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Abstract
In this paperwe extend the concept of tensor product to the bicomplex case and use it to prove the
bicomplex counterpart of the classical Choi theorem in the theory of complexmatrices and operators.
The concept of hyperbolic tensor product is also discussed, andwe link these results to the theory of
quantum channels in the bicomplex and hyperbolic case.

1. Introduction

In this paper we extend the concept of tensor product to the bicomplex case and prove the bicomplex
counterpart of the classical Choi theorem in the theory of complexmatrices and operators.We link these results
to the theory of quantum channels in the bicomplex and hyperbolic case, as well as bicomplex digital signal
processing (DSP) as in [1–4]. In this introductionwe give a shortmotivation on our choice towork in the
bicomplex space.

In the real four dimensional case we have severalmodels of writing a single variable theory and the twomain
ones are the bicomplex and the quaternionicmodel and, while a quaternionic number q= x1+ x2 i+ x3 j+ x4 k
and a bicomplex numberZ= x1+ x2i+ x3j+ x4k look similar, the fundamental difference is that in the anti-
commutative quaternionic case i j=− j i= k, while in the commutative bicomplex case we have i j= j i= k.
These properties yield another imaginary unit k= i j for the quaternions and a hyperbolic one k= i j in the
bicomplex one.

There have beenmany attempts to understand a tensor product in the quaternionic case, however, the
attempts to define a probabilitymeasure that agrees with such a theory have, so far, been fruitless. For example,
the tensor products that exist in literature do not preserve positivity of quaternionicmatrices. In fact,
quaternionic tensor products are base dependent and do not preservemany properties [5], such as quaternionic
positivity, for example.

Remark 1.1.One can define two versions of a quaternionic tensor product of two quaternionmatrices
Q M j N1 1 1= + and Q M j N2 2 2= + as follows, thefirst as Q Q M M j N N1 2 1 2 1 2Ä = Ä + Ä and the second
Q Q M M N N j M N N M1 2 1 2 1 2 1 2 1 2Ä = Ä - Ä + Ä + Ä¯ ( ¯ ). Here bothMi andNi are complex-valued
matrices and M is amatrix with the complex conjugate of the entries ofM. The quaternionic tensor product
fails because of non-commutativity. Then, if we consider a quaternionic positivematrix to be onewhose

associated complexmatrix ⎜ ⎟
⎛
⎝

⎞
⎠

M N

N M
1 1

1 1- ¯ ¯ is positive as a complexmatrix, then neither of the quaternionic tensor

products abovewill preserve positivity in this sense. In this case it is also difficult to define a probabilitymeasure.

However, in the bicomplex case we can define a tensor product that suits notions of positivity aswell as
probabilistic ones well andmany important theorems and applications in information and probability theory
can be extended. Also, apart from the commutativity properties of the bicomplex algebrawe have, in this case, a
split along the 0− divisors in the theory that enables such concepts to be defined and usedwith ease.
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This paper adopts the following scheme: in section 2we review concepts of the algebra of bicomplex
numbers and its hyperbolic subalgebra. In section 3we review concepts of positivity for the algebra of bicomplex
matrices and prove some alternate statements. In section 4we define the notion of bicomplex tensor product
andwe prove several properties; we also prove a result on recovering bicomplex components of the tensor
product, as well as reduce all of the results of the section to the set of hyperbolicmatrices. In section 5we prove a
bicomplex counterpart of the complex Choi theoremwhich shows that a bicomplex completely positivemap is a
finite bicomplex quantum channel.

2. Preliminaries: bicomplex numbers

The algebra of bicomplex numbers was first introduced by Segre in [6]. During the past decades, a few isolated
works analyzed either the properties of bicomplex numbers, or the properties of holomorphic functions defined
on bicomplex numbers, and, without pretense of completeness, we direct the attention of the reader first to the
to book of Price, [7], where a full foundation of the theory ofmulticomplex numbers was given, then to some of
theworks describing some analytic properties of functions in the field [8–11]. Applications of bicomplex (and
other hypercomplex)numbers can be also found in theworks of Alfsmann, Sangwine, Glöcker, and Ell [1].

We now recall, in the same fashion as [7, 9, 12], the key definitions and results for the case of holomorphic
functions of complex variables. The algebra of bicomplex numbers is generated by two commuting imaginary
units i and j andwewill denote the bicomplex space by . The product of the two commuting units i and j is
denoted by k:=ij andwe note that k is a hyperbolic unit, i.e. it is a unit which squares to 1. Because of these
various units in , there are several different conjugations that can be defined naturally.Wewillmake use of
these appropriate conjugations in this paper, andwe refer the reader to [11, 12] formore information on
bicomplex andmulticomplex analysis.

2.1. Properties of the bicomplex algebra
The bicomplex space, , is not a division algebra, and it has two distinguished zero divisors, e1 and e2, which
are idempotent, linearly independent, andmutually annihilatingwith respect to the bicomplexmultiplication:

e
k

e
k

e e e e e e

e e e e k

:
1

2
, :

1

2
,

0, , ,

1, .

1 2

1 2 1
2

1 2
2

2

1 2 1 2

=
+

=
-

= = =
+ = - =

·

Just like {1, j}, they form a basis of the complex algebra , which is called the idempotent basis. If we define the
following complex variables in i( ):

z z z zi i: , : ,1 1 2 2 1 2b b= - = +

the i( )–idempotent representation forZ= z1+ jz2 is given by

Z e e .1 1 2 2b b= +

The i( )–idempotent is the only representation forwhichmultiplication is component-wise, as explained
in the next remarks.

Remark 2.1.The addition andmultiplication of bicomplex numbers can be realized component-wise in the
idempotent representation above. Specifically, if Z a ae e1 2 2 2= + andW b be e1 1 2 2= + are two bicomplex
numbers, where a a b b i, , ,1 2 1 2 Î ( ), then

Z W a b a b

Z W a b a b

Z a a

e e
e e

e e

,

,

.n n n

1 1 1 2 2 2

1 1 1 2 2 2

1 1 2 2

+ = + + +
= +
= +

( ) ( )
· ( ) ( )

Moreover, the inverse of an invertible bicomplex number Z a ae e1 1 2 2= + (in this case a a 01 2 ¹· ) is given by

Z a ae e ,1
1

1
1 2

1
2= +- - -

where a1
1- and a2

1- are the complexmultiplicative inverses of a1 and a2, respectively.

One can see this also by computing directly which product on the bicomplex numbers of the form

x x x x x x x xi j k , , , ,1 2 3 4 1 2 3 4 + + + Î

2
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is component-wise, and onefinds that the only onewith this property is given by themapping:

x x x x x x x x x x x xi j k i i, , 2.11 2 3 4 1 4 2 3 1 4 2 3+ + + + + - - + +(( ) ( ) ( ) ( )) ( )

which corresponds exactly with the idempotent decomposition

Z z z z z z zj i e i e ,1 2 1 2 1 1 2 2= + = - + +( ) ( )

where z1= x1+ ix2 and z2= x3+ ix4.

Remark 2.2.The idempotent representation splits the bicomplex space in e e1 2  = ⨁ , as:

Z z z z z z zj i e i e e e . 2.21 2 1 2 1 1 2 2 1 1 2 2l l= + = - + + = +( ) ( ) ( )

Simple algebra yields:

z

z
i

2

2
. 2.3

1
1 2

2
1 2

l l

l l

=
+

=
-( ) ( )

There are several different conjugations that can be defined naturally andwewill nowdefine the conjugates
in the bicomplex setting, as in [9, 12]

Definition 2.3. For any Z Î wehave the following three conjugates:

Z z zj 2.41 2= + ( )

Z z zj 2.51 2= - ( )†

*Z Z z zj . 2.61 2= = - ( )†

We refer the reader to [12] formore details.2.2. Hyperbolic subalgebra and the hyperbolic-valuedmodulus
A special subalgebra of  is the set of hyperbolic numbers, denoted by. This algebra and the analysis of
hyperbolic numbers have been studied, for example, in [8, 12–15] andwe summarize below only the notions
relevant for our results. A hyperbolic number can be defined independently of , by z x yk= + , with
x y, , Î , k k, 12Î = , andwe denote by the algebra of hyperbolic numbers with the usual component–wise
addition andmultiplication. The hyperbolic conjugate of z is defined by z x yk:= -à , and note that:

z z x y , 2.72 2 = - Îà· ( )

which yields the notion of the square of themodulus of a hyperbolic number z, defined by z z z:2
 = à∣ ∣ · .

Remark 2.4. It is worth noting that both *Z and Z† reduce to zàwhen zZ = . In particular *e e e e2 1 1 1= = =à †.
Similar to the bicomplex case, hyperbolic numbers have a unique idempotent representationwith real
coefficients:

z s te e , 2.81 2= + ( )

where, just as in the bicomplex case, e k11
1

2
= +( ), e k12

1

2
= -( ), and s:=x+ y and t:=x− y. Note that

e e1 2=à if we consider as a subset of , as briefly explained in the remark above.We also observe that

z x y x y x y st.2 2 2
 = - = + - =∣ ∣ ( )( )

The hyperbolic algebra is a subalgebra of the bicomplex numbers  (see [12] for details). Actually  is
the algebraic closure of, and it can also be seen as the complexification of by using either of the imaginary
unit i or the unit j.

Definition 2.5.Define the set+ of non–negative hyperbolic numbers by:

x y x y x x y x y x

s t s t

k k

e e

0, 0 0,

, 0 .

2 2

1 2

    


= + - = +
= +

+ { ∣ } { ∣ ∣ ∣ }
{ ∣ }

Remark 2.6.As studied extensively in [8], one can define a partial order relation defined on by:

z z z zif and only if , 2.91 2 2 1 - Î +⪯ ( )

andwewill use this partial order to study the hyperbolic–valuednorm,whichwas first introduced and studied
in [8].

3
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The Euclidean norm ∥Z∥ on , when it is seen as i j,2 2 ( ) ( ) or 4 is:

 Z z z Z x y x yRe .k1
2

2
2 2

1
2

1
2

2
2

2
2= + = = + + +∣ ∣ ∣ ∣ (∣ ∣ )

As studied in detail in [12], in idempotent coordinatesZ= λ1e1+ λ2e2, the Euclidean normbecomes:

 Z
1

2
. 2.101

2
2

2l l= +∣ ∣ ∣ ∣ ( )

It is easy to prove that

     Z W Z W2 , 2.11· ( · ) ( )

andwe note that this inequality is sharp since ifZ=W= e1, one has:

       e e e e e
1

2
2 ,1 1 1 1 1= = =· ·

and similarly for e2.

Definition 2.7.One can define a hyperbolic-valued norm for Z z zj e e1 2 1 1 2 2l l= + = + by:

 Z e e: .1 1 1 2  l l= + Î ++ ∣ ∣ ∣ ∣

It is shown in [8] that this definition obeys the corresponding properties of a norm, i.e. Z 0 =+ if and only if
Z= 0, it ismultiplicative, and it respects the triangle inequality with respect to the order introduced above.

The previous norm can be generalized to the space of  vectors, i.e. elements of n , andwewill also
define an inner product on the space of vectors in . Let 〈X,Y〉 be the usualHermitian inner product on n ,
thenwe have the following:

Definition 2.8. For any , nÎX Y , we have the following-valued inner product

X Y X Ye e, , , , 2.121 1 1 2 2 2á ñ = á ñ + á ñ ( )X Y

where X Xe e1 1 2 2= +X and Y Ye e1 1 2 2= +Y , and X Y,l l
nÎ for l 1, 2= .

This inner product yields the hyperbolic-valuedmodulus of a vectorX= X1e1+ X2e2 as:

     X Xe e .1 1 2 2 = ++X

3. Positive bicomplexmatrices

In this sectionwe review a characterization of positive bicomplexmatrices andwe start with the definition.

Definition 3.1 Positive matrix.Amatrix A ajl
n n= Î ´( ) is hyperbolic positive if for all

c c c, , n
t n

1
1= ¼ Î ´( ) wehave

*c A c . 3.1t Î +( ) · · ( )

From [8], proposition 2.2.7we know the following characterization

Proposition 3.2. Let

A A Aj e e ,1 2 1 1 2 2 = + = +

be an element of n n ´ withA1,A2, 1 and 2 in jn n ´ ( ). Then, the following are equivalent

(1) A is hyperbolic positive,

(2) both 1 and 2 are complex positivematrices,

(3) A 01  , thematrixA2 is skew self adjoint, that is, A A 0t
2 2+ =¯ and

A iA A ,1 2 1 -

(4) all eigenvalues are in+.

Other characterizations of hyperbolic positivematrices were proved in [8], as follows.

4
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Proposition 3.3. Let A n nÎ ´ . The following are equivalent

(1) A is hyperbolic positive,

(2) *A B Bt= · where B m nÎ ´ for some m Î ,

(3) A C2= where thematrixC is hyperbolic positive,

(4) A is * -Hermitian (i.e., *A A t= ( ) ).

See [8], Prop. 2.2.8 and [8], Prop. 2.2.9 for the proofs of the previous results. In this paperwe show a further
characterization of hyperbolic positivematrices.

Theorem3.4. Let A n nÎ ´ . Then the following conditions are equivalent

(1) thematrixA is hyperbolic positive,

(2) there exists an upper triangularmatrixU m nÎ ´ such that *A U Ut= ,

(3) there exists a lower triangularmatrix L m nÎ ´ such that *A L Lt= ,

(4) there exist a a, , r
n

1
1¼ Î ´ , thatmay be chosen pairwise orthogonal such that

*A a a .
i

r

i i
t

1
å=
=

Proof. Let A n nÎ ´ be amatrix decomposed by its idempotent decomposition A e e1 1 2 2 = + , where 1
and 2 arematrices in in n ´ ( ).

We start proving 1 2( ) ⟹ ( ). By proposition 3.2we know that 1 and 2 are complex positivematrices.
Then by [16], theorem3.5.30we get that

V V and W W: : ,t t
1 2 = =

whereV andW are upper triangularmatrices of in n ´ ( ). This implies *A U Ut= , withU V We e: 1 2= + .
Nowwe show 2 1) ⟹ ).WewriteU V We e1 2= + , thenwe get

A V V W We e .t t
1 2= +

Since thematricesV Vt andW Wt are complex positivematrices by proposition 3.2we get thatA is an
hyperbolic positivematrix. By similar arguments it is possible to show the equivalence 1 3 .)⟺ ) Nowwe show
1 4) ) and 4 1) ). Since thematrices 1 and 2 are complex positivematrices by [16], Thm. 3.5.30we get
that

b b c c ,
i

r

i i
t

i

r

i i
t

1
1

2
1

 å å= =
= =

¯ ¯

where b b i, , r
n

1
1¼ Î ´ ( ) are pairwise orthogonal and c c i, , r

n
1

1¼ Î ´ ( ) are pairwise orthogonal. This implies
that

*A a a ,
i

r

i i
t

1
å=
=

where a b ce e:i i i1 2= + .
Finally we show 4 1)⟺ ). Bywriting a b ce ei i i1 2= + we canwrite

A b b c ce e .
i

r

i i
t

i

r

i i
t

1
1

1
2å å= +

= =

¯ ¯

By [16], theorem 3.5.30we get that thematrices b bi
r

i i
t

1å =
¯ and c ci

r
i i

t
1å = ¯ are positive and hence by proposition

3.2we get that thematrixA is hyperbolic positive. ,

Definition 3.5.Amatrix A n nÎ ´ is called a state if it is hyperbolic positive and ifTr A 1=( ) .

The following theorem characterizes bicomplex states:

Theorem3.6.Amatrix A e e1 1 2 2 = + , with 1 , in n
2  Î ´ ( ), is a state if and only if 1 and 2 are state

matrices.

5
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Proof.By theorem 4.4 it is enough to show thatTr A 1=( ) if and only ifTr Tr 11 2 = =( ) ( ) . Since the trace is
a linear operator we get

A Tr Tre eTr . 3.21 1 2 2 = +( ) ( ) ( ) ( )

If TrTr 11 2 = =( ) ( ) , form (3.2)we get

Tr A e e
1.

1 2= +
=

( )

Now, let us suppose thatTr A 1=( ) then form (3.2)we obtain

Tr Tre e 1. 3.31 1 2 2 + =( ) ( ) ( )

However, we know that e e1 1 2= + and sowe can rewrite formula (3.3) as

Tr Tre e e e . 3.41 1 2 2 1 2 + = +( ) ( ) ( )
Firstly, wemultiply formula (3.4) by e1, since e 11

2 = we get that

Tr 1,1 =( )
Now,wemultiply formula (3.4) by e2, since e 12

2 = we obtain that

Tr 1.2 =( )
This proves thefirst part of the statement. ,

Now,we define the inverse of amatrix with bicomplex entries

Definition 3.7.The inverse of a bicomplexmatrix A n nÎ ´ is the bicomplexmatrix denoted by A 1- such that

AA A A I ,n
1 1= =- -

where In is the n× n identitymatrix.

Lemma3.8. Let A e e n n
1 1 2 2  = + Î ´ , where 1 , in n

2  Î ´ ( ).We canwrite its inversematrix as,

A e e .1
1

1
1 2

1
2 = +- - -

Proof.By definition 3.7we have to show that AA A A I .n
1 1= =- - By the fact thats e e 11 2+ = and e e 01 2 = we

get

A A

I I
I

e e e e

e e
.
n n

n

1
1

1
1 2

1
2 1 1 2 2

1 2

   = + +
= +
=

- - -( )( )
( ) ( )

The equality AA In
1 =- follows by similar computations.Now, we show thatwe canwrite an inversematrix in a

different way

Theorem3.9. Let jA A A1 2= + withA1, A in n
2 Î ´ ( ). Thenwe have

A A A j: , 3.51
1 2= +- ˜ ˜ ( )

where

A and A
i

:
1

2
:

2
,1 1

1
2

1
2 2

1
1

1   = + =- -- - - -˜ [ ] ˜ [ ]

with 1 , in n
2  Î ´ ( ).

Proof.By using the fact that e
ji

1
1

2
= +

and e
ji

1
1

2
= -

we get

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

A
ij

ij ij

e e

1

2 2
1

2

1

2

.

1
1

1
2

1
2

1
1

1

1
1

2
1

1
1

1 2
1

2

   

 

 

= + - -

=
+

+
-

= +

- - - - -

- -

- -

[ ] [ ]

Weget the thesis by lemma 3.8. ,

6
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4. Tensor product of bicomplexmatrices

In this sectionwefirst write a coherent definition of the bicomplex tensor product, reduce it to the hyperbolic
subspace as well, thenwe follow by amethod of finding the components of the bicomplex tensor from the
outcomematrix, endingwith an application to digital signal processing.

4.1.Definition and properties of the bicomplex tensor product
Wenow turn to the definition of the bicomplex tensor product of twomatrices.

Definition 4.1. Let us consider A A Aj n n
1 2

1 2= + Î ´ and B B Bj m m
1 2

1 2= + Î ´ with
A A i, n n

1 2
1 2Î ´ ( ), B B i, m m

1 2
1 2Î ´ ( ). Thenwe define the bicomplex tensor product of these twomatrices as

A B A B A B A B A Bj ,j 1 1 2 2 1 2 2 1Ä = Ä - Ä + Ä + Ä( ) ( )

where A B n m n m
j

1 1 2 2Ä Î ´

Proposition 4.2. Let us consider A A Aj1 2= + and B B Bj1 2= + withA1,A2,B1,B2 as in definition 4.1. Thenwe
have

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

A A
A A

B B
B B

A B A B A B A B
A B A B A B A B

.j
1 2

2 1

1 2

2 1

1 1 2 2 1 2 2 1

1 2 2 1 1 1 2 2

-
Ä

-
=

Ä - Ä - Ä - Ä
Ä + Ä Ä - Ä

Proof. It follows fromdefinition 4.1 and thematrix representation of the bicomplex setting. ,

Example 4.3. Let ⎛
⎝

⎞
⎠

A i
i

j i
i

1 1
0

1
1

= + + ( )and ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

B i
i

j
i

0
1

1 0
1 1

= +
+

bematrices in 2 2 ´ . Then by

definition 4.1we have

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

A B

i i i
i i

i
i i

j

i i
i i i

i i
i i i

1 1
0 2 2 0
1 0 1
1 1 1 1

1 1 1
0 2 1 2 1 2 1
0 1

1 1 2 1

4.1jÄ =

- - -
- -

- - -
- - - - -

+

- +
+ + +

-
- -

( )

Now,we show that we canwrite the bicomplex tensor product in an equivalent way

Theorem4.4. Let A e e n n
1 1 2 2

1 2 = + Î ´ , B e e m m
1 1 2 2

1 2 = + Î ´ with 1 , in n
2

1 2 Î ´ ( ) and 1 ,
im m

2
2 2 Î ´ ( ). Thenwe have

A B e e ,j 1 1 1 2 2 2   Ä = Ä + Ä( ) ( )

with A B m n m n1 1 2 2Ä Î ´ .

Proof. Firstly, by recalling that e
ij

1
1

2
= +

and e
ij

2
1

2
= -

we get

A

A A

e e
ji

j

1

2 2
,

1 1 2 2

1 2 2 1

1 2

 

   

= +

= + - -

+

( ) ( )

≕

where

A A
i1

2 2
. 4.21 1 2 2 2 1   = + = - -( ) ( ) ( )

Similarly, for thematrixBwehave

B
B B

e e
j ,

1 1 2 2

1 2

 = +
+≕

where

B B
i1

2 2
. 4.31 1 2 2 2 1   = + = - -( ) ( ) ( )
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Let us denote

C A B A B: , 4.41 1 1 2 2= Ä - Ä ( )

and

C A B A B: . 4.52 1 2 2 1= Ä + Ä ( )

Now,we substitute the expressions (4.2), (4.3) in (4.4) and (4.5)

C A B A B
1

4
1

4
1

2

1 1 1 2 2

1 1 1 2 2 1 2 2

2 2 2 1 1 2 1 1

1 1 2 2

       

       

   

= Ä - Ä

= Ä + Ä + Ä + Ä +

+ Ä - Ä - Ä + Ä

= Ä + Ä

( )

( )

( )

and

C A B A B
i

i

i

4

4

2

2 1 2 2 1

1 2 1 1 2 2 2 1

2 1 2 2 1 1 1 2

2 2 1 1

       

       

   

= Ä + Ä

=- Ä - Ä + Ä - Ä +

- Ä + Ä - Ä - Ä

=- Ä - Ä

( )

( )

( )

By definition 4.1we get

A B C Cj

ij

e e

1

2 2
.

j 1 2

1 1 2 2 2 2 1 1

1 1 1 2 2 2

       

   

Ä = +

= Ä + Ä - Ä - Ä

= Ä + Ä

( ) ( )

( ) ( )

,

Example 4.5. Let us consider thematricesA andB like in the example 4.3.We split thematrices in the respective
idempotent decomposition

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

A
i i

e i
i i

e2 1
1

0 2 1
1

1 2=
- +

+ +
-

and

B i i
i

e i i
i i

e
0 2 21 2= -

-
+( ) ( )

Then by theorem 4.4we have

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

A B

i i i i
i i

i i
i i

e

i i
i i

i i
i i

e

2 2
0 4 2 0 2
1 1 1 1

0 2 1 0 3

0 0 2 2
0 0 2 4 2
1 1 1 1
2 1 2 2 1

4.6j 1 2Ä =

- -
- -

- - -
- - +

+

- -
- -

- - - - - -
- - - - - -

( )

Formula (4.6) is equal to (4.1).

We nowwrite the fundamental properties of the bicomplex tensor product andwe see thatwe recover all
properties, including ones that characterize the hyperbolic positivity of a tensor product of two hyperbolic
positivematrices.

Theorem4.6. Let A B, n nÎ ´ be two hyperbolic positivematrices, then A BjÄ is a hyperbolic positivematrix.
Moreover, if A B, n nÎ ´ are states (i.e. hyperbolic positivematrices of trace 1), then A BjÄ is also a bicomplex
state.

Proof.Toprove thefirst part of this theorem, we split thematricesA andB in the idempotent decomposition

A Be e e e, ,1 1 2 2 1 1 2 2   = + = +

with 1 , 2 , 1 , in n
2  Î ´ ( ). By theorem 4.4we know thatA andB are hyperbolic positive if and only if 1 ,

2 , 1 , 2 are complex positivematrices. This implies that

8
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0,1 2  Ä

and

0.1 2  Ä

Finally, by proposition 3.2we get that A B 0.j Ä Toprove the second part of the theorem, we use the fact the
trace is a linear operator we get

Tr A B Tr Tre e . 4.7j 1 1 1 2 2 2   Ä = Ä + Ä( ) ( ) ( ) ( )

Since thematrices 1 , 2 , 1 , 2 are complexmatrices we know that

Tr Tr Tr , 4.8l l l l   Ä =( ) ( ) ( ) ( )

with l 1, 2= . By hypothesisA andB are statematrices, and so by theorem4.4we get that l and l , with
l 1, 2= , are positive statematrices. In particular this implies that

Tr Tr l1, 1, 2. 4.9l l = = =( ) ( ) ( )

By putting together (4.7) and (4.8), (4.9)we obtain

Tr A B Tr Tr

Tr Tr Tr Tr

e e

e e
e e

.

1.

j 1 1 1 2 2 2

1 1 1 2 2 2

1 2

   
   

Ä = Ä + Ä

= +
= +
=

( ) ( ) ( )
( ) ( ) ( ) ( )

,

Theorem4.7.The bicomplex tensor product has the following properties:

(1) it is bilinear, i.e. forA,D in n n2 2 ´ andB,C in m m1 2 ´ we have

A B C A B A Cj j jÄ + = Ä + Ä( )

and

A D B A B D Bj j j+ Ä = Ä + Ä( )

(2) it has the fundamental property of tensor products, i.e. for A n mÎ ´ , B m rÎ ´ , C pÎ ´ℓ and
D p qÎ ´ we have

AB CD A C B D .j j jÄ = Ä Ä( )( )

Proof. For 1) let us start by proving thefirst bilinear property (the second follows by similar arguments).We split
thematricesA,B andC in the idempotent decomposition.

A B Ce e e e e e, , ,1 1 2 2 1 1 2 2 1 1 2 2     = + = + = +

with 1 , in n
2  Î ´ ( ) and 1 , 2 , 1 , im m

2  Î ´ ( ). Then by theorem4.4we get

A B C e e e e

e e

j j1 1 2 2 1 1 1 2 2 2

1 1 1 1 2 2 2 2

     
     

Ä + = + Ä + + +

= Ä + + Ä +

( ) ( ) [( ) ( ) ]
[ ( )] [ ( )]

Since thematrices s , s and s have complex entries by [16]wehave

A B C e e . 4.10j 1 1 1 1 1 2 2 2 2 2       Ä + = Ä + Ä + Ä + Ä( ) ( ) ( ) ( )

By theorem 4.4we get

A B A C e e e e

e e . 4.11

j j 1 1 1 2 2 2 1 1 1 2 2 2

1 1 1 1 1 2 2 2 2 2

       
       

Ä + Ä = Ä + Ä + Ä + Ä

= Ä + Ä + Ä + Ä

[( ) ( ) ] [( ) ( ) ]
( ) ( ) ( )

Weget the thesis by the fact that (4.10) and (4.11) are equal.
To prove the fundamental identity 2), we start by splitting thematricesA andB by the idempotent

decomposition

A Be e e e, ,1 1 2 2 1 1 2 2   = + = +

with 1 , in m
2  Î ´ ( ) and 1 , im r

2  Î ´ ( ). Then

AB e e .1 1 1 2 2 2   = +( ) ( )

9
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Similarly, for thematricesC andDwehave

C De e e e, ,1 1 2 2 1 1 2 2   = + = +

with 1 , ip
2  Î ´ ( )ℓ , 1 , ip q

2  Î ´ ( ). Then

CD e e .1 1 1 2 2 2   = +( ) ( )
Now, by theorem 4.4we get

AB CD e e .j 1 1 1 1 1 2 2 2 2 2       Ä = Ä + Ä( ) ( ) ( ) ( )

Since thematrices s , s , s and s with s 1, 2= arematrices with complex entries by [16]we obtain

AB CD e e . 4.12j 1 1 1 1 1 2 2 2 2 2       Ä = Ä Ä + Ä Ä( ) ( ) ( )( ) ( )( ) ( )

On the other side, by theorem4.4we have

A C e e ,j 1 1 1 2 2 2   Ä = Ä + Ä( ) ( )

and

B D e e .j 1 1 1 2 2 2   Ä = Ä + Ä( ) ( )

Hence, we get

A C B D e e . 4.13j j 1 1 1 1 1 2 2 2 2 2       Ä Ä = Ä Ä + Ä Ä( )( ) ( )( ) ( )( ) ( )

Finally, since the right hand side of the equations (4.12) and (4.13) are equal we obtain the corresponding
results. ,

Lemma4.8. Let A n nÎ ´ and B m mÎ ´ . Thenwe have

A B A B .j j
1 1 1Ä = Ä- - -( )

Proof. Let us start bywriting thematricesA andB by the idempotent decomposition:

A Be e e e ,1 1 2 2 1 1 2 2   = + = +

with 1 , in n
2  Î ´ ( ) and 1 , im m

2  Î ´ ( ). By theorem 4.4we get

A B e e .j 1 1 1 2 2 2   Ä = Ä + Ä( ) ( )

Then by lemma 3.8we obtain

A B e e .j
1

1 1
1

1 2 2
1

2   Ä = Ä + Ä- - -( ) ( ) ( )

Since thematrices s , s , with s 1, 2= , have complex entries by [16]we canwrite

A B e e . 4.14j
1

1
1

1
1

1 2
1

2
1 1

2   Ä = Ä + Ä- - - - - -( ) ( ) ( ) ( )

Now, by lemma 3.8 and theorem 4.4we obtain

A B e e e e

e e . 4.15

j j
1 1

1
1

1 2
1

2 1
1

1 2
1

2

1
1

1
1

1 2
1

2
1 1

2

   

   

Ä = + Ä +

= Ä + Ä

- - - - - -

- - - - -

( ) ( )

( ) ( ) ( )

Finally, since the right hand side of (4.14) and (4.15) are equal we get the thesis. ,

Remark 4.9.One can reduce the tensor product of bicomplexmatrices to the subset of hyperbolicmatrices and
define the product of A n nÎ ´ and B m mÎ ´ as in definition 4.1.

In fact, from theorem4.4, we have:

Lemma4.10. If A e e n n
1 1 2 2  = + Î ´ and B e e m m

1 1 2 2  = + Î ´ , where , n n
1 2   Î ´ and

, ,m m
1 2   Î ´ then the tensor product ofA andB is:

A B e e ,j 1 1 1 2 2 2   Ä = Ä + Ä( ) ( )

with A B mn mnÄ Î ´ . ,

Proof.The proof follows from standard arguments.All other properties of the tensor product of bicomplex
matrices then restrict to the set of hyperbolicmatrices.

10
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4.2. Recovering bicomplex tensor components
We recall that in the complex case one can recover the components of a tensor product of a positive complex
matrix from the outcomematrix, if the outcomematrix is a state, as in [17]:

Proposition 4.11. If M n m n mÎ ´ is a positive complexmatrix, and M M Mn m= Ä , thenMn andMm can be
recovered uniquely fromM using the following algorithm:

* *

* *

d M c d f M c f c d

d M c e d M f c c d

, , ,

, , , 4.16

n
k

m

k k
n

m
k

n

k k
m

1

1





å

å

= Ä Ä " Î

= Ä Ä " Î

=

=

( ) ( )

( ) ( ) ( )

where fk and ek are basis of m and n respectively and the tensor product is the complex one.

Wehave a similar result in the bicomplex case andwewrite:

Proposition 4.12. If M n m n mÎ ´ is a hyperbolic positivematrix, and M A B ,n j m= Ä for some An
n nÎ ´

and Bm
m mÎ ´ thenAn andBm can be recovered uniquely fromM.

Proof.The proof is based on the idempotent representation and properties of the bicomplex tensor product.
Indeed, bywriting M e e1 1 2 2 = + we transform the problem to decomposing the two complexmatrices

n m n m
1  Î ´ and n m n m

2  Î ´ in their respective tensorial components using proposition 4.11. From

1 1 1  = Ä and 2 2 2  = Ä , then one obtains , n n
1 2   Î ´ and , m m

1 2   Î ´ as in
equation (4.16). Then, using the formulae in the proof theorem4.4, the recovering of A e en 1 1 2 2 = + and
B e em 1 1 2 2 = + follows. ,

5. A bicomplexChoi theorem

In this sectionwe describe the concept of completely hyperbolic positive bicomplexmatrices and prove a
bicomplexChoi theoremusing these notions.

5.1. AChoi theorem in the complex case
First we recall the definition of positivemaps in the complex case.

Definition 5.1.A linearmap : n n m m f ´ ´ is positive if and only if for all positivematrices A n nÎ ´ we
have Af ( ) is positive.

One can extend a positivemap : n n m m f ´ ´ to blockmatrices A Ajk
n n N N= Î ´ ´( ) ( ) , for each

N� 0, by

A A 5.1N jk i j
N m m N N
, 1 f f= Î=

´ ´( ) ( ( )) ( ) ( )

Definition 5.2.Amapf is completely positive if for each N 0 all themaps Nf are positive.

We recall the following result, see [16, 18, 19]:

Theorem5.3Choiʼs Theorem. Let : n n m m f ´ ´ be a completely positivemap. Thenwe canwrite

A V A V , 5.2
i

r

i i
t

1
åf =
=

( ) ( ) ( )

for someV V, , .r
m n

1 ¼ Î ´

We recall the following definition offinite quantum channels on aHilbert space.
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Definition 5.4. Let be afinite dimensionalHilbert space and  ( ) be the space of operators that act on.
We say that the trace preservingmap :    ( ) ( ) is a quantum channel on theHilbert space iff there
exists a set of operators Ea a{ } in  ( ) such that

E E ,
a

a a ås s=( ) †

for any  s Î ( ).

In fact, Choiʼs theorem states that completely positivemaps in the complex case arefinite quantum channels
andwe develop the same statements in the bicomplex case.

5.2. AChoi theorem in the bicomplex case
Wenowdefine a notion of positivity for linear bicomplexmaps in order to obtain similar results. In the
bicomplex case theHilbert spaces abovewill becomeHilbertmodules and a description of bicomplex quantum
channels follows.

Definition 5.5.A linearmap : n n m m f ´ ´ is hyperbolic positive if and only if for all hyperbolic positive
matrices A n nÎ ´ wehave Af ( ) is hyperbolic positive.

One can extend a hyperbolic positivemap : n n m m f ´ ´ to blockmatrices
A Ajk

n n N N= Î ´ ´( ) ( ) , for eachN� 0, by

A A 5.3N jk j k
N m m N N
, 1 f f= Î=

´ ´( ) ( ( )) ( ) ( )

Definition 5.6.Amapf is a bicomplex completely positivemap if for each N 0 all themaps Nf are hyperbolic
positive.In the bicomplex settingwe use the complex Choi theorem to give the following characterization of
hyperbolic completely positivematrices, wherewe use the * bicomplex conjugate as in definition 2.4. This
theoremproves that, in fact, a bicomplex completely positivemap is afinite bicomplex quantum channel.

Theorem5.7. Let : n n m m f ´ ´ be a bicomplex completely positivemap.Wewrite
A e e1 1 1 2 2 2 f f f= +( ) ( ) ( ) , where : n n m m f ´ ´

ℓ , 1, 2=ℓ . Thenwe have

(1) Themapf is bicomplex completely positive if and only if 1f and 2f are completely positive.

(2) A bicomplex completely positivemapf in this context can bewritten as

*A V A V , 5.4
i

r

i i
t

1
åf =
=

( ) ( ) ( )

for someV V, , r
m n

1 ¼ Î ´ .

Proof.Toprove 1), let us considerAjk to be the blockmatrices of thematrixA. Themapf is bicomplex
completely positive if A AN jkf f=( ) ( ) are hyperbolic positive for all N 0 . By the idempotent decomposition
we canwrite

A e e ,N N N1 1 2 2 f f f= +( ) ( ) ( )

with N i i jk, f f=( ) ( ), wherewe denote by i jk, the blockmatrices of thematrices i , for i 1, 2= . Since
ANf ( ) is hyperbolic positive by proposition 3.2we get that N if ( ) are also hyperbolic positive. Therefore the

maps fℓ, with 1, 2=ℓ are completely hyperbolic positive.
For the converse, if N if ( ) are hyperbolic positive then by proposition 3.2we note that ANf ( ) is hyperbolic

positive too. Then by definition 5.5we get that Af ( ) is completely hyperbolic positive.
To prove 2), from thefirst part of this theorem and [18]wehave

A e e

e e ,
k

r

k k
t

i

r

k k
t

1 1 1 2 2 2

1
1 1

1
2 2

 

     å å

f f f= +

= +
= =

( ) ( ) ( )

( ) ( )

where i , i
m n Î ´ with k r1   .We set

V e e: .k k k1 2 = +
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Thereforewe have

*

*

A e e e e e e

V A V .

i

r

k k k k
t

k

r

k k
t

1
1 2 1 1 2 2 1 2

1

     å

å

f = + + +

=

=

=

( ) ( )( )[( ) ]

( )

,

Remark 5.8.The form in formula (5.4) is calledKraus decomposition andwe observe that this representation is
not unique.

Using the idempotent representation for the tensor product and analogous results in the complex case the
proof of the following statement readily follows.

Proposition 5.9.The bicomplex tensor product of twomaps of the form (5.4) has the same form.

In conclusion, this paper shows applications of the bicomplexChoi theorem to information theory and, as
such, it is a fundamental first step of rewriting aspects of quantummechanics from a bicomplex point of view.

In his work [20], Kocik has stated that a hyperbolicmodel of quantummechanics is not consistent and it
cannot explain a double-split experiment due to the unboundedways inwhich the phase can develop. A
different approachwas developed byKhrennikov in [21], where he develops a quantization formalism in a
hyperbolicHilbert space, with a view on developing a theory ofHyperbolicQuantumMechanics. Also, in [22],
Khrennikov and Segre prove that VonNeumannUniqueness theoremdoesn’t hold inHyperbolicQuantum
Mechanics.

In the bicomplex case, due to the split on zero divisors that, on each component, reverts back to the complex
case, one can assure that the phase (split in its two complex components) remains bounded. Then, a double-split
experiment can be constructedwithin this framework, however, this remains to be developed in a futurework.

Indeed, in [23, 24], Rochon andTremblay havewritten a bicomplex generalization of the Schrödinger
equation, as well as as a beginning of a formulation of bicomplex quantummechanics.

Note: Data sharing is not applicable to this article as no new datawere created or analyzed in this study.
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