A C H A PM A N Chapman University Digital
AN UNIVERSITY Commons

Mathematics, Physics, and Computer Science Science and Technology Faculty Articles and
Faculty Articles and Research Research
8-21-2024

The Bicomplex Tensor Product and a Bicomplex Choi Theorem

Daniel Alpay
Chapman University, alpay@chapman.edu

Antonino De Martino
Politecnico di Milano

Kamal Diki
Chapman University, diki@chapman.edu

Mihaela Vajiac
Chapman University, mbvajiac@chapman.edu

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles

6‘ Part of the Other Mathematics Commons

Recommended Citation
Daniel Alpay et al 2024 Phys. Scr. 99 095245 https://doi.org/10.1088/1402-4896/ad6bd4

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and
Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and
Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital
Commons. For more information, please contact laughtin@chapman.edu.


https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F1052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1088/1402-4896/ad6bd4
mailto:laughtin@chapman.edu

The Bicomplex Tensor Product and a Bicomplex Choi Theorem

Comments

This article was originally published in Physica Scripta, volume 99, in 2024. https://doi.org/10.1088/
1402-4896/ad6bd4

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright

The authors

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/scs_articles/
1052


https://doi.org/10.1088/1402-4896/ad6bd4
https://doi.org/10.1088/1402-4896/ad6bd4
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://digitalcommons.chapman.edu/scs_articles/1052
https://digitalcommons.chapman.edu/scs_articles/1052

INCLUSIVE PUBLISHING

Physica Scripta TRUSTED SCIENGE
PAPER « OPEN ACCESS You may a|so ||ke

The bicomplex tensor product and a bicomplex *Blomann Zeia Funcions and eir
Ch0| theorem Muskan Kashyap and Sukhdev Singh

- Lie and Leibniz algebras of lower-degree
conservation laws
Boris M Elfimov and Alexey A Sharapov

To cite this article: Daniel Alpay et al 2024 Phys. Scr. 99 095245

- What do Abelian categories form?
D. B. Kaledin

View the article online for updates and enhancements.

This content was downloaded from IP address 206.211.139.102 on 29/08/2024 at 17:20


https://doi.org/10.1088/1402-4896/ad6bd4
/article/10.1088/1742-6596/2267/1/012115
/article/10.1088/1742-6596/2267/1/012115
/article/10.1088/1742-6596/2267/1/012115
/article/10.1088/1751-8121/ac477d
/article/10.1088/1751-8121/ac477d
/article/10.1070/RM10044

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
7 December 2023

REVISED
15 July 2024

ACCEPTED FOR PUBLICATION
6 August 2024

PUBLISHED
21 August 2024

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

Phys. Scr. 99 (2024) 095245 https://doi.org/10.1088,/1402-4896 /ad6bd4

Physica Scripta

PAPER
The bicomplex tensor product and a bicomplex Choi theorem

Daniel Alpay' @, Antonino De Martino’, Kamal Diki' ® and Mihaela Vajiac'*

' Schmid College of Science and Technology, Chapman University, One University Drive Orange, CA 92866, United States of America
*> Dipartimento di Matematica, Politecnico di milano, Via Bonardin. 9, 20133, Milan, Italy
* Author to whom any correspondence should be addressed.

E-mail: alpay@chapman.edu, antonino.demartino@polimi.it, diki@chapman.edu and mbvajiac@chapman.edu

Keywords: bicomplex, hyperbolic, tensor product, Choi theorem, digital signal processing, quantum information theory, finite quantum
channels

Abstract

In this paper we extend the concept of tensor product to the bicomplex case and use it to prove the
bicomplex counterpart of the classical Choi theorem in the theory of complex matrices and operators.
The concept of hyperbolic tensor product is also discussed, and we link these results to the theory of
quantum channels in the bicomplex and hyperbolic case.

1. Introduction

In this paper we extend the concept of tensor product to the bicomplex case and prove the bicomplex
counterpart of the classical Choi theorem in the theory of complex matrices and operators. We link these results
to the theory of quantum channels in the bicomplex and hyperbolic case, as well as bicomplex digital signal
processing (DSP) as in [1-4]. In this introduction we give a short motivation on our choice to work in the
bicomplex space.

In the real four dimensional case we have several models of writing a single variable theory and the two main
ones are the bicomplex and the quaternionic model and, while a quaternionic number q = x; + x, i + x5 j + x4 k
and abicomplex number Z = x; + x,1 + x3j + x4klook similar, the fundamental difference is that in the anti-

commutative quaternionic case i j = — j i = k, while in the commutative bicomplex case we haveij=ji=k.
These properties yield another imaginary unit k = i j for the quaternions and a hyperboliconek =ijin the
bicomplex one.

There have been many attempts to understand a tensor product in the quaternionic case, however, the
attempts to define a probability measure that agrees with such a theory have, so far, been fruitless. For example,
the tensor products that exist in literature do not preserve positivity of quaternionic matrices. In fact,
quaternionic tensor products are base dependent and do not preserve many properties [5], such as quaternionic
positivity, for example.

Remark 1.1. One can define two versions of a quaternionic tensor product of two quaternion matrices

Q=M + j Nyand Q, = M, + j N, asfollows, thefirstas Q1 ® Q, = M ® M, + j N; ® N, and the second
QRQ=MOM— NN, +jM N, + N, ® M,).Here both M;and N; are complex-valued
matrices and M is a matrix with the complex conjugate of the entries of M. The quaternionic tensor product
fails because of non-commutativity. Then, if we consider a quaternionic positive matrix to be one whose

. M Ny, . . . .
associated complex matrix ( S vIL positive as a complex matrix, then neither of the quaternionic tensor
—Np M,

products above will preserve positivity in this sense. In this case it is also difficult to define a probability measure.

However, in the bicomplex case we can define a tensor product that suits notions of positivity as well as
probabilistic ones well and many important theorems and applications in information and probability theory
can be extended. Also, apart from the commutativity properties of the bicomplex algebra we have, in this case, a
split along the 0 — divisors in the theory that enables such concepts to be defined and used with ease.

© 2024 The Author(s). Published by IOP Publishing Ltd
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This paper adopts the following scheme: in section 2 we review concepts of the algebra of bicomplex
numbers and its hyperbolic subalgebra. In section 3 we review concepts of positivity for the algebra of bicomplex
matrices and prove some alternate statements. In section 4 we define the notion of bicomplex tensor product
and we prove several properties; we also prove a result on recovering bicomplex components of the tensor
product, as well as reduce all of the results of the section to the set of hyperbolic matrices. In section 5 we prove a
bicomplex counterpart of the complex Choi theorem which shows that a bicomplex completely positive map is a
finite bicomplex quantum channel.

2. Preliminaries: bicomplex numbers

The algebra of bicomplex numbers was first introduced by Segre in [6]. During the past decades, a few isolated
works analyzed either the properties of bicomplex numbers, or the properties of holomorphic functions defined
on bicomplex numbers, and, without pretense of completeness, we direct the attention of the reader first to the
to book of Price, [7], where a full foundation of the theory of multicomplex numbers was given, then to some of
the works describing some analytic properties of functions in the field [8—11]. Applications of bicomplex (and
other hypercomplex) numbers can be also found in the works of Alfsmann, Sangwine, Glocker, and Ell [1].

We now recall, in the same fashion as [7, 9, 12], the key definitions and results for the case of holomorphic
functions of complex variables. The algebra of bicomplex numbers is generated by two commuting imaginary
units i and j and we will denote the bicomplex space by BC. The product of the two commuting unitsiandj is
denoted by k:=ij and we note that k is a hyperbolic unit, i.e. it is a unit which squares to 1. Because of these
various units in BC, there are several different conjugations that can be defined naturally. We will make use of
these appropriate conjugations in this paper, and we refer the reader to [11, 12] for more information on
bicomplex and multicomplex analysis.

2.1. Properties of the bicomplex algebra
The bicomplex space, BC, is not a division algebra, and it has two distinguished zero divisors, e, and e,, which
are idempotent, linearly independent, and mutually annihilating with respect to the bicomplex multiplication:

1+k 1-k
€= =
2 2
e -e =0, ef:el, e%zez,
e +e =1, e —e =k

Justlike {1,j}, they form a basis of the complex algebra BC, which is called the idempotent basis. If we define the
following complex variables in C(i):

Bri=2z — iz, Bai=2 + iz,
the C(i)—idempotent representation for Z = z; + jz, is given by
Z = e + Ben

The C(i)—idempotent is the only representation for which multiplication is component-wise, as explained
in the next remarks.

Remark 2.1. The addition and multiplication of bicomplex numbers can be realized component-wise in the
idempotent representation above. Specifically,if Z = a, e; + a;, e;and W = by e; + b, e, are two bicomplex
numbers, where a;, a,, b, b, € C(i), then

Z+ W=(a+ b)e + (a2 + by) ey,
Z - W = (aib) e + (a2by) e,
Z"=a e + aj e,.
Moreover, the inverse of an invertible bicomplex number Z = aje; + a,e, (inthis case a; - a, = 0) is given by
Zl=a e, + ayle,

where a; ' and a; ! are the complex multiplicative inverses of a; and a,, respectively.

One can see this also by computing directly which product on the bicomplex numbers of the form

X + i.Xz + jX3 + k.X4, X1, X, X3, X4 € R
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is component-wise, and one finds that the only one with this property is given by the mapping:
X+ o+ jxs + kg = (Ga + xg) + 106 — x3), (1 — x4) + 10k + x3)), (2.1
which corresponds exactly with the idempotent decomposition
Z=z+jn=(z—in)e + (a + in)e,,

where z; = x; + ix; and z, = x5 + ix,.

Remark 2.2. The idempotent representation splits the bicomplex space in BC = Ce;PCe,, as:

Z=a+jn=(a—inle + (a + in)e; = Me, + \e, (2.2)
Simple algebra yields:
A+ A
7 =—""
2
2= w (2.3)

There are several different conjugations that can be defined naturally and we will now define the conjugates
in the bicomplex setting, as in [9, 12]

Definition 2.3. Forany Z € BC we have the following three conjugates:

Z=7z+jn 24
ZT =z — sz (25)
Z¥=7'=7 — jz&. (2.6)

We refer the reader to [12] for more details.2.2. Hyperbolic subalgebra and the hyperbolic-valued modulus
A special subalgebra of BC is the set of hyperbolic numbers, denoted by ID. This algebra and the analysis of
hyperbolic numbers have been studied, for example, in [8, 12—15] and we summarize below only the notions
relevant for our results. A hyperbolic number can be defined independently of BC, by 3 = x + ky, with
x, ¥, €ER, kZR, k? = 1, and we denote by D the algebra of hyperbolic numbers with the usual component—wise
addition and multiplication. The hyperbolic conjugate of 3 is defined by 3° := x — ky, and note that:

33 =x*—y?eR, 2.7)
which yields the notion of the square of the modulus of a hyperbolic number 3, defined by |3/3:= 3 - 3°.

Remark 2.4. It is worth noting that both Z* and Z* reduce to 3* when Z = 3.Inparticular e, = e = e = e].
Similar to the bicomplex case, hyperbolic numbers have a unique idempotent representation with real
coefficients:

3 = se; + tey, (2.8)

where, just as in the bicomplex case, e; = %(1 + k), e; = %(1 — k), and s:=x + yand t:=x — y. Note that

¥ = e, ifwe consider I as a subset of BC, as briefly explained in the remark above. We also observe that

3lp = x* =y = (x + P& — y) = st.

The hyperbolic algebra ID is a subalgebra of the bicomplex numbers BC (see [12] for details). Actually BC is
the algebraic closure of D, and it can also be seen as the complexification of ID by using either of the imaginary
unitior the unitj.

Definition 2.5. Define the set D" of non—negative hyperbolic numbers by:

Dt={x+ky|x>2—»?20,x>0}={x+ky|x>0,|yl <x}
= {se; + tey|s, t > 0}.

Remark 2.6. As studied extensively in [8], one can define a partial order relation defined on I by:
5<% ifandonlyif 3, — 3 € DT, 2.9

and we will use this partial order to study the hyperbolic—valued norm, which was first introduced and studied
in [8].
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The Euclidean norm || Z|| on BC, when itis seen as C2(i), C2(j) or R*is:
1Z)l = Izl + 2P = JRe(ZR) = x2 + 57 +x3 + 2.

As studied in detail in [12], in idempotent coordinates Z = A;e; + \,e,, the Euclidean norm becomes:

1
1] = f\/l)\ﬂz + . (2.10)

It is easy to prove that
12 - Wil < V2] - IwlD, (2.11)
and we note that this inequality is sharp since if Z = W = ey, one has:
1
ller - el = [leal| = Wil V2 el - Jleall,
and similarly for e,.

Definition 2.7. One can define a hyperbolic-valued norm for Z = z + jz, = Me; + e, by:
||Z||]Dfr ::|)\1|e1 + I)\1|e2 e DT,
It is shown in [8] that this definition obeys the corresponding properties of anorm, i.e. || Z||p, = 0ifand onlyif

Z =0, itis multiplicative, and it respects the triangle inequality with respect to the order introduced above.

The previous norm can be generalized to the space of BC vectors, i.e. elements of BC”, and we will also
define an inner product on the space of vectors in BC. Let (X, Y) be the usual Hermitian inner product on C”,
then we have the following:

Definition 2.8. Forany X, Y € BC", we have the following D— valued inner product
(X, Y)p = (X, i)y + (X5, Vo) ey, (2.12)
where X = Xje; + X;e;and Y = Yie; + Yse5,and X, ¥ € Cforl = 1, 2.

This inner product yields the hyperbolic-valued modulus of a vector X = X;e; + X,e; as:
Xl = [1Xil[er + [|X]]e2.

3. Positive bicomplex matrices
In this section we review a characterization of positive bicomplex matrices and we start with the definition.

Definition 3.1 Positive BC matrix. A matrix A = (a;) € BC"*"is hyperbolic positive if for all
¢ = (Gy...,cp)" € BC"!wehave
(¢ -A-ceD. 3.1

From [8], proposition 2.2.7 we know the following characterization

Proposition 3.2. Let
A= Al + jAz = .Ale1 + Azez,
be an element of BC"*" with A, A,, Ay and A, in C**"(j). Then, the following are equivalent

(1) Aishyperbolic positive,

(2) both Ay and A, are complex positive matrices,

(3) A, > 0, thematrix A is skew self adjoint, thatis, A, + A = 0and
—A <A <A,

(4) all eigenvaluesarein D,

Other characterizations of hyperbolic positive matrices were proved in [8], as follows.

4
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Proposition 3.3. Let A € BC"*". The following are equivalent

(1) Aishyperbolic positive,

(2) A = B*' - Bwhere B € BC™ " forsomem € N,
(3) A = C*where the matrix Cis hyperbolic positive,
(4) Ais™ - Hermitian (i.e., A = (A%)").

See [8], Prop. 2.2.8 and [8], Prop. 2.2.9 for the proofs of the previous results. In this paper we show a further
characterization of hyperbolic positive matrices.

Theorem 3.4. Let A € BC"*". Then the following conditions are equivalent

(1) the matrix A is hyperbolic positive,
(2) there exists an upper triangular matrix U € BC™*" such that A = U*'U,
(3) thereexists alower triangular matrix L € BC™*" such that A = L*'L,

(4) thereexist ay,...,a, € BC"*\, that may be chosen pairwise orthogonal such that

r
A=Y ajal.
i=1

Proof. Let A € BC"*"be a matrix decomposed by its idempotent decomposition A = Aje; + Aye,, where A,
and A, are matrices in C"*"(i).

We start proving (1) => (2). By proposition 3.2 we know that .4; and .4, are complex positive matrices.
Then by [16], theorem 3.5.30 we get that

A:=V'V and A,:=W'W,

where Vand W are upper triangular matrices of C"*"(i). This implies A = U*'U,with U:= Ve; + We,.
Now we show 2) => 1). Wewrite U = Ve; + We,, then we get

A= VtVel + V_V"Wez.

Since the matrices V'V and W'W are complex positive matrices by proposition 3.2 we get that A isan
hyperbolic positive matrix. By similar arguments it is possible to show the equivalence 1) <=3). Now we show
1) = 4)and 4) = 1). Since the matrices .A; and A4, are complex positive matrices by [16], Thm. 3.5.30 we get
that

A = Z b,‘[)it A, = Z C,’Eit,
i1 i1

where by,....b, € C"*\(i) are pairwise orthogonal and ¢, ...,c, € C"*\(i) are pairwise orthogonal. This implies
that

T

*t

A= Z a;a;
i=1

where a; .= b,‘el + cje;.
Finally we show 4) <=1). By writing a; = b;e; + c;e, we can write

r r
—t -
A=Y bibje+ > citfe
i=1 i=1

By [16], theorem 3.5.30 we get that the matrices >>/_, b;b; and >_I_, ¢ic} are positive and hence by proposition
3.2 we get that the matrix A is hyperbolic positive. O

Definition 3.5. A matrix A € BC"*"is called a state if it is hyperbolic positive and if Tr (A) = 1.
The following theorem characterizes bicomplex states:

Theorem 3.6. A matrix A = Aje; + Ayey, with A;, A, € C™"(i), is astate if and only if A and A, are state
matrices.
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Proof. By theorem 4.4 it is enough to show that Tr (A) = lifand onlyif Tr (A;) = Tr(A;) = 1. Since the trace is
alinear operator we get

Tr(A) = Tr(A)e, + Tr(Ay)e,. (3.2)
If Tr(A) = Tr(Ay) = 1,form (3.2) we get

TY(A) =e t+ e
=1

Now, let us suppose that Tr (A) = 1 then form (3.2) we obtain
Tr(ADe, + Tr(Aye, = 1. (3.3)
However, we knowthat 1 = e; + e, and so we can rewrite formula (3.3) as

Tr(Ape, + Tr(Aye, = e + e, (3.4)
Firstly, we multiply formula (3.4) by e;, since ef = 1we get that
Tr(A) =1,
Now, we multiply formula (3.4) by e,, since €3 = 1we obtain that
Tr(Ay) = 1.
This proves the first part of the statement. O

Now, we define the inverse of a matrix with bicomplex entries

Definition 3.7. The inverse of a bicomplex matrix A € BC"*" is the bicomplex matrix denoted by A~! such that
AAT' = A1A =1,
where I, is the n X nidentity matrix.
Lemma3.8.Let A = Aje; + Are, € BC™ ", where A, A, € C*™"(i). We can write its inverse matrix as(]
A= Ale; + Ajle,.

Proof. By definition 3.7 we have to show that AA~! = A~'A = [,. Bythe factthats e; + e, = 1and e;e; = O we
get

ATTA = (A ey + Ay ler) (Aier + Aszer)
= (In)el + (In)eZ
=1,

The equality AA~! = I, follows by similar computations.Now, we show that we can write an inverse matrix in a
different way

Theorem 3.9.Let A = A} + Ayj with A, Ay € C"*"(i). Then we have
A=A + Ajj, (3.5)
where

A= %[.Afl + A and A, ::—é[A;l — AN,

with A, Ay € C™n(i).

Proof. By using the fact that e; = HTIJ ande; = % we get
A= %[A;l + A4 - IZ—J[A;1 — A
1+ i 1 — i
:( i ")All + ( IJ)Azl
2 2
= A;le; + Aj'e,.
We get the thesis by lemma 3.8. O
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4. Tensor product of bicomplex matrices

In this section we first write a coherent definition of the bicomplex tensor product, reduce it to the hyperbolic
subspace as well, then we follow by a method of finding the components of the bicomplex tensor from the
outcome matrix, ending with an application to digital signal processing.

4.1. Definition and properties of the bicomplex tensor product
We now turn to the definition of the bicomplex tensor product of two matrices.

Definition 4.1. Let us consider A = A} + jA, € BC"*™and B = B, + jB, € BC™*™ with

Ay, Ay € C¥m(j), By, B, € C™*™(j). Then we define the bicomplex tensor product of these two matrices as
A®;B=(A @B — A ®By) +jA ® B, + A, ® By,

where A ®; B € BCmm>mmm

Proposition 4.2. Let us consider A = Ay + jA; and B = By + jBy with Ay, A, By, Byasin definition 4.1. Then we
have

A =4 (B —B; _ A ®B —A ®B, —A ®B, — A ®B
A A '\B, B A®B,+A ®B A ®B —-A®B, )

Proof. It follows from definition 4.1 and the matrix representation of the bicomplex setting. O

Example4.3.Let A = ((1) 1 + 1) + ](i 1)andB = ((1) ;) + ]G ; _2 1)be matrices in BC?*2, Then by
definition 4.1 we have

i i -1 i-1 1 -1 i+1 i
0 2—i i—-2 0 Jo 2i41 2141 2141
A® B= 41
©j 10 i |y i -1 D
-1 —-i—1 —-1—-1 1 i 1 i—1 21i—1

Now, we show that we can write the bicomplex tensor product in an equivalent way

Theorem4.4.Let A = Aje; + Ase, € BC"*", B = Bie; + Bye, € BC™*™ with A;, A, € C"*™(i) and B,
B, € C™>™(i), Then we have

A ®;B= (A ® Ble + (A, @ Byey,
with A @ B € BCmmxmnz,

Proof. Firstly, by recalling that ¢; = H-Tu and e, = 1—71; we get
A= A + Ase;
1 ji
= (A + A) - L, - )
2 2
=: A + jAy,
where

1 .
A=At A) A= —%(.Az — A). (4.2)

Similarly, for the matrix B we have

B= Blel + Bzez
=: B, + jB,,

where

1 .
Bi= ~(Bi+ By &:—g&f@. (4.3)
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Let usdenote
G:=A ® B — A ® B, (4.4)
and
Cy;:=A ® B, + A, ® By (4.5)
Now, we substitute the expressions (4.2), (4.3) in (4.4) and (4.5)
G=A ®B —A ®B,
=i(A1®Bl+Al®Bz+Az®Bl+A2®Bz)+

+i(~’42®82_A2®BI_A1®82+A1®BD
:%(AI®BI+-A2®BZ)

and
C,=A ®B,+A4A QB
Z—i(A1®Bz_A1®Bl+~A2®BZ_A2®81)+

_i(-A2®Bl+A2®BZ_AI®BI_-A1®BZ)

= —%(Az ® B, — A ® B)

By definition 4.1 we get
A®B=G +jC,
! ..
:E(Al®Bl+A2®BZ) - 12—](A2®32—A1®l3’1)

=(A ® Bhe + (A ® Bye,.
O

Example 4.5. Let us consider the matrices A and Blike in the example 4.3. We split the matrices in the respective

idempotent decomposition
(2 1 0 2i+1
A*(—i i+ 1)e1+(i i 1)62

p_(-i i i
(0 Z_i)e1+(2iie2

and

Then by theorem 4.4 we have

20 2 —i i 0 0 i-2 i-2

o 4a-2 0 2-i 0 0 2i—4 i-2
AGB=1 0 T it o o Do - (*6)

0 —2i—1 0 i+3 —2 -1 —2-2i —1-i

Formula (4.6) is equal to (4.1).

We now write the fundamental properties of the bicomplex tensor product and we see that we recover all
properties, including ones that characterize the hyperbolic positivity of a tensor product of two hyperbolic
positive matrices.

Theorem 4.6. Let A, B € BC"*" be two hyperbolic positive matrices, then A ®; B is a hyperbolic positive matrix.
Moreover, if A, B € BC"*" are states (i.e. hyperbolic positive matrices of trace 1), then A ®; B is also a bicomplex
state.

Proof. To prove the first part of this theorem, we split the matrices A and B in the idempotent decomposition
A = Ae + Aser, B = Bie, + Baey,

with Aj, Ay, By, B, € C*(i). By theorem 4.4 we know that A and B are hyperbolic positive if and only if A;,
Ay, By, B, are complex positive matrices. This implies that

8
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A® A 20,
and
B ® B, > 0.

Finally, by proposition 3.2 we get that A ®; B > 0. To prove the second part of the theorem, we use the fact the
trace is a linear operator we get

Tr(A ®j B) = Tr(A ® Bpe, + Tr(A;, @ Bye,. (4.7)
Since the matrices Aj, A, B;, B, are complex matrices we know that
Tr(A; ® B) = Tr(ApTr(By), (4.8)

with [ = 1, 2. By hypothesis A and B are state matrices, and so by theorem 4.4 we get that .A; and 3, with
I = 1, 2, are positive state matrices. In particular this implies that

Tr(A) = Tr(B) = 1, I=1,2. (4.9)
By putting together (4.7) and (4.8), (4.9) we obtain
TT(A ®] B) = TI’(A[ X Bl)el + TT(AZ (024 Bz)ez.

=Tr(A)Tr(Bpe, + Tr(Ay Tr(By)e,
=e t e
=1.

Theorem 4.7. The bicomplex tensor product has the following properties:

(1) itisbilinear, i.e. for A, D in BC™*" and B, C in BC™* " we have
A B+C)=AxB+A®C
and
(A+D)® B=A® B+ D®B

(2) it has the fundamental property of tensor products, i.e. for A € BC"™ "™, B € BC"*", C € BC**F and
D € BCP*9wehave

AB ®; CD = (A ®; C)(B ®; D).

Proof. For 1) let us start by proving the first bilinear property (the second follows by similar arguments). We split
the matrices A, Band Cin the idempotent decomposition.

A = Ae; + Asey, B = Bie; + Bse, C = Ce; + Crey,
with A, A, € C*™"(i) and By, By, C;, C; € C™*™(i). Then by theorem 4.4 we get
A ®j (B + C)=(Ae + Azer) ®; [(B + Cer + (B, + Cr)er]
=[A ® (B + C)le; + [A; @ (B2 + Cy)le;
Since the matrices A, B; and C; have complex entries by [16] we have
AR B+ C) =A® B+ A®Ce + (A B+ A ® (e (4.10)
By theorem 4.4 we get
A®jB+A® C=[(A®Ble + (A ® Bel + [(A @ e + (A @ Cyel
=4 B+ A ®Ce+ (A B+ A ® Cye,. (4.11)

We get the thesis by the fact that (4.10) and (4.11) are equal.
To prove the fundamental identity 2), we start by splitting the matrices A and B by the idempotent
decomposition

A = Ae + Ase,, B = Bie| + Baey,
with A;, A, € C"™(i)and By, B, € C™*"(i). Then
AB = (AiB)e; + (A:B)e,.
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Similarly, for the matrices Cand D we have
C = Ce + Coey, D = Die; + Dsey,
with G, C, € C/*P(i), Dy, D, € CP*4(i). Then
CD = (C/Dye; + (CyDy)e,.
Now, by theorem 4.4 we get
(AB) ®; (CD) = (AiB ® C/Dy)e; + (A3, @ CiDy)e,.
Since the matrices As, B;, C; and D, with s = 1, 2 are matrices with complex entries by [16] we obtain
(AB) ®; (CD) = (A ® C)(B, ® Dpe; + (A; ® Co) (B, @ Dy)e,.

On the other side, by theorem 4.4 we have

A ®; C= (A ® e + (A @ Crey,
and

B®; D = (B ® Die; + (B, ® Dye,.
Hence, we get

(A ®; O)(B ®; D) = (A @ C)(B ® Dyer + (A2 ® C)(B, ® Dy)e,.

Finally, since the right hand side of the equations (4.12) and (4.13) are equal we obtain the corresponding
results.

Lemma4.8. Let A € BC"*"and B € BC™*™, Then we have
(A@; By ' =A"1®; B
Proof. Let us start by writing the matrices A and B by the idempotent decomposition:
A= Ae + Ase, B = Bie; + Bse,,
with A;, A, € C"*"(i) and By, B, € C"*"(i). By theorem 4.4 we get
A ®; B= (A ® B)e, + (A, ® Bye,.
Then by lemma 3.8 we obtain
(A ®; B = (A ® By le; + (4 ® By e
Since the matrices A, BB, with s = 1, 2, have complex entries by [16] we can write
(A®; B = (A @ B Yer + (4 @ By) e
Now, by lemma 3.8 and theorem 4.4 we obtain
AT @Bl = (Are + A 'ey) @ (Br'er + By ley)
= (A ® B e + (A ® By) e

Finally, since the right hand side of (4.14) and (4.15) are equal we get the thesis.

(4.12)

(4.13)

(4.14)

(4.15)

O

Remark 4.9. One can reduce the tensor product of bicomplex matrices to the subset of hyperbolic matrices and

define the productof A € D"*"and B € "> asin definition 4.1.
In fact, from theorem 4.4, we have:

Lemma4.10.If A = Ase; + Ase; € D"*"and B = Bie, + Bie, € D" ™, where Ay, A, € R"™"and
By, B, € R™*™ then the tensor product of A and B is:

A ®jB= (A @ Ber + (A @ Bye,
with A ® B € ymxmn,

Proof. The proof follows from standard arguments.All other properties of the tensor product of bicomplex

matrices then restrict to the set of hyperbolic matrices.

10
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4.2. Recovering bicomplex tensor components
We recall that in the complex case one can recover the components of a tensor product of a positive complex
matrix from the outcome matrix, if the outcome matrix is a state, asin [17]:

Proposition 4.11. If M € C""*" ™ s positive complex matrix, and M = M, ® M,,, then M, and M, can be
recovered uniquely from M using the following algorithm:

m

d*Myc=> A @ f)*M(c ® f,), V¢, d € C,
k=1

d*Myc = (ex @ M (f, ® ), Ve, d € C™, (4.16)
k=1

where f,. and ey are basis of C" and C" respectively and the tensor product is the complex one.
We have a similar result in the bicomplex case and we write:

Proposition 4.12. If M € BC" ™" " is a hyperbolic positive matrix, and M = A, ®; By,, forsome A, € BC"*"
and B,,, € BC"™*"™ then A, and B, can be recovered uniquely from M.

Proof. The proofis based on the idempotent representation and properties of the bicomplex tensor product.
Indeed, by writing M = M,e; + M, e, we transform the problem to decomposing the two complex matrices
M, € Crmxnmand M, € C"™*" ™ in their respective tensorial components using proposition 4.11. From

M, = A ® Biand M, = A, ® B,, then one obtains A;, A, € C"*"and By, B, € C"*™asin

equation (4.16). Then, using the formulae in the proof theorem 4.4, the recovering of A, = Aje; + A,e; and
B,, = Bie; + Bse, follows. ]

5. A bicomplex Choi theorem

In this section we describe the concept of completely hyperbolic positive bicomplex matrices and prove a
bicomplex Choi theorem using these notions.

5.1. A Choi theorem in the complex case
First we recall the definition of positive maps in the complex case.

Definition 5.1. A linear map ¢: C"*" — C™*™ is positive if and only if for all positive matrices A € C"*" we
have ¢ (A) is positive.

One can extend a positive map ¢: C"*" — C"*" to block matrices A = (Ay) € (C** MNXN for each
N> 0,by

DN (A) = (B(AR)N_, € (CmxmN<N (5.1)

Definition 5.2. A map ¢ is completely positive if for each N > 0 all the maps ¢, are positive.
We recall the following result, see [16, 18, 19]:

Theorem 5.3 Choi’s Theorem. Let ¢p: C"*" — C™"*" be a completely positive map. Then we can write

P(A) =Y VALY, (5.2)

i=1

forsome Vi,...,V, € C"*",

We recall the following definition of finite quantum channels on a Hilbert space.

11
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Definition 5.4. Let H be a finite dimensional Hilbert space and B(H) be the space of operators thatact on H.
We say that the trace preserving map &: B(H) — B(H) is a quantum channel on the Hilbert space H iff there
exists a set of operators { E, }, in B(H) such that

&) =3 E,0E],
forany o € B(H).

In fact, Choi’s theorem states that completely positive maps in the complex case are finite quantum channels
and we develop the same statements in the bicomplex case.

5.2. A Choi theorem in the bicomplex case

We now define a notion of positivity for linear bicomplex maps in order to obtain similar results. In the
bicomplex case the Hilbert spaces above will become Hilbert modules and a description of bicomplex quantum
channels follows.

Definition 5.5. A linear map ¢: BC"*" — BC™*" is hyperbolic positive if and only if for all hyperbolic positive
matrices A € BC"*" we have ¢ (A) is hyperbolic positive.

One can extend a hyperbolic positive map ¢: BC"*" — BC™*™ to block matrices
A = (Ajp) € BCMN*N foreach N > 0,by

Pn(A) = (A1 € BCmmNN (5.3)

Definition 5.6. A map ¢ is a bicomplex completely positive map if for each N > 0 all the maps ¢,; are hyperbolic
positive.In the bicomplex setting we use the complex Choi theorem to give the following characterization of
hyperbolic completely positive matrices, where we use the * bicomplex conjugate as in definition 2.4. This
theorem proves that, in fact, a bicomplex completely positive map is a finite bicomplex quantum channel.

Theorem 5.7. Let ¢: BC"*" — BC™*"™ be a bicomplex completely positive map. We write
P(A) = ¢,(ADe; + ¢,(Ay) ey, where 0 C™*" — C"*", ¢ = 1, 2. Then we have

(1) Themap ¢ is bicomplex completely positive if and only if ¢, and ¢, are completely positive.

(2) Abicomplex completely positive map ¢ in this context can be written as

P(A) =) VAV, (5.4)

i=1

forsome V,...,V, € BC™*".

Proof. To prove 1), let us consider Aj, to be the block matrices of the matrix A. The map ¢ is bicomplex
completely positive if ¢ (A) = ¢(Ajx) are hyperbolic positive forall N > 0. By the idempotent decomposition
we can write

dn(A) = oy (ADe; + Py (Ar)ey,

with ¢y (A)) = ¢(A; jx), where we denote by A, jx the block matrices of the matrices A;, for i = 1, 2. Since
¢y (A) is hyperbolic positive by proposition 3.2 we get that ¢, (A;) are also hyperbolic positive. Therefore the
maps ¢,, with £ = 1, 2 are completely hyperbolic positive.

For the converse, if ¢, (A;) are hyperbolic positive then by proposition 3.2 we note that ¢, (A) is hyperbolic
positive too. Then by definition 5.5 we get that ¢ (A) is completely hyperbolic positive.

To prove 2), from the first part of this theorem and [ 18] we have

d(A) = ¢ (ADer + ¢,(Are;
= > U AU et + Y VAV er,

k=1 i=1
where U;, V. € C"*"with1 < k < r. Weset

Vi:=Urer + Vies.

12
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Therefore we have

P(A) = Z(Ukel + Vier) (Ajer + Azer) [(Urer + Vieo) T

i=1

]
=" VAV
k=1

O

Remark 5.8. The form in formula (5.4) is called Kraus decomposition and we observe that this representation is
not unique.

Using the idempotent representation for the tensor product and analogous results in the complex case the
proof of the following statement readily follows.

Proposition 5.9. The bicomplex tensor product of two maps of the form (5.4) has the same form.

In conclusion, this paper shows applications of the bicomplex Choi theorem to information theory and, as
such, itis a fundamental first step of rewriting aspects of quantum mechanics from a bicomplex point of view.

In his work [20], Kocik has stated that a hyperbolic model of quantum mechanics is not consistent and it
cannot explain a double-split experiment due to the unbounded ways in which the phase can develop. A
different approach was developed by Khrennikov in [21], where he develops a quantization formalism in a
hyperbolic Hilbert space, with a view on developing a theory of Hyperbolic Quantum Mechanics. Also, in [22],
Khrennikov and Segre prove that Von Neumann Uniqueness theorem doesn’t hold in Hyperbolic Quantum
Mechanics.

In the bicomplex case, due to the split on zero divisors that, on each component, reverts back to the complex
case, one can assure that the phase (split in its two complex components) remains bounded. Then, a double-split
experiment can be constructed within this framework, however, this remains to be developed in a future work.

Indeed, in [23, 24], Rochon and Tremblay have written a bicomplex generalization of the Schrodinger
equation, as well as as a beginning of a formulation of bicomplex quantum mechanics.

Note: Data sharing is not applicable to this article as no new data were created or analyzed in this study.
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