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1. Introduction

The classical theory of Hilbert spaces of functions analytic in a neighborhood of the 
origin, i.e., with elements of the form

f(z) =
∞∑

n=0
znfn (1.1)

where the fn ∈ C satisfy

∞∑
n=0

γn|fn|2 < ∞ (1.2)

encompasses spaces such as the Hardy space, the Fock space, the Bergman space, and 
many others. In (1.2) the numbers γn (the weights) are strictly positive numbers such 
that

R =
√

lim inf
n→∞

γ
1/n
n > 0.

From

|
∞∑

n=0
znfn|2 ≤

( ∞∑
n=0

|z|2n

γn

)( ∞∑
n=0

γn|fn|2
)

the functions are analytic for z such that

|z|2 <
1

lim supn→∞
1

γ
1/n
n

= lim inf
n→∞

γ1/n
n = R2

(R = ∞ is allowed; one then has a space of entire functions). Furthermore the corre-
sponding reproducing kernel is

K(z, w) =
∞∑

n=0

znwn

γn
. (1.3)

One can also allow some of the weights γn to vanish, as for instance for the Dirichlet 
kernel
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− ln(1 − zw) =
∞∑

n=1

znwn

n
,

where z, w belong to the open unit disk D. Then there is no constant term in the 
expansions (1.2) and (1.3).

The theory of such spaces can be extended to the case where the coefficients fn, and 
possibly the weights γn, are matrices; see e.g., [4]. In the present paper we consider the 
case where, in (1.1), not only fn but also z is replaced by a matrix. Thus we consider 
expressions of the form

F = F (Z) =
∞∑

n=0
ZnFn (1.4)

where1 Z ∈ Cp×p and the Fn ∈ Cp×p, or more generally belong to a Hilbert space which 
is also a right and left Cp×p-module. When p = 1 it may be that (1.4) converges only 
for Z = z = 0. When p > 1, there are always non-zero nilpotent matrices and the set 
of convergence of (1.4) is not reduced to a point, but it does not contain necessarily an 
open set (i.e. may have an empty interior), as follows from Proposition 2.3 below. See 
Corollary 2.4.

Expressions of the form (1.4) are not closed under pointwise product, and following 
[42] we define on monomials ZnA and ZmB the convolution (or Cauchy; see [42]) product 
as follows: Let n, m ∈ N0 and A, B ∈ Cp×p. One sets

(ZnA) � (ZmB) = Zn+mAB, (1.5)

extended by linearity to the linear span of the monomials. This is called the Cauchy 
product and appears in various places in non-commutative settings; see [42] and, for 
the quaternionic setting, see [35] for slice functions and [56] for hypercomplex regular 
functions.

Among other related non-commutating settings let us mention for example the calcu-
lus on diagonals developed in [14,15] (see [53] for a predecessor to this calculus).

By specializing to subspaces of Cp×p we obtain known cases such as the quaternions 
and the split quaternions, for p = 2 and Z, W of the form(

z1 −z2
z2 z1

)
and

(
z1 z2
z2 z1

)
(1.6)

respectively, and matrices of these for p even, say p = 2h (h ∈ N) and z1 and z2 being 
elements of Ch×h in (1.6). Bicomplex numbers will correspond to matrices of the form(

z1 −z2
z2 z1

)
,

1 We will freely use both notations F and F (Z).
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and hyperbolic numbers correspond to the case where z1 and z2 are real in this latter 
expression. Here too, our approach allows to study matrices of bicomplex and hyperbolic 
numbers.

The paper consists of seven sections, of which this introduction is the first. In the 
second section we give first properties of the power series of the form (1.4), and examples 
such as the counterparts of the Fock space, the Hardy space, the Wiener algebra and 
rational functions in the present setting. In the third section we study in greater details 
the Hardy space. We discuss a version of the Beurling-Lax theorem in the present setting 
and discuss the notion of Blaschke factor here. In Section 4 we solve a Nevanlinna-
Pick interpolation problem in the Hardy space. Schur multipliers and their coisometric 
realizations are studied in Section 5 using two approaches. The first uses the theory of 
linear isometry relations and the second is based on operator ranges. In particular we 
prove a version of Leech’s factorization theorem, needed in the arguments. The notion of 
Carathéodory multipliers is studied in Section 6 with different methods; we reduce the 
problem to the case of a complex variable. In the last section we discuss various future 
directions of research and links with hypercomplex analysis.

Throughout the paper B(0, R) denotes the open unit disk in the complex plane cen-
tered at the origin, and with radius R. The spectral radius of the matrix A ∈ Cp×p will 
be denoted by ρ(A).

2. Generalities and first examples

2.1. Preliminary results

We first introduce:

Definition 2.1. Given R > 0, the ring HR consists of the power series of the form

F (Z) =
∞∑

n=0
ZnFn, where Z, F0, F1, . . . ∈ Cp×p (2.1)

and the latter are such that

lim sup
n→∞

‖Fn‖ 1
n ≤ 1

R
. (2.2)

Note that (2.1) converges for Z such that ρ(Z) < R.

Proposition 2.2. For any A ∈ Cp×p with ρ(A) < R, the series

F (A) =
∞∑

n=0
AnFn (2.3)

converges absolutely.
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Proof. We have

lim sup
n→∞

‖AnFn‖ 1
n ≤ lim

n→∞
‖An‖ 1

n · lim sup
n→∞

‖Fn‖ 1
n ≤ ρ(A)

R
< 1, (2.4)

and so the series with running term ‖AnFn‖ converges. �
Proposition 2.3. In the above notation, assume

lim sup
n→∞

‖Fn‖ 1
n = ∞. (2.5)

Then, the set of convergence of (2.1) does not contain invertible matrices.

Proof. Let A ∈ Cp×p be invertible. Then,

Fn = A−nAnFn

and so

‖Fn‖1/n ≤ ‖A−n‖1/n‖AnFn‖1/n

Since A is invertible, it holds that lim ‖A−n‖1/n = ρ(A−1) > 0 and we have

lim sup
n→∞

‖Fn‖1/n = ∞ =⇒ lim sup
n→∞

‖AnFn‖1/n = ∞

and (2.3) cannot converge. �
Corollary 2.4. If (2.5) holds, the set where the power series converges has an empty 
interior.

Proof. This follows from the fact that the set of invertible matrices is dense and open 
in Cp×p. �
Remark 2.5. When p > 1 besides the case where A is nilpotent, one has examples where 
AFn = 0 for all n ≥ 1; then F (A) = F0 exists even if (2.5) is in force.

Proposition 2.6. For any F, G ∈ HR and A with ρ(A) < R,

(F + G)(A) = F (A) + G(A) and (F � G)(A) =
∞∑

n=0
AnF (A)Gn, (2.6)

where G =
∑∞

n=0 ZnGn with G0, G1, . . . ∈ Cp×p and where � denotes the Cauchy product 
(1.5). In particular, (F � G)(A) = 0 whenever F (A) = 0.
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Proof. We only prove the second claim. We have

F � G = F �

( ∞∑
n=0

ZnGn

)

=
∞∑

n=0
(F � Zn)Gn

=
∞∑

n=0
ZnFGn,

where the exchange of sum and �-product is justified since

‖
∞∑

n=0
ZnFGn‖ ≤

∞∑
n=0

‖F‖ · ‖Zn‖ · ‖Gn‖,

and using ρ(Z) < R and (2.2) for G. This ends the proof since

(ZnFGn)(A) = AnF (A)Gn. �
Definition 2.7. Let R > 0 and let F (Z) =

∑∞
n=0 ZnFn ∈ HR. We define

F (zIp) =
∞∑

n=0
znFn, |z| < R. (2.7)

Lemma 2.8. Let F, G ∈ HR. It holds that

(F � G)(zIp) = F (zIp)G(zIp), |z| < R. (2.8)

Proof. We have(( ∞∑
n=0

ZnFn

)
�

( ∞∑
n=0

ZnGn

))
(zIp) =

( ∞∑
n=0

Zn

(
n∑

k=0

FkGn−k

))
(zIp)

=
∞∑

n=0
zn

(
n∑

k=0

FkGn−k

)

=
( ∞∑

n=0
znFn

)( ∞∑
n=0

znGn

)
= F (zIp)G(zIp),

where the various exchanges of sums hold since |z| < R. �
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Theorem 2.9. Let R > 0 and let F =
∑∞

n=0 ZnFn ∈ HR. Let

F (zIp) = (fij(z))p
i,j=1

and let A ∈ Cp×p with spectrum inside B(0, R). Then,

F (A) = 1
2πi

ˆ

γ

(zIp − A)−1F (zIp)dz (2.9)

where γ is a closed Jordan curve inside B(0, R), and which encloses the spectrum of A.

Proof. With Fn = (f (n)
ij )p

i,j=1, and with

fij(z) =
∞∑

n=0
znf

(n)
ij ,

we have

F (zIp) =
∞∑

n=0
znFn = (fij(z))p

i,j=1 .

With Eij , i, j = 1, . . . , p denoting the standard basis in Cp×p we further have

∞∑
n=0

AnFn =
∞∑

n=0
An

p∑
i,j=1

f
(n)
ij Eij

=
p∑

i,j=1

⎛⎜⎜⎜⎜⎝
∞∑

n=0
Anf

(n)
ij︸ ︷︷ ︸

fij(A)

⎞⎟⎟⎟⎟⎠Eij

=
p∑

i,j=1

⎛⎝ 1
2πi

ˆ

γ

(zIp − A)−1fij(z)dz

⎞⎠Eijdz

= 1
2πi

ˆ

γ

(zIp − A)−1

⎛⎝ p∑
i,j=1

fij(z)Eij

⎞⎠ dz

= 1
2πi

ˆ

γ

(zIp − A)−1F (zIp)dz. �

Theorem 2.10. Assume that there is a summable positive measure μ of the form

dμ(z) = m(|z|)dxdy, |r| < R
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such that

2π

R̂

0

r2n+1m(r)dr = γn, n = 0, 1, . . . (2.10)

Then for F =
∑∞

n=0 ZnFn such that (2.2) is in force, it holds that

ˆ

|z|<R

(F (zIp))∗F (zIp)dμ(z) =
∞∑

n=0
γnF ∗

nFn. (2.11)

Proof. The power series F (Z), and in particular F (zIp), converges in |z| < R in view of 
(2.2). To check (2.11), let

fN (z) =
N∑

n,m=0
F ∗

nFmznzm.

By Cauchy inequality, we have that, for |z| ≤ r < R,

|fN (z)| ≤
N∑

n,m=0
|z|n|z|m‖Fn‖‖Fm‖

=
(

N∑
n=0

|z|n
√

γn

√
γn‖Fn‖

)2

≤
(

N∑
n=0

|z|2n

γn

)(
N∑

n=0
γn‖Fn‖2

)

≤
( ∞∑

n=0

r2n

γn

)( ∞∑
n=0

γn‖Fn‖2

)
.

Since r < R we have that 
∑∞

n=0
r2n

γn
< ∞, and we can apply the dominated convergence 

theorem since dμ is assumed to be summable. We then obtain

ˆ

|z|<r

(F (zIp))∗F (zIp)dμ(z) =
∞∑

n,m=0
F ∗

nFm

¨

|z|<r

znzmdμ(z)

=
∞∑

n,m=0
F ∗

nFm

rˆ

ρ=0

2πˆ

θ=0

ρn+meiθ(n−m)m(ρ)ρdρdθ

=
∞∑

n=0
F ∗

nFn

⎛⎝2π

rˆ

0

ρ2n+1m(ρ)dρ

⎞⎠
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where the integrals are finite thanks to (2.10). The monotone convergence theorem allows 
to let r tend to R and obtain the result using here too (2.10). �
Remark 2.11. The previous result can be adapted to other cases, such as Dirichlet, where 
derivatives appear, or to the case of the Hardy space. Another case where the previous 
result can be adapted is the time-varying setting as developed in [15,37]. Let

U =
∞∑

n=0
ZnDn

where Z is now the unitary shift from �2(Z, C) into itself and D0, D1, . . . are diagonal 
operators. The Zadeh transform U(z) of U is

∞∑
n=0

znZnDn, z ∈ C (2.12)

(see [5,6], and the unpublished manuscript [2]). Since for the unitary shift, Z∗mZn =
Zn−m, we have

1
2πi

ˆ

|z|=r

D∗
mZ∗mzmznZnDn

dz

z
=
{

0 if n 	= m,

r2nD∗
nDn if n 	= m

we have, using the same methods as above, and with the same notations,

ˆ

|z|<R

(U(z))∗U(z)dμ(z) =
∞∑

n=0
D∗

nDn. (2.13)

2.2. The Fock space

The classical Fock space corresponds to γn = n! in (1.2). See [28]. Besides Bargmann’s 
celebrated characterization (M∗

z = ∂, where Mz is multiplication by z and ∂ denotes 
differentiation), the Fock space can be seen as the only Hilbert space of functions analytic 
in a (say convex open) neighborhood of the origin in which the backward shift operator

(R0f)(z) =

⎧⎨⎩
f(z) − f(0)

z
, z ∈ V \ {0}

f ′(0), z = 0,
(2.14)

is bounded and has for adjoint the integration operator

(If)(z) =
ˆ

[0,z]

f(s)ds. (2.15)
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See [7]. The above motivates the following definitions, which are the counterpart of (2.14)
and (2.15) in our present setting.

Definition 2.12. Let F (Z) =
∑∞

n=0 ZnFn be a matrix power series converging in a neigh-
borhood of 0p×p. We define

(R0F )(Z) =
∞∑

n=1
Zn−1Fn. (2.16)

I
( ∞∑

n=0
ZnFn

)
=

∞∑
n=0

1
n + 1ZnFn. (2.17)

It is not difficult to check that

I(F ) =
ˆ

[0,z]

F (sZ)ds. (2.18)

Definition 2.13. The Fock space F consists of the matrix power series F (Z) =
∑∞

n=0 ZnFn

for which

Tr [F, F ]F < ∞, (2.19)

where

[F, F ]F =
∞∑

n=0
n!F ∗

nFn. (2.20)

We can apply Theorem 2.10 with m(r) = e−r2 and obtain:

∞∑
n=0

n!F ∗
nFn = 1

π

¨

C

F (zIp)∗F (zIp)e−|z|2
dxdy (2.21)

For the case p = 1 the following result has been proved in [7, Lemma 2.1].

Proposition 2.14. The Fock space functions are defined for all Z ∈ Cp×p and the Fock 
space can be characterized, up to a positive multiplicative factor for the inner product, 
as the only space of matrix power series a priori defined near the origin and for which

R∗
0 = I. (2.22)

Proof. The first claim follows from ‖Zn‖ ≤ ‖Z‖n. For the second claim, and with the 
understanding that R0C = 0 we have
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[R∗
0(ZnC), ZmD]F =

{
[ZnC, Zm−1D]F, m = 1, 2, . . .

0, m = 0,

= δn,m−1(m − 1)!D∗C

= δn+1,m[ 1
n + 1Zn+1C, ZmD]F

= [I(ZnC), ZmD]F. �
2.3. Wiener algebra

The Wiener algebra of the unit circle, denoted here W, consists of the trigonometric 
series of the form

f(eit) =
∑
n∈Z

fneint (2.23)

where the complex numbers fn satisfy 
∑

n∈Z |fn| < ∞. The celebrated Wiener-Lévy 
theorem states that f is invertible in W if and only if it is pointwise invertible (that 
is, pointwise different from 0). The Wiener algebra is an example of Banach algebra. 
Two important subalgebras of the Wiener algebra consists of W+ (resp. W−) for which 
fn = 0, n < 0 (resp. fn = 0, n > 0). The Wiener algebra still makes sense when the 
fn ∈ Cp×p. The counterpart of the Wiener-Lévy theorem involves then the determinant 
of the function.

We now define the counterpart of W+ in the present framework.

Definition 2.15. We denote by W+ the space of functions

F (Z) =
∑

n∈N0

ZnFn

with ρ(Z) ≤ 1 and 
∑∞

n=0 ‖Fn‖ < ∞.

We leave to the reader to check that W+ endowed with the � product is an algebra.

Theorem 2.16. F ∈ W+ is invertible in W+ if and only if

det(
∞∑

n=0
znFn) 	= 0, |z| ≤ 1.

Proof. We first note that F (zIp) ∈ Wp×p
+ . So it will be invertible in Wp×p

+ if and only 
if det F (zIp) 	= 0 in the closed unit disk. Assume this condition in force, and let g(z) =∑∞

n=0 znGn ∈ Wp×p
+ (the lower case g is not a misprint) be such that

∞∑
n=0

‖Gn‖ < ∞
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and F (zIp)g(z) = Ip, for |z| ≤ 1. Then, we have

F0G0 = Ip

F0G1 + F1G0 = 0
...

F0Gn + · · · + FnG0 = 0
...

These equalities express that g(z) = G(zIp) where G =
∑∞

n=0 ZnGn ∈ W+. The converse 
statement is proved by reading backwards these arguments. �

The definition of the counterpart of W will involve a unitary variable Z. The case of 
the counterpart of W− will be more problematic since one then requires invertible Z. 
These aspects will be considered in a different publication, where a counterpart of the 
Wiener-Lévy inversion theorem is also considered.

2.4. Rational functions

We consider (Cp×p)u×v as a right module over Cp×p and a left module over Cp×p in 
the following ways:

Definition 2.17. Right module structure: For every u, v ∈ N, every Ajk ∈ Cp×p, j =
1, . . . , u, k = 1, . . . , v, and every C ∈ Cp×p

(
(Ajk)j=1,...u

k=1,...v

)
C = (AjkC)j=1,...u

k=1,...v
(2.24)

Left module structure: in the above notation

C

(
(Ajk)j=1,...u

k=1,...v

)
= (CAjk)j=1,...u

k=1,...v
. (2.25)

We consider power series of the form

∞∑
n=0

ZnAn, An ∈ (Cp×p)u×v. (2.26)

We extend R0 on these power series by

R0(
∞∑

n=0
ZnAn) =

∞∑
n=1

Zn−1An.
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Proposition 2.18. Let M be a finitely generated right module of power series of the form 
(2.26). Assume that M is R0-invariant. Then M is generated by the block columns of a 
matrix function of the form

E(Z) = C � (IpN − ZA)−�

where A ∈ (Cp×p)N×N and C ∈ (Cp×p)u×N .

Proof. Let F1, . . . , FM a generating family for M. Every Fj is (Cp×p)u×v-valued and 
any F ∈ M can be written (possibly in a non-unique way) as

F =
M∑

m=1
FmCm, C1, . . . , CM ∈ Cp×p.

Let

R0Fj =
M∑

r=1
FrArj .

Let E = (F1 F2 · · · FM ). Then,

R0F = (R0F1 R0F2 · · · R0FM )

= (F1A11 + F2A21 + · · · F1A12 + F2A22 + · · · · · · F1A1M + F2A2M + · · ·)

= (F1 F2 · · · FM )

⎛⎜⎝ A11 A12 · · · A1M

A21 A22 · · · A2M

AM1 AM2 AMM

⎞⎟⎠
︸ ︷︷ ︸

A∈(Cp×p)M×m

.

Let E =
∑∞

n=0 ZnEn, En ∈ (Cp×p)M×M . The above equation can be rewritten as

∞∑
n=1

Zn−1En =
∞∑

n=0
ZnEnA.

Hence

En+1 = EnA, n = 0, 1, . . .

and so En = E0An, n = 0, 1, . . .. Thus

E(Z) =
∞∑

n=0
ZnE0An = E0 � (INp − ZA)−�. �
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Definition 2.19. E of the form (2.26) is rational if the right linear module over Cp×p

generated by Rj
0E, j = 1, . . . is finitely generated.

Theorem 2.20. E is rational if and only if

E(Z) = D + ZC � (IpN − ZA)−�B. (2.27)

Proof. Let M be the module generated by Rj
0E. Then M is generated by C � (IpN −

ZA)−�. Write

R0E = C � (IP N − ZA)−�B.

So

ZR0E = E − E0 = ZC � (IP N − ZA)−�B,

and hence the result holds. �
We note that E(zIp) is rational in the classical sense and the restriction of (2.27) to 

Z = zIp gives a realization in the classical sense; see [29].

3. The Hardy space

3.1. Definition

The classical Hardy space H2(D) of the open unit disk D is the space of power series 
f(z) =

∑∞
n=0 znfn for which

∞∑
n=0

|fn|2 < ∞,

i.e., corresponding to γn ≡ 1 in (1.2). It is the reproducing kernel Hilbert space with 
reproducing kernel

k(z, w) = 1
1 − zw

=
∞∑

n=0
znwn, (3.1)

where z, w run through D, and plays a key role in operator theory. It has numerous 
extensions and generalizations. In the present paper we consider its counterpart when 
the complex numbers are replaced by elements in Cp×p, and the Szegö kernel (3.1)
replaced by

K(Z, W ) =
∞∑

n=0
ZnW ∗n (3.2)
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where Z, W runs through the set of elements of Cp×p with spectral radius less than 1.

Definition 3.1. We denote by

K =
{

Z ∈ Cp×p ; ρ(Z) < 1
}

(3.3)

where ρ(Z) denotes the spectral radius of Z.

Definition 3.2. The Hardy space H2(K) consists of functions of the form

F (Z) =
∞∑

n=0
ZnFn, Z ∈ K, (3.4)

where (F0, F1, . . .) satisfy

Tr
( ∞∑

n=0
F ∗

nFn

)
< ∞. (3.5)

Theorem 3.3. When endowed with the Cp×p-valued Hermitian form

[F, G]2 =
∞∑

n=0
G∗

nFn, (3.6)

(where G(Z) =
∑∞

n=0 ZnGn) and associated norm (3.5), H2(K) the reproducing kernel 
Hilbert module with reproducing kernel (3.2), meaning that

[F (·), K(·, W )C] = C∗F (W ), W ∈ K and C ∈ Cp×p. (3.7)

Proof. We consider the Hilbert space �2(N0, Cp×p) of sequences F = (F0, F1, . . .) of 
sequences of elements of Cp×p with finite norm (3.5). Note that �2(N0, Cp×p) is a right 
Cp×p module: it holds that

F = (F0, F1, . . .) ∈ �2(N0,Cp×p) =⇒ FA = (F0A, F1A, . . .) ∈ �2(N0,Cp×p),

∀A ∈ Cp×p,

as well as the linearity conditions

(F + G)A = FA + GA

F(A + B) = FA + FB,

for all F, G ∈ �2(N0, Cp×p) and A, B ∈ Cp×p; see e.g. [48, p. 117].
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We define

[C, D] =
∞∑

n=0
G∗

nFn, C and D ∈ �2(N0,Cp×p). (3.8)

It holds that

Tr [C, D] =
∞∑

n=0
Tr G∗

nFn, (3.9)

which is the inner product associated to (3.5).
H2(K) is a Hilbert space since �2(N0, Cp×p) is a Hilbert space, and since the coeffi-

cients Fn in (3.4) are uniquely determined by F (Z) (and in fact by F (zIp) with z ∈ C). 
Furthermore we have with F as in (3.4),

[F (·), K(·, W )C]H2(K) = [
∞∑

n=0
ZnFn,

∞∑
n=0

ZnW ∗nC]H2(K)

=
∞∑

n=0
C∗W nFn

= [F (W ), C]Cp×p . �
Theorem 3.4. Let F =

∑∞
n=0 ZnFn ∈ H1. It holds that

lim
r↑1

r∈(0,1)

1
2π

2πˆ

0

F (reiθIp)∗F (reiθIp)dθ =
∞∑

n=0
F ∗

nFn (3.10)

where both sides simultaneously converge or diverge.

Proof. The arguments as in the proof of Theorem 2.10 show that

1
2π

2πˆ

0

F (reiθIp)∗F (reiθIp)dθ =
∞∑

n=0
r2nF ∗

nFn.

Thus, for every w ∈ Cp,

1
2π

2πˆ

0

w∗F (reiθIp)∗F (reiθIp)wdθ =
∞∑

n=0
r2nw∗F ∗

nFnw.

Then use the monotone convergence theorem and the polarization identity

w∗Xz = 1
4

3∑
k=0

i−k(w + ikz)∗X(w + ikz), w, z ∈ Cp, X ∈ Cp×p. � (3.11)
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In what follows we will make frequent use of the operators

(MZF )(Z) =
∞∑

n=0
Zn+1Fn, (3.12)

(MAF )(Z) =
∞∑

n=0
ZnAFn. (3.13)

Note that MA satisfies

(MA)∗ = MA∗ . (3.14)

Note also that MZ is an isometry with adjoint R0:

(M∗
Z)
( ∞∑

n=0
ZnFn

)
=

∞∑
n=1

Zn−1Fn. (3.15)

Note that the right hand side of (3.15) makes sense for converging matrix power 
series even if the series does not belong to the Hardy space. Furthermore, for p = 1 the 
formula reduces to the classical backward-shift operator defined by (2.14) for a function 
f analytic in a neighborhood V of the origin.

3.2. Resolvent operators and resolvent equations

We follow [23, §2.3] suitably adapted to the present setting. Recall that MA denotes 
the operator of multiplication of the coefficients on the left by A; see (3.13). We define 
an operator RA on power series in Z via:

(RAF )(zIp) = (zIp − A)−1(F (zIp) − F (A)). (3.16)

When A = 0p×p this is the operator R0 defined in (2.16).

Lemma 3.5. Let F =
∑∞

n=0 ZnFn. Then,

RAF =
∞∑

k=0

Zk

( ∞∑
n=k+1

An−1−kFn

)
(3.17)
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Proof. We have

RAF (zIp) = (zIn − A)−1

( ∞∑
n=1

(znIp − An)Fn

)

=
∞∑

n=0
(zIp − A)−1(znIp − An)Fn

=
∞∑

n=0

n−1−k∑
k=0

(zkAn−1−k)Fn

=
∞∑

k=0

zk

( ∞∑
n=k+1

An−1−kFn

)

and hence the result holds. �
Lemma 3.6. (see also [23, (2.32) p. 265] for the time-varying counterpart)

RA = R0(I − MAR0)−1. (3.18)

Proof. We follow [23] and set G = (I − MAR0)F . We have:

G = F − MAR0F

=
∞∑

n=0
ZnFn − MA

∞∑
n=1

Zn−1Fn

= F0 +
∞∑

n=1
(Zn − Zn−1A)Fn

= F0 +
∞∑

n=0
Zn−1(Z − A)Fn

and so G(A) = F0 and

G(zIp) = F0 + (zIp − A)(R0F )(zIp). (3.19)

Thus

(RAG)(zIp) = (zIp − A)−1(G(zIp) − G(A))

= (zIn − A)−1((G − F0)(zIp))

= (R0F )(zIp)

so that
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RA(I − MAR0) = R0

and hence the result holds. �
We now have the resolvent equation:

Theorem 3.7. Let A, B ∈ Cp×p. It holds that:

RA − RB = RA(MA − MB)RB . (3.20)

Proof. Using

R0(I − MAR0)−1 = (I − R0MA)−1R0

we can write

RA − RB = R0(I − MAR0)−1 − R0(I − MBR0)−1

= (I − R0MA)−1R0 − R0(I − MBR0)−1

= (I − R0MA)−1 (R0 − R0MBR0 − R0 + R0MAR0) R0(I − MBR0)−1

= (I − R0MA)−1 (R0MAR0 − R0MBR0) R0(I − MBR0)−1

= (I − R0MA)−1R0(MA − MB)R0(I − MBR0)−1

= R0(I − MAR0)−1(MA − MB)R0(I − MBR0)−1

and hence the result holds. �
3.3. Blaschke factor

Given a matrix A ∈ Cp×p with ρ(A) < 1, the unique solution to the Stein equation

ΓA − AΓAA∗ = Ip (3.21)

is given by the converging series

ΓA =
∞∑

n=0
AnA∗n. (3.22)

Observe that ΓA ≥ Ip and hence is invertible. If we let

LA = ΓA − ΓAA∗Γ−1
A AΓA,

then it follows by the Sherman-Morrison formula that
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L−1
A = A∗A + Γ−1

A ≥ 0. (3.23)

Let us now introduce the power series

UA(Z) := (Z − A) � (I − ZΓAA∗Γ−1
A )−�L

1
2
A

= −AL
1
2
A +

∞∑
n=1

Zn(I − AΓAA∗Γ−1
A )(ΓAA∗Γ−1

A )n−1L
1
2
A

= −AL
1
2
A +

∞∑
n=1

ZnA∗(n−1)Γ−1
A L

1
2
A. (3.24)

The first power series representation of UA above follows since

(I − ZΓAA∗Γ−1
A )−� =

∞∑
k=0

Zk(ΓAA∗Γ−1
A )k,

while the next representation follows since

(I − AΓAA∗Γ−1
A )(ΓAA∗Γ−1

A )n−1 = (I − AΓAA∗Γ−1
A )ΓAA∗(n−1)Γ−1

A

= (ΓA − AΓAA∗)A∗(n−1)Γ−1
A = A∗(n−1)Γ−1

A

for all n ≥ 1, due to (3.21).

Proposition 3.8. Let UA(Z) be defined as in (3.24). Then

[
Mn

ZUA, Mk
ZUA

]
2 = δn,kIp for all n, k ≥ 0. (3.25)

Proof. By (3.15), it suffices to verify (3.25) for k = 0. For n = 0, we have by (3.24) and 
definitions (3.6) and (3.22),

[UA, UA]2 = L
1
2
AA∗AL

1
2
A +

∞∑
j=0

L
1
2
AΓ−1

A AjA∗jΓ−1
A L

1
2
A

= L
1
2
A

(
A∗A + Γ−1

A

( ∞∑
j=0

AjA∗j

)
Γ−1

A

)
L

1
2
A

= L
1
2
A

(
A∗A + Γ−1

A

)
L

1
2
A = L

1
2
ALAL

1
2
A = Ip.

For n > 0, we have

ZnUA(Z) = −ZnAL
1
2
A +

∞∑
j=1

Zj+nA∗(j−1)Γ−1
A L

1
2
A,



364 D. Alpay, I. Cho / Linear Algebra and its Applications 698 (2024) 344–405

and subsequently,

[Mn
ZUA, UA]2 = −L

1
2
AΓ−1

A An−1AL
1
2
A +

∞∑
j=0

L
1
2
AΓ−1

A An+jA∗jΓ−1
A L

1
2
A

= L
1
2
AΓ−1

A An
(

− Ip +
( ∞∑

j=0
AjA∗j

)
Γ−1

A

)
L

1
2
A

= L
1
2
AΓ−1

A An
(

− Ip + ΓAΓ−1
A

)
L

1
2
A = 0,

which completes the proof. �
Corollary 3.9. The operator MUA

: F (z) �→ UA(z) � F (z) is an isometry on H2(K) in 
the following sense:

[UA � F, UA � F ]2 = [F, F ]2 for any F ∈ H2(K). (3.26)

Indeed, if we take F ∈ H2(K) in the form (3.4), then we have, by (3.25),

[UA � F, UA � F ]2 =
[ ∞∑

j=0
M j

ZUACj ,
∞∑

j=0
M j

ZUACj

]
2

=
∞∑

j=0
[UACj , UACj ]2 =

∞∑
j=0

[Cj , Cj ]2 =
∞∑

j=0
C∗

j Cj = [F, F ]2 .

Proposition 3.10. H2(K) � MUA
H2(K) = {K(Z, A)C : C ∈ Cp×p}.

Proof. Since UA(A) = 0, it follows by Proposition 2.6 that (UA � F )(A) = 0 for any 
F ∈ H2(K). Therefore, by (3.7) we have

[UA � F, K(Z, A)C]2 = C∗(UA � F )(A) = 0

for all F ∈ H2(K) and C ∈ Cp×p. Therefore, the submodules {K(Z, A)C : C ∈ Cp×p}
and MUA

H2(K) of H2(K) are orthogonal with respect to the form (3.6).
We next take an arbitrary G(Z) =

∑∞
j=0 ZjGj ∈ H2(K), which is orthogonal to 

MUA
H2(K). In particular, it is orthogonal to ZnUA for all n ≥ 0. In other words,

[G, Mn
ZUA]2 = 0 for all n ≥ 0,

which can be written in terms of coefficients of G and UA (see (3.24)) as

−L
1
2
AA∗Gn +

∞∑
j=1

L
1
2
AΓ−1

A Aj−1Gn+j = 0,
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or equivalently,

−ΓAA∗Gn +
∞∑

j=1
Aj−1Gn+j = 0 (3.27)

for all n ≥ 0. Replacing n by n + 1 in (3.27) and multiplying both parts by A on the left 
we get

−AΓAA∗Gn+1 +
∞∑

j=1
AjGn+j+1 = 0.

Upon subtracting the latter equality from (3.27) we get

0 = ΓAA∗Gn − AΓAA∗Gn+1 − Gn+1

= ΓAA∗Gn − (I + AΓAA∗)Gn+1 = ΓAA∗Gn − ΓAGn+1.

Therefore, Gn+1 = A∗nGn for all n ≥ 0 and hence Gn = A∗nG0, so that

G(z) =
∞∑

j=0
ZjA∗nG0 = K(Z, A)G(0),

which completes the proof. �
Corollary 3.11. An element F of H2(K) satisfies F (A) = 0 if and only if it is of the form 
F = UA � G for some G ∈ H2(K).

Proof. The “if” part follows from Remark 2.6 since UA(A) = 0. On the other hand, if 
F ∈ H2(K) is subject to F (A) = 0, then

[F, K(·, A)C]2 = C∗F (A) = 0, C ∈ Cp×p,

and hence, F ∈ MUA
H2(K), by Proposition 3.10. �

The preceding results are of special interest when Z = zIp. The function bA(z) def.=
UA(zIp) is then a Cp×p-valued rational function contractive in the open unit disk and 
unitary on the unit circle. As such one can apply the results of [19,20] which characterize 
such functions, as we now explain. We rewrite first

bA(z) = −AL
1/2
A + z(Ip − zA∗)−1Γ−1

A L
1/2
A (3.28)

= (zIp − A)(Ip − zΓAA∗Γ−1
A )−1L

1/2
A (3.29)

= (Ip − zA∗)−1(zIP − AL−1
A )L1/2

A . (3.30)
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These equations are a direct consequence of (3.24) when Z = zIp. When A = aIp with 
a ∈ D, we have

bA(z) = z − a

1 − za
Ip.

Furthermore, we set

A = A∗

B = Γ−1
A L

1/2
A

C = Ip

D = −AL
1/2
A

(3.31)

so that

bA(z) = D + zC(Ip − zA)−1B.

Theorem 3.12. (3.31) is a minimal realization of bA(z) and it holds that

(
A B
C D

)∗(ΓA 0
0 Ip

)(
A B
C D

)
=
(

ΓA 0
0 Ip

)
. (3.32)

Proof. We need to verify that

AΓAA∗ + Ip = ΓA (3.33)

L
1/2
A Γ−1

A ΓAA∗ − L
1/2
A A∗ = 0 (3.34)

L
1/2
A Γ−1

A ΓAΓ−1
A L

1/2
A + L

1/2
A A∗AL

1/2
A = Ip. (3.35)

The first identity is just (3.21), the second one is trivial and the last identity follows 
from (3.23). �
Remark 3.13. In the language of [20], ΓA is the associated Hermitian matrix associated 
to the minimal realization (3.31).

As a corollary of the previous arguments we see that an element f(z) =
∑∞

n=0 znFn ∈
H2(D)p×p, with F0, F1, . . . ∈ Cp×p satisfies f(A) = 0 if and only if it can be written as

f(z) = bA(z)g(z)

where H2(D)p×p, and ‖f‖ = ‖g‖. One could also obtain this result directly from [3] or 
[27] for instance.
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Particular cases:
In the case of quaternions, we take

Z =
(

z1 −z2
z2 z1

)
and A =

(
a1 −a2
a2 a1

)
, |a1|2 + |a2|2 < 1. (3.36)

Since AA∗ = A∗A = (|a1|2 + |a2|2)I2, we derive from (3.22) Γa = (1 − |a1|2 − |a2|2)−1, 
LA = I2, and then (3.24) amounts to

UA = (Z − A) � (I2 − ZA∗)−�.

See [10], where the quaternionic notation rather than matrix notation is used.
The split quaternions correspond to

A =
(

a1 a2
a2 a1

)
, a1, a2 ∈ C.

See [21,43,52]. We now have, with

J =
(

1 0
0 −1

)
,

AJA∗ = (|a1|2 − |a2|2)J.

Thus, an indefinite metric appears and the current theory has to be appropriately ex-
tended.

3.4. A Beurling-Lax type theorem

Let M be a closed subspace of H2(K) invariant under MZ . Then, the set of functions 
of a complex variable F (zIp) with F ∈ M is a z-invariant subspace of the classical Hardy 
space H2(D) ⊗Cp×p (i.e. Cp×p-valued functions with entries in H2(D)). By the classical 
Beurling-Lax theorem there is a Hilbert space C and a L(C, Cp×p)-valued function Θ
which takes coisometric values on the unit circle and such that

M = ΘH2(D, C).

Let Θ(z) =
∑∞

n=0 znΘn and for H ∈ H2(D, C), set H(z) =
∑∞

n=0 znHn. Let F = ΘH, 
with F (z) =

∑∞
n=0 znFn. A priori C is not a left Cp×p-module and we cannot lift directly

to the setting of the paper, i.e., cannot write from

F (z) =
∞∑

n=0
znFn = Θ(z)H(z) (3.37)
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∞∑
n=0

ZnFn =
( ∞∑

n=0
ZnΘn

)
�

( ∞∑
n=0

ZnHn

)
.

But (3.37) can be rewritten as

F (z) =
∞∑

n=0
znFn =

∞∑
n=0

zn

(
n∑

k=0

ΘkHn−k

)
(3.38)

The operator products ΘkHn−k make sense by construction, and (3.38) is equivalent to

∞∑
n=0

ZnFn =
∞∑

n=0
Zn

(
n∑

k=0

ΘkHn−k

)
. (3.39)

Hence:

Theorem 3.14. Let M be a closed subspace of H2(K) invariant under MZ . There exist 
a Hilbert space C and an operator-valued function Θ =

∑∞
n=0 ZnΘn such that F =∑∞

n=0 ZnFn ∈ M if and only if (3.38) holds for some H ∈ H2(D, C).

4. Interpolation

We want to solve:

Problem 4.1. Given A1, B1, . . . , AN , BN ∈ Cp×p (the interpolation data), describe the 
set of all functions F ∈ H2(K) such that

F (Aj) = Bj , j = 1, . . . , N (4.1)

We follow the classical approach to interpolation in reproducing kernel spaces (and, 
more generally, modules; see [4]). We look for a solution of the form

F =
N∑

j=1
(I − ZA∗

j )−�Cj

where C1, . . . , CN ∈ Cp×p are to be found. Since

F =
N∑

j=1

∞∑
n=0

ZnA∗n
j Cj

the interpolation conditions lead to

Bk = F (Ak) =
N∑

j=1

∞∑
n=0

An
kA∗n

j Cj , k = 1, . . . , N,
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and so

⎛⎜⎜⎝
∑∞

n=0 An
1 A∗n

1
∑∞

n=0 An
1 A∗n

2 · · ·
∑∞

n=0 An
1 A∗n

N∑∞
n=0 An

2 A∗n
1
∑∞

n=0 An
2 A∗n

2 · · ·
∑∞

n=0 An
2 A∗n

N∑∞
n=0 An

N A∗n
1
∑∞

n=0 An
N A∗n

2 · · ·
∑∞

n=0 An
N A∗n

N

⎞⎟⎟⎠
︸ ︷︷ ︸

G

⎛⎜⎜⎝
C1
C2
...

CN

⎞⎟⎟⎠ =

⎛⎜⎜⎝
B1
B2
...

BN

⎞⎟⎟⎠ (4.2)

The Gram matrix G is positive semi-definite. When it is positive definite, one can solve 
and get the Cj . The fact that G > 0 means that the interpolation points are “far away” 
enough one from the other. Similar phenomenon occurs in the time-varying setting. See 
[38].

By the Beurling-Lax theorem considered in the previous section one can then con-
sider the functions for which interpolation is met with B1 = · · · = BN = 0 and get a 
description of all solutions, which we now present.

Let

C = (Ip Ip · · · Ip )︸ ︷︷ ︸
N times

and A = diag(A∗
1, A∗

2, . . . , A∗
N ). (4.3)

The matrix G satisfies the Stein equation

G − A∗GA = C∗C (4.4)

Proposition 4.2. Define (with � product performed block-wise)

Θ(Z) = Ip − (Ip − Z) �
(

(Ip − ZA∗
1)−� · · · (Ip − ZA∗

N )−�
)

G−1

⎛⎜⎝ (Ip − A1)−1

...
(Ip − AN )−1

⎞⎟⎠
(4.5)

It holds that

Θ(Aj) = 0, j = 1, . . . , N. (4.6)
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Proof. We have

(Ip − Z) � C �

⎛⎜⎝
(Ip − ZA∗

1)−� 0 0 · · · 0
0 (Ip − ZA∗

2)−� 0 · · · 0

0 0
. . . 0

0 0 · · · (Ip − ZA∗
N )−�

⎞⎟⎠ (A1) =

= (Ip − Z Ip − Z · · ·)︸ ︷︷ ︸
N times

�

⎛⎜⎝
∑∞

n=0 ZnAn∗
1 0 0 · · · 0

0
∑∞

n=0 ZnAn∗
2 0 · · · 0

0 0
. . . 0

0 0 · · ·
∑∞

n=0 ZnAn∗
N

⎞⎟⎠ (A1)

=
(∑∞

n=0(Zn − Zn+1)An∗
1
∑∞

n=0(Zn − Zn+1)An∗
2 · · ·

∑∞
n=0(Zn − Zn+1)An∗

N

)
(A1)

= ((Ip − A1)G11 (Ip − A1)G12 · · · (Ip − A1)G1N )

= (Ip − A1) (G11 G12 · · · G1N ) .

Hence (here too with × denoting regular matrix multiplication)

Θ(A1) = Ip − (Ip − A1) (G11 G12 · · · G1N ) G−1×

×

⎛⎜⎜⎝
(Ip − A1)−1 0 0 · · · 0

0 (Ip − A2)−1 0 · · · 0

0 0
. . . 0

0 0 · · · (Ip − AN )−1

⎞⎟⎟⎠C∗

= Ip − (Ip − A1) (Ip 0 · · · 0) ×

×

⎛⎜⎜⎝
(Ip − A1)−1 0 0 · · · 0

0 (Ip − A2)−1 0 · · · 0

0 0
. . . 0

0 0 · · · (Ip − AN )−1

⎞⎟⎟⎠C∗

= Ip − (Ip 0 · · · 0) C∗

= 0.

The same argument works of course for A2, . . . , AN . �
We now set

ψ(z) = Θ(zIp) = Ip − (1 − z)C(INp − zA)−1G−1(INp − A∗)−1C∗

Proposition 4.3. It holds that

Ip − ψ(z)ψ(w)∗

1 − zw
= C(INp − zA)−1G−1(INp − wA∗)−1C∗ (4.7)

and in particular ψ is a rational inner function and so the operation of multiplication by 
ψ is an isometry from H2(D, Cp×p) into itself.
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(4.7) is a classical computation based on the identity (4.4), which originates with L. 
de Branges’ work; see [36] for the latter (see also [40]). We refer to [1, Exercise 7.1.17 p. 
375 and p. 402] for a recent presentation of the computation. Rather than proving (4.7)
we present a minimal realization of ψ and compute its associated Hermitian matrix, as 
in Theorem 3.12.

Theorem 4.4. With A and C as in (4.3) and

B = G−1(INp − A∗)−1C∗ (4.8)

D = Ip − CG−1(INp − A∗)−1C∗ (4.9)

we have

ψ(z) = D + zC(INp − zA)−1B

and (
A B
C D

)∗(G 0
0 Ip

)(
A B
C D

)
=
(

G 0
0 Ip

)
. (4.10)

Proof. We set A = diag(A1, A2, . . . , AN ). The (2, 1) block equality in (4.10) is

A∗GA + C∗C = G

which is (4.4). The (1, 2) block amounts to

A∗GB + C∗D = 0,

which is equivalent to

AG(INp − A)∗G−1(INp − A)−1C + C∗ (Ip − CG−1(INp − A)−1C∗) = 0.

Equivalently

C∗ + (AG(INp − A∗) + C∗C) G−1(INp − A)−1C∗ = 0,

i.e., after using (4.4)

C∗ + (A − INp)GG−1(INp − A)−1C∗ = 0,

which clearly holds. To conclude we verify that identity holds in the (2, 2)-block, i.e. that 
we have
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Ip = C(INp − A∗)−1G−1(INp − A)G(INp − A∗)G−1(INp − A)−1C∗+

+ Ip − C(INp − A∗)−1G−1C∗ − CG−1(INp − A)−1C∗+

+ C(INp − A∗)−1G−1C∗CG−1(INp − A)−1C∗.

This amounts to check that

C(INp − A∗)−1G−1ΔG−1(INp − A)−1C∗ = 0

where

Δ = (INp − A)G(INp − A∗) + C∗C − (INp − A)G − G(INp − A∗) = 0.

But it is readily seen that Δ = 0 using (4.4). �
We now come back to the original interpolation problem.

Proposition 4.5. Let A1, A2, . . . , AN ∈ K be such that the matrix G (defined by (4.2)) is 
strictly positive. Then, F ∈ H2(K) vanishes at A1, A2, . . . , AN if and only if it is in the 
range of MΘ.

Proof. It follows by the characterization (3.4) of the inner product in H2(K) that the 
operator MΘ of star-multiplication on the left by Θ is an isometry from H2(K) into 
itself. Thus (and taking into account that MΘ is an isometry)

H2(K) = Ran (I − MΘM∗
Θ) ⊕ Ran (MΘM∗

Θ)

= Ran (I − MΘM∗
Θ) ⊕ Ran MΘ.

To characterize Ran (I −MΘM∗
Θ) we first remark that Ip−ψ(z)ψ(w)∗

1−zw is the reproducing 
kernel of H2(D, Cp×p) � ψH2(D, Cp×p) and that

H2(D,Cp×p) � ψH2(D,Cp×p) = Ran (I − MψM∗
ψ). (4.11)

From (4.7) follows that Ran (I − MψM∗
ψ) is spanned by the functions (Ip − zA∗

j )−1 with 
coefficients on the right belonging to Cp×p, and this ends the proof since

(
(Ip − ZA∗

j )−�D
)

(zIp) = (Ip − zA∗
j )−1D, j = 1, . . . , N and D ∈ Cp×p. (4.12)

This concludes the proof since a function F ∈ H2(K) vanishes at A1, . . . , AN if and only 
if it is orthogonal to the functions (4.12). �

Combining with the beginning of the section we have:
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Theorem 4.6. Let A1, A2, . . . , AN ∈ K be such that the matrix G (defined by (4.2)) is 
strictly positive, and let B1, . . . , BN ∈ Cp×p. Then F satisfies the interpolation conditions 
(4.1)

F (Aj) = Bj , j = 1, . . . , N (4.13)

if and only if F is of the form

F = Fmin + Θ � G (4.14)

where

Fmin =
(
Ip − ZA∗

1)−� (Ip − ZA∗
2)−� · · · (Ip − ZA∗

N )−�
)

G−1

⎛⎝ B1
...

BN

⎞⎠
and G runs through H2(K). The decomposition (4.14) is orthogonal.

5. Schur multipliers

5.1. Definition

We denote by Sp the Schur class of Cp×p-valued Schur multipliers, meaning that the 
operator MS of multiplication by S ∈ Sp on the left is a contraction from the Hardy 
space (H2(D))p. In this section we consider the case of Cp×p-valued Schur multipliers 
for the space H2(K). The operator-valued case, where now S takes values in L(H, Cp×p)
for some Hilbert space H will be considered in Section 5.6.

Theorem 5.1. Let S(Z) =
∑∞

j=0 ZjSj. Then the kernel

KS(Z, W ) =
∞∑

k=0

Zk(Ip − S(Z)S(W )∗)W ∗k (5.1)

is positive definite on K if and only if s(z) := S(zIp) belongs to the Schur class Sp.

Proof. The “only if” part: the positivity of the kernel (5.1) means that for any choice of 
matrices P1, . . . , Pn ∈ K, the following matrix is positive semidefinite:( ∞∑

k=0

P k
i (Ip − S(Pi)S(Pj)∗)P ∗k

j

)
i,j=1,...n

≥ 0. (5.2)

Letting Pi = ziIp (|zi| < 1) gives
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k=0

zk
i (Ip − s(zi)s(sj)∗)zj

k

)
i,j=1,...,n

=
(

Ip − s(zi)s(sj)∗

1 − zizj

)
i,j=1,...,n

≥ 0.

Therefore, the kernel

Ks(z, w) = Ip − s(z)s(w)∗

1 − zw

is positive on D and hence s is a Cp×p-valued Schur-class function.
Conversely, let us assume that the function s(z) =

∑∞
j=0 Sjzj belongs to Sp. Then it 

admits a coisometric (observable) realization

s(z) = S0 + zC(IX − zA)−1B = S0 +
∞∑

j=1
zjCAj−1B

with the state space X (the de Branges-Rovnyak space H(Ks), for example). Therefore,

Sj = CAj−1B for all j ≥ 1.

Then

S(Z) = S0 +
∞∑

j=1
ZjCAj−1B = S0 + ZC � (IX − ZA)−�B.

Then the kernel (5.1) is positive definite on K, by Theorem 5.9, below. �
Having in view the quaternionic setting we recall the following result, which comple-

ments Theorem 5.1. For a proof, see [39].

Theorem 5.2. Let s be a matrix-valued function defined on a subset of the open unit disk, 
having an accumulation point in the open unit disk (as opposed to on the unit circle). 
Assume that the kernel Ks(z, w) is positive-definite on Ω. Then s is the restriction to Ω
of a uniquely defined function analytic and contractive in the open unit disk.

Theorem 5.2 is used in the theory of slice-holomorphic function taking Ω to be some 
open subinterval of (−1, 1). See [13].

Theorem 5.3. Let S be a function from K into Cp×p. The following are equivalent:
(1) The function

KS(A, B) =
∞∑

n=0
An(Ip − S(A)S(B)∗)B∗n (5.3)
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is positive definite on K.
(2) The function S is a power series: S(Z) =

∑∞
n=0 ZnSn and the operator of � multi-

plication by S on the left is a contraction from H2(K) into itself.

Proof. Assume first the kernel (5.3) positive definite in K. Setting A = B, and since 
KS(A, A) ≥ 0, we get that

∞∑
n=0

AnS(A)S(A)∗A∗n ≤
∞∑

n=0
AnA∗n < ∞, A ∈ K,

and so the function 
∑∞

n=0 ZnS(A)∗A∗nC belongs to H2(K) for every C ∈ Cp×p. The 
positivity of the kernel then implies that the linear relation spanned by the pairs

(
∞∑

n=0
ZnA∗nC,

∞∑
n=0

ZnS(A)∗A∗nC) ⊂ H2(K) × H2(K) (5.4)

extends to the graph of a contraction, say T . One then computes

T ∗(ZmD) = S(Z) � (ZmD).

Conversely, assume that the operator MS of � multiplication by S is a contraction 
from H2(K) into itself. We compute M∗

S(K(·, A)C) for A ∈ K and C ∈ Cp×p:

[M∗
S(K(·, A)C), ZmD]H2(K) = [K(·, A, )C, ZmS(Z)D]H2(K)

= [ZmS(Z)D, K(·, A, )C]∗H2(K)

= (C∗AmS(A)∗D)∗

= D∗S(A)∗A∗mC

and so, by continuity,

[M∗
S(K(·, A)C), K(·, B)D]H2(K) =

∞∑
n=0

[K(·, A, )C, ZnS(Z)B∗nD]H2(K)

=
∞∑

n=0
D∗BnS(A)∗A∗nC

and so

M∗
S(K(·, A)C) =

∞∑
n=0

ZnS(A)∗A∗nC (5.5)

and similarly
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M∗
S(K(·, B)D) =

∞∑
n=0

ZnS(B)∗B∗nD.

Thus

[M∗
S(K(·, B)D), M∗

S(K(·, A)C)] = C∗
∞∑

n=0
AnS(A)S(B)∗B∗nD.

The result follows by expressing that MS is a contraction. �
Remark 5.4. We note that the block matrix representation of MS is

⎛⎜⎜⎜⎝
S0 0 0 · · · · · ·
S1 S0 0

. . . · · ·
S2 S1 S0 0 · · ·
. . . . . . . . . . . .

...

⎞⎟⎟⎟⎠ (5.6)

This follows from the convolution formula

Gn =
n∑

u=0
SuFn−u, u = 0, 1, . . . (5.7)

for the coefficients G0, G1, . . . ∈ Cp×p of S � F =
∑∞

n=0 ZnGn, where
F =
∑∞

n=0 ZnFn ∈ H2(K).
By the definition of the inner product, the contractivity is expressed as

∞∑
n=0

(
n∑

u=0
S∗

uFn−u

)∗( n∑
u=0

S∗
uFn−u

)
≤

∞∑
n=0

F ∗
nFn. (5.8)

Remark 5.5. (analytic extension) The positivity of the kernel (5.3) implies that MS is 
a contraction from H2(K) into itself. In particular S = MS(Ip) ∈ H2(K), and is of the 
form S =

∑∞
n=0 ZnSn. When p = 1 a much stronger result holds (see [39]): if (for p = 1), 

S is supposed defined on an open set, say Ω, of D (or more generally a subset of D having 
an accumulation point in D) and if the corresponding kernel (5.3) is positive in Ω, then 
S is the restriction to Ω of a uniquely defined function S analytic and contractive in the 
open unit disk. We do not know if there is a counterpart of the result for p > 1.

Remark 5.6. We note that KS(A, B) is the unique solution of the matrix equation

KS(A, B) − AKS(A, B)B∗ = Ip − S(A)S(B)∗, A, B ∈ K. (5.9)

This “structural identity” is the tool needed to extend the theory of H(S) spaces (see e.g., 
[44,45]) from the complex scalar case to the present setting. In the case of quaternions 
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a similar equation and analysis hold; see [10]. But an important difference is that qq ∈
[0, ∞) for a quaternion q with conjugate q, corresponding here to (3.36).

Note that, with Mr
A being the operator of multiplication on the right by A, i.e.

Mr
A(ZmB) = ZmBA, A, B ∈ Cp×p, n ∈ N,

we have:

MSMZ = MZMS (5.10)

MSMr
A = Mr

AMS (5.11)

We now present a version of the Bochner-Chandrasekharan theorem (see [30, Theorem 
72, p. 144]) in our present setting.

Theorem 5.7. Let T be linear and contractive from H2(K) into itself, and satisfying

TMZ = MZT (5.12)

TMr
A = Mr

AT, ∀A ∈ Cp×p. (5.13)

Then T is a Schur multiplier.

Proof. Let A ∈ Cp×p and n ∈ N. We have from (5.12)

TMZnA = ZnT (A), (5.14)

and

T (A) = T (IpA) = T (Ip)A. (5.15)

Thus

T

( ∞∑
n=0

ZnFn

)
=

∞∑
n=0

ZnT (Fn) (using (5.12))

=
∞∑

n=0
ZnT (Ip)Fn (using (5.13))

= T (In) �

( ∞∑
n=0

ZnFn

)
�

Theorem 5.8. Let S =
∑∞

n=0 ZnSn be a Schur multiplier, with Sn ∈ Cp×p. Then, S̃ =∑∞
n=0 ZnS∗

n is also a Schur multiplier
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Proof. We proceed in a number of steps.

STEP 1: Assume S be a Schur multiplier. Then the function S(zIp) is analytic and 
contractive in the open unit disk.

Setting A = zIp and B = wIp in (5.9) with z, w ∈ C we get that the kernel

∞∑
n=0

zn(Ip − S(zIp)S(Ipw)∗)wn = Ip − S(zIp)S(Ipw)∗

1 − zw

is positive definite in the open unit disk (since elements of the form zIp with z in the 
open unit disk D are inside K) and so series S(zIp) =

∑∞
n=0 znSn converges in the open 

unit disk D and is contractive there (and so is a Cp×p-valued Schur function of the open 
unit disk).

STEP 2: The operator of multiplication by the function

S(z)∗ =
∞∑

n=0
znS∗

n (5.16)

on the right is a contraction from H2(D)p×p into itself (i.e. the function S(z)∗ is still a 
Cp×p-valued Schur function of the open unit disk).

Using the integral representation of the inner product in H2(D)p×p and since

(S(e−it)∗)∗S(e−it)∗ ≤ Ip, a.e. on the unit circle T ,

we get

1
2π

2πˆ

0

(f(eit))∗(S(e−it)∗)∗S(e−it)∗f(eit)dt ≤ 1
2π

2πˆ

0

f(eit)∗f(eit)dt

where f ∈ H2(D)p×p and where the inequality is between matrices, and so

Tr

⎛⎝ 1
2π

2πˆ

0

f(eit)∗(S(e−it)∗)∗S(e−it)∗f(eitdt

⎞⎠ ≤ Tr

⎛⎝ 1
2π

2πˆ

0

f(eit)∗f(eit)dt

⎞⎠ ,

which expresses the asserted contractivity.

STEP 3: The matrix representation of the operator multiplication by the function S(z)∗

on the right has block matrix representation the block-Toeplitz operator with block matrix 
representation
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S∗

0 0 0 · · · · · ·
S∗

1 S∗
0 0

. . . · · ·
S∗

2 S∗
1 S∗

0 0 · · ·
. . . . . . . . . . . .

...

⎞⎟⎟⎟⎟⎠ (5.17)

As in Remark 5.4 this follows from the convolution formula

Gn =
n∑

u=0
S∗

uFn−u, u = 0, 1, . . .

for the coefficients G0, G1, . . . ∈ Cp×p of S(z)∗f(z) =
∑∞

n=0 znGn, where f(z) =∑∞
n=0 znFn ∈ H2(Cp×p)).

STEP 4: S̃ is Schur multiplier in H2(K)
This just follows from (5.8) with the S∗

n in lieu of the Sn since the contractivity is 
expressed in the same way on the level of the coefficients in both cases. �
5.2. Leech theorem

The main results in this section are based on discussions of the authors with Profes-
sor Bolotnikov. We thank Professor Bolotnikov for allowing us to include the material 
presented in this subsection.

Theorem 5.9. Let X be a Hilbert space and let us assume that the operator

U =
(

A B
C D

)
:
(

X
Cp

)
→
(

X
Cp

)
(5.18)

is a contraction. Then the power series

S(Z) = D + ZC � (IX − ZA)−�B = D +
∞∑

k=0

Zk+1CAkB (5.19)

is a Schur multiplier. Moreover, the kernel KS (5.1) can be expressed as

KS(Z, W ) = Γ(Z)Γ(W )∗ +
∞∑

k=0

Λk(Z)(I − UU∗)Λk(W )∗ (5.20)

where

Γ(Z) =
∞∑

k=0

ZkCAk and Λk(Z) = Zk (ZΓ(Z) Ip ) . (5.21)
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Proof. Since U is a contraction, A is bounded by 1 in norm, and the L(X , Cp)–valued 

power series 
∞∑

k=0

ZnCAn converges in norm for each Z ∈ K. It follows from (5.19) and 

(5.21) that

Γ(Z) = C + ZΓ(Z)A, S(Z) = D + ZCΓ(Z)B

and subsequently,

Λk(Z)U = Zk (Γ(Z) S(Z)) .

Therefore,

Γ(Z)Γ(W )∗ +
∞∑

k=0

Λk(Z)(I − UU∗)Λk(W )∗

= Γ(Z)Γ(W )∗ +
∞∑

k=0

Zk (Ip + ZΓ(Z)Γ(W )∗W ∗) W ∗k

−
∞∑

k=0

Zk (Γ(Z)Γ(W )∗ + S(Z)S(W )∗) W ∗k

=
∞∑

k=0

Zk (Ip − S(Z)S(W )∗) W ∗k = KS(Z, W )

which confirms (5.20). Since the kernel on the right side of (5.20) is positive on K, the 
proof is complete. �

Our next result is Leech’s factorization theorem in the present setting.

Theorem 5.10. Given two power series P (Z) and Q(Z), the following are equivalent:

(1) There is a Schur multiplier S(Z) such that

Q(Z) = (P � S)(Z) for all Z ∈ K. (5.22)

(2) The kernel

KP,Q(Z, W ) =
∞∑

k=0

Zk(P (Z)P (W )∗ − Q(Z)Q(W )∗)W ∗k (5.23)

is positive on K.
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Proof. One direction is easy: if (5.22) holds for some

S(Z) =
∞∑

k=0

ZkSk,

then for every Z, W ∈ K and any n ≥ 0, we have ZnP (z) = P (Z) � Zn and

ZnQ(Z) = Zn(P � S)(Z) =
∞∑

k=0

Zn+kP (Z)Sk = P (Z) � (ZnS(Z)),

and subsequently,

KP,Q(Z, W ) =
∞∑

n=0
Zn(P (Z)P (W )∗ − Q(Z)Q(W )∗)W ∗n

=
∞∑

n=0
P (Z) � (ZnW ∗n − ZnS(Z)S(W )∗W ∗n) �r P (W )∗

=P (Z) � KS(Z, W ) �r P (W )∗,

and the latter kernel is positive, as is seen on translating the above equality on the level 
of the coefficients; see [11, Proposition 5.3 p. 855] for a similar argument for quaternionic 
kernels.

Conversely, let us assume that the kernel (5.23) is positive on K. Then (see e.g. [50]) it 
admits a Kolmogorov factorization, i.e., there exists a Hilbert space X and an L(X , Cp)-
valued power series H(Z) converging weakly for all Z ∈ K such that

KP,Q(Z, W ) = H(Z)H(W )∗ for all Z, W ∈ K. (5.24)

Combining the latter identity with (5.23) we conclude that

H(Z)H(Z)∗ − ZH(Z)H(W )∗W ∗ = P (Z)P (W )∗ − Q(Z)Q(W )∗ (5.25)

for all Z, W ∈ K. The latter identity tells us that the linear map

V :
(

H(W )∗W ∗x
P (W )∗x

)
�→
(

H(W )∗x
Q(W )∗x

)
(5.26)

extends by linearity and continuity to an isometry (still denoted by V ) from

DV =
∨

W ∈K,x∈Cp

(
H(W )∗W ∗x

P (W )∗x

)
⊂ X ⊕ Cp onto

RV =
∨

W ∈K,x∈Cp

(
H(W )∗x
Q(W )∗x

)
⊂ X ⊕ Cp.
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Let us extend V to a contraction

V̂ =
(

A∗ C∗

B∗ D∗

)
:
(

X
Cp

)
→
(

X
Cp

)
.

Then we have

(
A∗ C∗

B∗ D∗

)(
H(W )∗W ∗x

P (W )∗x

)
=
(

H(W )∗x
Q(W )∗x

)
,

from which it follows that

A∗H(W )∗W ∗x + C∗P (W )∗x = H(W )∗x, (5.27)

B∗H(W )∗W ∗x + D∗P (W )∗x = Q(W )∗x. (5.28)

Since A is a contraction, we recover H(W )∗x from (5.27) as

H(W )∗x =
∞∑

n=0
A∗nC∗P (W )∗W ∗x.

Substituting the latter representation into (5.28) gives

Q(W )x = D∗P (W )∗x + B∗
∞∑

n=0
A∗nC∗P (W )∗W ∗(n+1)x.

Taking adjoints and using the arbitrariness of x ∈ Cp we get

Q(W ) = P (W )D +
∞∑

n=0
W n+1P (W )CAnB

= P (W ) �

(
D +

∞∑
n=0

W n+1CAnB

)
(5.29)

holding for all W ∈ K. The formula

S(W ) = D +
∞∑

n=0
W n+1CAnB

defines a Schur multiplier by Theorem 5.9. On the other hand, equality (5.29) means 
that (5.22) is in force. �
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5.3. The coisometric realization

We associate to every Schur multiplier a co-isometric realization with state space the 
reproducing kernel Hilbert space module H(S) with reproducing kernel KS(A, B). The 
complex-variable case was first developed, using complementation theory by de Branges 
and Rovnyak in [33]. Here, we use the theory of linear relations as applied in [18] for the 
complex-variable setting and in [22, §5] for the time-varying case.

We consider the linear relation R ⊂ (H(S) ⊕Cp×p) × (H(S)) ⊕Cp×p) spanned by the 
pairs ((

KS(·, A)A∗G

H

)
,

(
(KS(·, A) − KS(·, 0))G + KS(·, 0)H

(S(A)∗ − S(0)∗)A∗G + S(0)∗H

))
when A runs through K and G, H run through Cp×p.

Proposition 5.11. R is densely defined and isometric, and thus extends to the graph of 
an everywhere defined isometry from H2(K) ⊕ Cp×p into itself.

Proof. Let ((
KS(·, B)B∗E

F

)
,

(
(KS(·, B) − KS(·, 0))E + KS(·, 0)H

(S(B)∗ − S(0)∗)E + S(0)∗F

))
be another element of R, with B ∈ K and E, F ∈ Cp×p. We want to show that

〈KS(·, B)B∗E, KS(·, A)A∗G〉S + Tr H∗F =

= 〈(KS(·, B) − KS(·, 0))E + KS(·, 0)F, (KS(·, A) − KS(·, 0))G + KS(·, 0)H〉S+

+ Tr((S(B)∗ − S(0)∗)E + S(0)∗F )∗((S(A)∗ − S(0)∗)G + S(0)∗H).

Considering the Cp×p-valued forms associated to the inner products, the above equality 
can be rewritten in the form

G∗�1E + G∗�2F + H∗�3E + H∗�4F = 0,

for appropriate expressions �j , j = 1, 2, 3, 4 which we now show to be equal to 0. We 
have

�1 = −AKS(A, B)B∗ + K(A, B) − KS(A, 0) − KS(0, B) + KS(0, 0)

+ (S(A) − S(0))(S(B)∗ − S(0)∗)

= Ip − S(A)S(B)∗ − (Ip − S(A)S(0)∗) − (Ip − S(0)S(B)∗) + (Ip − S(0)S(0)∗)+

+ S(A)S(B)∗ − S(A)S(0)∗ − S(0)S(B)∗ + S(0)S(0)∗

= 0,
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where we have used (5.9) to go from the first equality to the second one.
Similarly

�2 = KS(A, 0) − KS(0, 0) + (S(A) − S(0))S(0)∗

= Ip − S(A)S(0)∗ − Ip + S(0)S(0)∗ + S(A)S(0)∗ − S(0)S(0)∗

= 0,

and

�3 = KS(0, B) − KS(0, 0) + S(0)(S(B)∗ − S(0)∗)

= Ip − S(0)S(B)∗ − Ip + S(0)S(0)∗ + S(0)S(B)∗ − S(0)S(0)∗

= 0.

As for �4 one has:

�4 = −Ip + KS(0, 0) + S(0)S(0)∗ = 0.

To conclude we prove that the domain of R is dense in H(S) ⊕ Cp×p. Any element (
F
C

)
∈ H(S) ⊕ Cp×p orthogonal to the domain of R will satisfy

Tr(G∗AF (A) + H∗C) = 0.

Letting G = 0 and H run through Cp×p we get C = 0. We thus have Tr(G∗AF (A) = 0
for all G ∈ Cp×p, and so AF (A) = 0 and so aF (aIp) = 0 for all a near the origin and so 
that F = 0. �

We write the isometry whose graph extends R in the form(
T F
G H

)∗
,

that is

T ∗ (KS(·, A)A∗G) = (KS(·, A) − KS(·, 0))G (5.30)

F ∗ (KS(·, A)A∗G) = (S(A)∗ − S(0)∗)G (5.31)

G ∗H = KS(·, 0)H (5.32)

H ∗H = S(0)∗H. (5.33)

Proposition 5.12. Let F ∈ H(S), A ∈ K and G ∈ Cp×p. It holds that

A(T F )(A) = F (A) − F (0) (5.34)
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A(FG)(A) = (S(A) − S(0))G. (5.35)

G F = F (0), (5.36)

H H = S(0)H. (5.37)

Proof. Apply both sides of (5.30) to F to obtain

〈F, T ∗ (KS(·, A)A∗G)〉S = 〈F, KS(·, A) − KS(·, 0))G〉S , (5.38)

that is

G∗A(T F )(A) = G∗(F (A) − F (0)). �
Theorem 5.13. Let S be a Schur multiplier. In the above notation we have

S(A)G = H G +
∞∑

n=0
An+1G T nF (G), G ∈ Cp×p. (5.39)

Proof. Let CA denote evaluation at A ∈ K. Equation (5.34) gives

CA = C0 + ACAT

from which we get

CA =
∞∑

n=0
AnC0T

n

which converges in H(S) in the operator norm. Applying to F = FG we obtain

(FG(A)) =
∞∑

n=0
AnC0T

n+1FG,

and so

A(FG(A)) =
∞∑

n=0
An+1C0T

n+1FG,

i.e.

S(A)G − S(0)G =
∞∑

n=0
An+1C0T

n+1FG.

This concludes the proof since C0 = G and S(0) = H . �
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5.4. Operator ranges and complementation

In this section we give another proof of the realization theorem for Schur multipliers 
using complementation theory and the theory of operator ranges. We refer to [41, §4] and
[55] for the latter. Similar arguments for the time-varying setting can be found in [22], 
and in [9] for the quaternionic setting. We first recall a well-known result on operator 
ranges. We provide a proof for completeness.

Theorem 5.14. Let H be a Hilbert space and let A be a bounded positive operator from 
H into itself. Let π denote the orthogonal projection onto ker A. Then the space ran

√
A

endowed with the norm (called the range norm)

‖
√

Ah‖ran
√

A = ‖(IH − π)h‖H, h ∈ H, (5.40)

is a Hilbert space. Furthermore,

‖Ah‖ran
√

A = ‖
√

Ah‖H, h ∈ H, (5.41)

and the range of A is dense in the range of 
√

A in this norm. Finally in the associated 
inner product it holds that

〈
√

Ah,
√

Ag〉ran
√

A = 〈(IH − π)h, g〉H (5.42)

〈Ah, Ag〉ran
√

A = 〈Ah, g〉H (5.43)

and

〈Ah,
√

Ag〉ran
√

A = 〈
√

Ah, g〉H (5.44)

for h, g ∈ H.

Proof. That (5.40) is indeed a norm follows from
√

Ah = 0 ⇐⇒ πh = h.

Let now a Cauchy sequence (
√

Ahn) in ran
√

A. Then (IH − π)hn is a Cauchy sequence 
in H converging to an element, say k. We have by continuity of π that k = (IH − π)k
and so 

√
Ahn) has limit 

√
Ak and ran

√
A is closed in the range norm. Formula (5.42)

follows from (5.40) by polarization. The last two formulas follow from

A(IH − π) = A. �
We now recall the operator range characterization from [41] which we will use. Note 

that [41] consider one Hilbert space and we consider two possibly different Hilbert spaces, 
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but the proof is the same for the latter case. Theorem 5.15 below is [41, Theorem 4.1 
p. 275] with 

√
IH − TT ∗ rather than T . We present a proof since the passage from one 

to the other involves a priori polar representations. We give a direct proof, explicitly 
adapted from [41]. See also [9] where it is presented in the quaternionic setting.

Theorem 5.15. Let T be a contraction from the Hilbert space G into the Hilbert space H. 
Then, f ∈ ran

√
IH − TT ∗ if and only if

sup
g∈G

(
‖f + Tg‖2

G − ‖g‖2
G

)
< ∞. (5.45)

Proof. As mentioned above, the proof is directly adapted from the proof of [41, Theorem 
4.1 p. 275] with 

√
IH − TT ∗ rather than T . We have for g ∈ G and h ∈ H

‖
√

IH − TT ∗h + Tg‖2
H − ‖g‖2

G =

= ‖
√

IH − TT ∗h‖2
H + ‖Tg‖2

H − ‖g‖2 + 2Re 〈
√

IH − TT ∗h, Tg〉H − ‖g‖2
G

= ‖h‖2
H − ‖T ∗h‖2

G + 2Re 〈T ∗h,
√

IG − T ∗Tg〉G − ‖
√

IG − T ∗Tg‖2
G

= ‖h‖2
H − ‖T ∗h −

√
IG − T ∗Tg‖2

G

≤ ‖h‖2
H

Conversely, let f ∈ H such that the supremum in (5.45) is finite, and denote it by K. 
The choice g = 0 in (5.45) gives ‖u‖2

H ≤ K. We can write

‖f + Tg‖2
H ≤ K + ‖g‖2

G, ∀g ∈ G

and so

2Re 〈f, Tg〉H ≤ K − ‖u‖2
H + ‖g‖2

G − ‖Tg‖2
H (5.46)

If 〈f, Tg〉H = 0, this inequality is trivial. If 〈f, Tg〉H 	= 0 and replace g by tgeiθ where 
t ∈ R and θ ∈ R is chosen such that

e−iθ〈f, Tg〉H = |〈f, Tg〉H|.

Using the previous equality for every g we rewrite (5.46) as

2t|〈f, Tg1〉H| ≤ K − ‖f‖2
H + t2‖

√
IG − T ∗Tg1‖2

G, ∀t ∈ R, ∀g1 ∈ H.

It follows that

0 ≤ t2‖
√

IG − T ∗Tg1‖2
G − 2t|〈f, Tg1〉H| + K − ‖f‖2

H, ∀t ∈ R, ∀g1 ∈ H.

Thus
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|〈f, Tg1〉H| ≤
√

K − ‖f‖2
H

(
‖
√

IG − T ∗Tg1‖G
)

.

By Theorem 5.14 we have

‖
√

IG − T ∗Tg1‖G = ‖(IG − T ∗T )g1‖ran (IG−T ∗T )

and since the range of IG−T ∗T is dense in the range of 
√

IG − T ∗T in the range norm, the 
map g1 �→ 〈Tg1, u〉H is continuous on the range of 

√
IG − T ∗T . By Riesz representation 

theorem for continuous linear functionals on a Hilbert space there exists r ∈ H such that

〈Tg1, u〉H = 〈(IG − T ∗T )g1,
√

IG − T ∗Tr〉ran
√

IG−T ∗T

= 〈
√

IG − T ∗Tg1, r〉G

as follows from (5.44). It follows that T ∗f =
√

IG − T ∗Tr. So

f = f − TT ∗f + TT ∗f

= (IH − TT ∗)f + T
√

IG − T ∗Tr

= (IH − TT ∗)f +
√

IG − TT ∗r

belongs to ran
√

IH − TT ∗. �
We now apply the previous results to our present setting.

Proposition 5.16. It holds that

H(S) =
{

G ∈ H2(K) ; sup
H∈H2(K)

‖G + MSH‖2
H2(K) − ‖H‖2

H2(K) < ∞
}

and the above supremum is then the norm of G in H(S).

Proof. This is Theorem 5.15 with H = H2(K) and T = MS . �
Proposition 5.17. It holds that

H(S) = ran
√

IH2(K) − MSM∗
S (5.47)

with the operator range norm

‖
√

IH2(K) − MSM∗
SF‖ = ‖(IH2(K) − π)F‖H2(K)

where π is the orthogonal projection onto ker
√

IH2(K) − MSM∗
S.
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Proof. This is Theorem 5.14 with H = H2(K) and T = MS . �

Theorem 5.18.

H2(K) = ran MS + ran
√

IH2(K) − MSM∗
S (5.48)

in the sense of complementation.

5.5. Another approach to the co-isometric realization

We study the co-isometric realization of a Schur multiplier using the results of the 
previous section, that is, using complementation theory. See [22] for similar computations 
in the time-varying setting. Recall that R0 was defined in (2.14).

Proposition 5.19. Let F ∈ H(S). Then, R0F ∈ H(S) and

‖R0F‖2
H(S) ≤ ‖F‖2

H(S) − ‖F (0)∗F (0)‖ (5.49)

Let C ∈ Cp×p. Then, R0SC ∈ H(S) and

‖R0(SC)‖2
H(S) ≤ Tr (C(Ip − S(0)S(0)∗)C∗). (5.50)

Proof. Let G ∈ H2(K).

‖R0F + MSG‖2
H2(K) − ‖G‖2

H2(K)

= ‖MZ(R0F + MSG)‖2
H2(K) − ‖G‖2

H2(K)

= ‖F − F0 + MSZG)‖2
H2(K) − ‖G‖2

H2(K)

= ‖ − F0‖2
H2(K) − 2re〈F0, F + MSZG〉H2(K)+

+ ‖F + MSZG‖2
H2(K) − ‖ZG‖2

H2(K)︸ ︷︷ ︸
≤‖F ‖2

H(S)

≤ ‖F‖2
H(S) − ‖F0F ∗

0 ‖Cp×p.

Similarly
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‖R0(SC) + MSG‖2
H2(K) − ‖G‖2

H2(K)

= ‖MZ(R0(SC + MSG)‖2
H2(K) − ‖G‖2

H2(K)

= ‖SC − S0C + MS(ZG)‖2
H2(K) − ‖G‖2

H2(K)

= ‖ − S0C + MS(C + ZG)‖2
H2(K) − ‖G‖2

H2(K)

= ‖ − S0C‖2
H2(K) + 2Re 〈−S0C, MS(C + ZG)〉2

H2(K)+

+ ‖MS(C + ZG)‖2
H2(K) − ‖MZG‖2

H2(K)

= ‖S0C‖2
H2(K) − 2‖S0C‖2

H2(K) + ‖MS(C + ZG)‖2
H2(K) − ‖G‖2

H2(K)

≤ −‖S0C‖2
H2(K) + ‖C + ZG‖2

H2(K) − ‖G‖2
H2(K)

= ‖C‖2
H2(K) − ‖S0C‖2

H2(K). �
5.6. A structure theorem

An important aspect of the theory of de Branges and de Branges-Rovnyak spaces (see 
[31–33]) is the weakening of isometric inclusion to contractive inclusion, and the asso-
ciated notion of complementation, which replaces orthogonal sum. The results involve 
matrix-valued, or more generally operator-valued functions. For example (see [19, p. 24]) 
the function

s(z) = (c1s1(z) c2s2(z) · · · cN sN (z))

where s1, . . . , sN are inner functions (for instance finite Blaschke products) and 
c1, c2, . . . , cN are complex numbers such that

N∑
n=1

|cn|2 = 1

is such that

1 − s(z)s(w)∗

1 − zw
=

N∑
n=1

|cn|2 1 − sn(z)sn(w)
1 − zw

,

and the associated reproducing kernel Hilbert space will, in general, be only contractively 
included in the Hardy space H2(D).

We also remark that in the theory of reproducing kernel Hilbert spaces, complementa-
tion and contractive inclusion correspond to the older results on the reproducing kernel 
Hilbert space associated to a sum of positive definite functions; see [26, p. 353], [47]. In 
Section 6 this problem is avoided by assuming that one starts with a power series to 
begin with.

In this section we replace the inequality

‖R0F‖2
M = ‖F‖2

M − ‖F (0)‖2
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which characterizes isometric inclusion in H2(K), by the inequality

‖R0F‖2
M ≤ ‖F‖2

M − ‖F (0)‖2. (5.51)

So, we wish to study the structure of R0-invariant subspaces contractively included in 
H2(K). We follow the arguments in the proof of [18, Theorem 3.1.2 p. 85], suitably 
adapted to the present situation. First note that (5.51) can be rewritten as

R∗
0R0 + C∗C ≤ IM.

So (
R0
C

)∗(
R0
C

)
≤ IM.

Since the adjoint of a Hilbert space contraction is a Hilbert space contraction we can 
write (

R0
C

)(
R0
C

)∗
≤ IM⊕Cp .

Let H = M ⊕ Cp×p and let B ∈ L(H, M) and D ∈ L(H, Cp×p) be defined by

(
B
D

)
=

√
IM⊕Cp×p −

(
R0
C

)(
R0
C

)∗

Then,

M =
(

R0 G
C D

)
M ⊕ H −→ H ⊕ Cp×p

is co-isometric. We define

S = D +
∞∑

n=1
ZnCRn−1

0 G.

Note that S is L(H, Cp×p)-valued and that S(A) makes sense for all A ∈ K as a con-
verging series in the operator norm topology

Remark 5.20. When Z = λIp the function S coincides with the characteristic function 
of the colligation M ; see e.g. [18, p. 16].

Following [24, p. 38], we associate to S the (possibly unbounded and not everywhere 
defined) multiplication operator MS now from �2(N0, H) into H2(K) by
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MS(h) =
∞∑

n=0
Zn

⎛⎝Dhn +
n−1∑
j=0

CRn−1−j
0 Ghj

⎞⎠ , h = (hj)∞
j=0 ∈ �2(N0,H). (5.52)

Theorem 5.21. MS is a contraction from �2(N0, H) into H2(K) if and only if the kernel 
(5.3) (now computed for the current operator-valued S) is positive definite in K.

Proof. We have (using the co-isometry of M)

Ip − S(A)S(B)∗ = Ip − DD∗︸ ︷︷ ︸
CC∗

−
∞∑

n=1
AnCRn−1

0 GD∗−

−
∞∑

m=1
DG∗︸ ︷︷ ︸
−CR∗

0

R
∗(m−1)
0 C∗B∗m −

∞∑
n,m=1

AnCRn−1
0 GG∗R

∗(m−1)
0 C∗B∗m

= CC∗ +
∞∑

n=1
AnCRn−1

0 R0C∗ +
∞∑

m=1
CR∗

0R
∗(m−1)
0 C∗B∗m−

−
∞∑

n,m=1
AnCRn−1

0 (I − R0R∗
0)R∗(m−1)

0 C∗B∗m

= CC∗︸︷︷︸
def.= 1

+
∞∑

n=1
AnCRn

0 C∗

︸ ︷︷ ︸
def.= 2

+
∞∑

m=1
CR∗m

0 C∗B∗m

︸ ︷︷ ︸
def.= 3

+

+
∞∑

n,m=1
AnCRn

0 R∗m
0 C∗B∗m

︸ ︷︷ ︸
def.= 4

−
∞∑

n,m=1
AnCRn−1

0 R
∗(m−1)
0 C∗B∗m

︸ ︷︷ ︸
def.= 5

= 1 + 2 + 3 + 4 − 5

so that

Ip −S(A)S(B)∗ =
∞∑

n,m=0
AnCRn

0 R∗m
0 C∗B∗m

︸ ︷︷ ︸
1+2+3+4

−
∞∑

n.m=0
An+1CRn

0 R∗m
0 C∗B∗(m+1)

︸ ︷︷ ︸
5

(5.53)

Define now

K(A, B) =
( ∞∑

n=0
AnCRn

0

)( ∞∑
m=0

BmCRm
0

)∗

=
∞∑

n,m=0
AnCRn

0 R∗m
0 C∗B∗m

Then K(A, B) is positive definite and
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K(A, B) − AK(A, B)B∗ =
∞∑

n,m=0
AnCRn

0 R∗m
0 C∗B∗m −

∞∑
n,m=0

An+1CRn
0 R∗m

0 C∗B∗(m+1)

= I − S(A)S(B)∗

by (5.53), and so

K(A, B) =
∞∑

n=0
An(Ip − S(A)S(B)∗)B∗n, (5.54)

which is (5.3), but now with S operator-valued. To prove that MS is a contraction we 
adapt the proof of Theorem 5.3 as follows. Recall that S(A)∗ is a bounded operator from 
Cp×p into H. The linear relation (5.4) is now a linear subspace of H2(K) × �2(N0, H)
spanned by the pairs

(
∞∑

n=0
ZnA∗nC, (S(A)∗A∗nC)∞

n=0).

The positivity of (5.54) implies that this linear relation extends to the graph of a con-
traction, whose adjoint is MS .

The converse statement is a direct computation. �
Remark 5.22. For A = aIp and B = bIp the function K(A, B) reduces to formulas given 
in [18, Theorem 2.1.2 p. 44 and p. 97].

Remark 5.23. Besides the scalar case A = aIp with a ∈ C, we do not know if and when 
the positivity of the kernel (5.54) implies that S(A) is a contraction. The counterpart 
of this question in the quaternionic setting has a negative answer in the matrix-valued 
case; see [12, (62.38) p. 1767]. We adapt the example from the latter publication to the 
present setting to find a counterexample for multipliers of H2(K). We consider (H2(K))2. 
Multipliers are elements S = (Suv)u,v=1,2 of (H2(K))2×2 such that

∞∑
n=0

An

(
I2p −

(
S11(A) S12(A)
S21(A) S22(A)

)((S11(B))∗ (S21(B))∗

(S12(B))∗ (S22(B))∗

))
B∗n

is positive definite in K. Let p ≥ 2 and J ∈ Cp×p be such that J∗ = −J and J2 = −Ip

(for instance, if p = 2, J = i 
(

1 0
0 −1

)
). Let

S = 1√
2

(
Z J

ZJ I

)
(compare with [12, (62.38) p. 1767]), and let
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F =
∞∑

n=0
Zn

(
An

Bn

)
∈ (H2(K))2.

Then,

(
√

2S) � F =
∞∑

n=0

(
Zn+1An + ZnJBn

Zn+1JAn + ZnBn

)

=
(

JB0
B0

)
+

∞∑
k=0

Z2k+1
(

A2k + JB2k+1
JA2k + B2k+1

)
+

∞∑
k=1

Z2k

(
A2k−1 + JB2k

JA2k−1 + B2k

)
.

Since

(A2k + JB2k+1)∗(A2k + JB2k+1) + (JA2k + B2k+1)∗(JA2k + B2k+1) =

= A∗
2kA2k + B∗

2k+1B2k+1 − B∗
2k+1JA2k + B∗

2k+1JA2k

= A∗
2kA2k + B∗

2k+1B2k+1

and similarly

(A2k−1 + JB2k)∗(A2k−1 + JB2k) + (JA2k−1 + B2k)∗(JA2k−1 + B2k) =

= A∗
2k−1A2k−1 + B∗

2kB2k

we have

[S � F, S � F ](H2(K))2 = [F, F ]2(H2(K))2 ,

and so S is a Schur multiplier. But

I2p − S(A)S(A)∗ = 1
2

(
Ip − AA∗ AJA∗ − J

AJA∗ − J Ip − AA∗

)
which is not positive for A unitary such that AJA∗ 	= J (we need p ≥ 2 for ensure this); 

take for instance A = 1√
2

(
1 1
1 −1

)
and J as above.

6. Carathéodory multipliers

Closely related to Schur functions are Carathéodory functions, that is, functions an-
alytic in the open unit disk and with a positive real part there. In [51], see also the 
collection of papers [46], Herglotz gave an integral representation of such functions. 
A function ϕ is a Carathéodory function if and only if it can be written as

ϕ(z) = im +
2πˆ

0

eis + z

eis − z
dμ(s), z ∈ D, (6.1)
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where m ∈ R and where μ is a positive measure on [0, 2π). Note that (6.1) can be 
rewritten as

ϕ(z) = im +
2πˆ

0

dμ(s) + 2
∞∑

n=1
zntn (6.2)

where

tn =
2πˆ

0

e−insdμ(s), n = 0, 1, . . . (6.3)

is the moment sequence associated to dμ.
In terms of kernels, a function ϕ defined on a subset of the open unit disk which 

possesses an accumulation point in D is the restriction to Ω of a (uniquely defined) 
Carathéodory function if and only if the kernel

ϕ(z) + ϕ(w)
1 − zw

(6.4)

is positive definite in Ω. Note that (6.4) can be rewritten as

ϕ(z) + ϕ(w)
1 − zw

=
∞∑

n=0
zn(ϕ(z) + ϕ(w))wn.

Remark 6.1. We note that ϕ need not be bounded in modulus in the open unit disk. 
Then (and only then), the operator of multiplication by ϕ will not be a bounded operator 
from the Hardy space into itself.

The previous discussion motivates the following definition:

Definition 6.2. A Cp×p-valued function Φ defined in K is called a Carathéodory multiplier 
if the kernel

KΦ(A, B) =
∞∑

n=0
An(Φ(A) + Φ(B)∗)B∗n (6.5)

is positive definite on K.

In this section we prove a realization theorem similar to (6.1) for such functions, in 
two different ways:

(1) The first approach reduces the study to the complex setting, and does not require 
that the function Φ(A), or more generally, that the operator MΦ of �-multiplication 
on the left be a bounded operator from H2(K) into itself.
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(2) The second approach will require this latter hypothesis. Then, Φ is a power series in 
Z with matrix coefficients on the right, and converging in K, i.e. Φ =

∑∞
n=0 ZnΦn. 

As just mentioned above, in the classical setting, this hypothesis is not necessary.

Rather than stating the theorem and proving it afterwards, we here prefer to go the 
other way around, and begin with a discussion and results which lead to the result. The 
result itself is presented in Theorem 6.3 below. So let us start from a function Φ for 
which the kernel (6.5) is positive definite in K, and set Ψ(a) = Φ(aIp) with a ∈ D. The 
kernel

Ψ(a) + Ψ(b)∗

1 − ab
(6.6)

is positive definite in the open unit disk. By the matrix version of Herglotz representation 
theorem (see e.g. [34, Theorem 4.5 p. 23] for the operator-valued version), we can write

Ψ(a) = iX +
2πˆ

0

eit + z

eit − z
dM(t)

where X ∈ Cp×p is self-adjoint and where M is now a Cp×p-valued positive measure on 
[0, 2π). This formula can be rewritten as

Ψ(a) = iX + T0 + 2
∞∑

n=1
anTn (6.7)

where (Tn)n∈N0 is the moment sequence associated to dM . We claim that (recall that 
Φ is assumed to be a power series in Z with matrix coefficients on the right, converging 
in K)

Φ(A) = iX + T0 + 2
∞∑

n=1
AnTn, A ∈ K. (6.8)

Indeed, let Φ̃ denote the right hand side of (6.8). Both Φ̃ and Φ coincide on the matrices 
aIp, a ∈ D, and this restriction completely determines the coefficients Tn. Thus we have 
proved one direction in the following result. The converse direction is easily proved and 
will be omitted.

Theorem 6.3. Let Φ =
∑∞

n=0 ZnΦn be a power series in Z with matrix coefficients on 
the right, converging in K and assume Φ0 = Φ∗

0. Then the kernel

∞∑
n=0

An(Φ(A) + Φ(B)∗)B∗n
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is positive definite in K if and only if the sequence (Φn)n∈N0 is the moment sequence of 
a positive Cp×p-valued measure on [0, 2π).

We note that the method used here, different from the one we used to characterize 
Schur multiplier, is not intrinsic, in the sense that we do not use the reproducing ker-
nel Hilbert space with reproducing kernel (6.5). Denoting this space by L(Φ), one can 
also characterize Φ in terms of the associated backward-shift realization, assuming the 
operator MΦ bounded from H2(K) into itself.

Theorem 6.4. Assume that MΦ is bounded from H2(K) into itself, and let L(Φ) denote 
the reproducing kernel space with reproducing kernel KΦ. Then Re MΦ ≥ 0 and

L(Φ) = ran
√

MΦ + M∗
Φ (6.9)

with the operator range norm.

The proof follows the arguments of Section 5.4 and will be omitted. The key in the 
proof is the formula

M∗
Φ((I − ZB)−�E) =

∞∑
n=0

ZnΦ(B)∗B∗nE, B ∈ K, E ∈ Cp×p, (6.10)

valid since Mφ is bounded, and so for A, B ∈ K and E, H ∈ Cp×p,

[(MΦ + M∗
Φ)((I − ZB)−�E), (I − ZA)−�H]L(Φ) =

∞∑
n=0

An(Φ(A) + (Φ(B))∗)B∗n.

(6.11)

The second realization theorem is now presented and proved.

Theorem 6.5. Assume that the operator Mφ is bounded from H2(K) into itself. Then R0
is a co-isometry from L(Φ) into itself. Furthermore, Φ can be written as Φ =

∑∞
n=0 ZnΦn

Re Φ0 = 2C0C∗
0 (6.12)

Φn = C0Rn
0 C∗

0 , n = 1, . . . (6.13)

where C0 is the evaluation at 0.

Proof. We follow the approach from [25, pp. 708-709], suitably adapted to the present 
setting. We first note that KΦ in (6.5) satisfies the equation

KΦ(A, B) − AKΦ(A, B)B∗ = Φ(A) + (Φ(B))∗, A, B ∈ K. (6.14)
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We then define in L(Φ) × L(Φ) the linear relation R spanned by the pairs (which we 
write as a row rather than column, in opposition to the notation in Section 5.3)

(KΦ(·, B)BE, KΦ(·, B)E − KΦ(·, 0)E), B ∈ K, E ∈ Cp×p, (6.15)

and divide the rest of the proof into steps.

STEP 1: R is isometric.
Indeed, let A ∈ K and H ∈ Cp×p. We have on the one hand

[KΦ(·, B)BE, Kφ(·, A)AH]L(Φ) = H∗AKΦ(A, B)B∗E, (6.16)

and on the other hand,

[KΦ(·, B)E − KΦ(·, 0)E), KΦ(·, A)H − KΦ(·, 0)H]L(Φ) =

= H∗KΦ(A, B)E − H∗KΦ(A, 0)E − H∗KΦ(0, B)E + H∗KΦ(0, 0)E

= H∗KΦ(A, B)E − H∗(Φ(A) + Φ(0))E − H∗(Φ(0) + (Φ(B))∗)E+

+ H∗(Φ(0) + (Φ(0))∗)E

= H∗KΦ(A, B)E − H∗(Φ(A)E − H∗(Φ(B))∗E

= H∗ {KΦ(A, B)E − Φ(A) − (Φ(B))∗} E.

By (6.14),

H∗ {KΦ(A, B)E − Φ(A) − (Φ(B))∗} E = H∗A∗KΦ(A, B)BE,

and hence the isometry property holds.

STEP 2: R has a dense domain.
Indeed, let F =

∑∞
n=0 ZnFn be orthogonal to the domain of R. Then for every B and E

as above, E∗BF (B) = 0. Taking B = bIp with b ∈ D, this leads to Fn = 0 for n = 0, 1, . . .

and so F = 0.

It follows from the first two steps that R extends to the graph of an everywhere defined 
isometry, say T , which we compute in STEP 3.

STEP 3: It holds that T ∗ = R0, and so L(Φ) is R0-invariant.
Let F ∈ L(Φ), and B, E as above. We have

E∗BF (B) = [TF, KΦ(·, B)B∗E]L(Φ)

= [F, KΦ(·, B)E − KΦ(·, 0)E]L(Φ)

= E∗(F (B) − F (0)),

so that
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B(TF (B)) = F (B) − F (0).

Since L(Φ) ⊂ H2(K) (see Theorem 6.4) we know that TF is a power series with coeffi-
cients on the right it follows that TF = R0.

STEP 4: We prove (6.13).

We first note that Φ can be written as Φ =
∑∞

n=0 ZnΦn since KΦ(·, 0)E ∈ L(Φ) for 
every E ∈ Cp×p. We note that

KΦ(·, 0) = Φ + (Φ(0))∗ ∈ L(Φ)

and so

C0C∗
0 = 2Re Φ0,

which is (6.12). Furthermore,

C0(K(·, 0)E) = (Φ0 + Φ∗
0)E

C0(R0(K(·, 0)E) = C0(Φ1 + ZΦ2 + · · · ) = Φ1E

...

C0(Rn
0 (K(·, 0)E) = C0((Φn + ZΦn + · · · )E) = ΦnE

... �
Remark 6.6. (6.13) implies that, with Z = zIp,

ΦE =
∞∑

n=0
znΦnE

= (iIm Φ(0))E + (Re Φ0)E +
∞∑

n=1
znC0Rn−1

0 C∗
0 E

= (iIm Φ(0))E + C0C∗
0 E

2 +
∞∑

n=1
znC0Rn−1

0 C∗
0 E

= (iIm Φ(0))E + 1
2C0(IL(Φ) − zR0)−1(IL(Φ) + zR0)C∗

0 E.

(6.17)

In the above expression, z is a number and zR0 means the multiplication by this number 
of the operator R0 acting in L(Φ).

For papers related to this section we mention [6,16,17].
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7. Concluding remarks

We conclude with some remarks on possible future work.

7.1. Interpolation

Problem 4.1 is a special case of a much more general bitangential interpolation problem 
(see e.g. [27]), which can also be set in the framework of Schur multipliers. We will 
consider these problems in a future publication.

7.2. Matrix polynomials and other applications of the map (2.7)

The map (2.7) which to F (Z) =
∑∞

n=0 ZnFn associates the matrix-valued function 
of a complex variable F (zIp) =

∑∞
n=0 znFn allows further applications than the ones 

presented here. For instance, define F (Z) to be a matrix-polynomial (of the matrix 
variable Z) if only a finite number of powers of Z arise in the power series expansion of F . 
Then, F (Z) is a matrix polynomial if and only if F (zIp) is a classical matrix-polynomials, 
and factorizations of F in factors of matrix-polynomials coincide with factorization of 
F (zIp) into classical matrix-polynomials. These factorizations, and much more, have 
been considered in [49,54]. We plan to pursue this line of study in a future work.

7.3. Symmetries

We begin with a motivating example. For a general matrix A = (ajk)h
j,k=1 ∈ C2h×2h, 

define

Aϕ = J1AJ∗
1 , where J =

(
0 Ih

−Ih 0

)
and A = (ajk)h

j,k=1. (7.1)

Clearly

(λI2h)ϕ = λI2h, λ ∈ C

The proof of the following lemma is easy and will be omitted.

Lemma 7.1. We have

(Aϕ)∗ = (A∗)ϕ and Aϕ = (A)ϕ and (7.2)

(AB)ϕ = AϕBϕ (7.3)

and

A ≥ 0 =⇒ Aϕ ≥ 0
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Furthermore:

Lemma 7.2. We have √
Aϕ = (

√
A)ϕ (7.4)

Proof. We have A =
√

A
√

A and so from (7.3)

Aϕ = (
√

A)ϕ(
√

A)ϕ

If A = Aϕ and since (
√

A)ϕ ≥ 0 the uniqueness of the squareroot implies (7.4). �
Lemma 7.3. If A is invertible, we have

A−1
ϕ = (Aϕ)−1

Proof. This follows from A
−1 = A−1. �

Finally, a matrix A satisfies A = Aϕ if and only if it is of the form

A =
(

A1 A2
−A2 A1

)
(7.5)

where A1 and A2 belong to Ch×h.

Proposition 7.4. Restricting A and Z in the formula (3.24) for the Blaschke factor UA(Z), 
the latter satisfies

(UA(Z))ϕ = UA(Z).

Proof. This follows from (7.4), (7.3) and (7.2). �
When h = 1, AA∗ is a scalar matrix and we get back the classical Blaschke factor 

from quaternionic analysis.

Similarly, let now

Aϕ = J2AJ∗
2 , where now J2 =

(
0 Ih

Ih 0

)
. (7.6)

Then, Lemmas 7.1 and 7.2 still hold. Furthermore, a matrix A now satisfies A = Aϕ

if and only if it is of the form

A =
(

A1 A2
A2 A1

)
(7.7)
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where A1 and A2 belong to Ch×h. When h = 1 we get back the split quaternions, and 
UA will be the corresponding Blaschke factor. Even when h = 1 we get a new formula 
since AA∗ will not be a scalar matrix.

Remark 7.5. Taking A1 and A2 with real values we get the real realization of elements 
in Ch×h in the first case and h × h matrices with components hyperbolic numbers in the 
second case.

Definition 7.6. We call a map satisfying

(AB)ϕ = AϕBϕ (7.8)

(A + B)ϕ = Aϕ + Bϕ (7.9)

A ≥ 0 =⇒ Aϕ ≥ 0 (7.10)

(Aϕ)∗ = (A∗)ϕ (7.11)

(λI2h)ϕ = λI2h, λ ∈ C (7.12)

an admissible symmetry.

For such a symmetry it follows that

Aϕ = (
√

A)ϕ(
√

A)ϕ

and, when A is invertible,

A−1
ϕ = (Aϕ)−1

Definition 7.7. The ring of matrices for which A = Aϕ is called the associated ring and 
denoted by Cϕ.

The various results presented here extend when we replace Cp×p by Cϕ. This setting 
includes quaternions, split-quaternions and corresponding matrix versions. For a related 
work, see [8].
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