well as a maximum local growth rate reaching up
to ≈19.07 times the bandlimit of the system. A supergrowing
strength of ∼19 is highly desirable since optical spots with
high local growth rates help us image subwavelength objects.

Discussion. Supergrowth is a new physical phenomenon,
and we have achieved the experimental demonstration of
supergrowth in a controlled laboratory setup. We also pre-
scribe comprehensive methods and parameters to measure
and characterize the supergrowth in an experiment. In this
context, we have clarified the distinction between the super-
growth of an optical field and the concept of supergrowth in a
diffraction-limited optical system. While the latter provides a
stronger constraint on the condition of supergrowth, we are
still able to achieve local growth rates more than an order
of magnitude higher in our setup compared to the system
bandlimit. Additionally, our setup shows excellent control
over supergrowth since we realize optical fields with a diverse
range of supergrowing areas and strengths. Supergrowing
regions inherently can contain exponentially higher intensi-
ties compared to superoscillating regions [11,14]. Therefore,
supergrowth will alleviate the effect of enhanced sidelobes
plaguing superoscillation-based imaging and improve SNR in
experiments. This Letter lays the groundwork for generating
supergrowth in the laboratory.

A natural next step is to realize supergrowth-based sub-
wavelength object reconstruction proposed in Ref. [14]. Also,
supergrowth being a weak value amplification of momen-
tum [10], generating optical fields with higher supergrowing
strengths could be useful in a multitude of applications

L032043-4



EXPERIMENTAL REALIZATION OF SUPERGROWING … PHYSICAL REVIEW RESEARCH 6, L032043 (2024)

as well, including communication and quantum technolo-
gies. Furthermore, an optical field spot with simultane-
ously optimized supergrowing and superoscillating properties
could prove to be extremely beneficial for superresolution
imaging.
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