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S-preclones and the Galois connection
SPol–SInv, Part I

Peter Jipsen, Erkko Lehtonen and Reinhard Pöschel

Abstract. We consider S-operations f : An → A in which each argument
is assigned a signum s ∈ S representing a “property” such as being or-
der-preserving or order-reversing with respect to a fixed partial order
on A. The set S of such properties is assumed to have a monoid struc-
ture reflecting the behaviour of these properties under the composition of
S-operations (e.g., order-reversing composed with order-reversing is or-
der-preserving). The collection of all S-operations with prescribed prop-
erties for their signed arguments is not a clone (since it is not closed
under arbitrary identification of arguments), but it is a preclone with
special properties, which leads to the notion of S-preclone. We introduce
S-relations � = (�s)s∈S , S-relational clones, and a preservation property

(f
S
� �), and we consider the induced Galois connection SPol–SInv. The

S-preclones and S-relational clones turn out to be exactly the closed sets
of this Galois connection. We also establish some basic facts about the
structure of the lattice of all S-preclones on A.

Mathematics Subject Classification. 08A99, 08A40, 06A15, 06F99.

Keywords. Partially ordered algebra, Preclone, Galois connection, Order-
preserving map, Order-reversing map.

1. Introduction

Clones of operations have been studied since the seminal publication by Emil
Post [16] (announced in [15], in full detail in [17]) and are fundamental algebraic
objects in universal algebra. They have been generalized to Lawvere theories
and preclones (i.e., operads), and investigations into the lattice of clones on
a finite set have been greatly illuminated by the Pol–Inv Galois connection
between clones and relational clones. The collection of all order-preserving op-
erations on a poset form a clone, and theories of ordered algebras are classified
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by subclones of this type. In algebraic logic, formulas (i.e., elements of the
algebras) are ordered by a consequence relation, and logical operations such
as negation and implication are not order-preserving in all arguments. They
are however order-preserving or order-reversing in each argument. The collec-
tion of all such operations on a nontrivial poset (our “motivating example”
presented in more detail as Example 2.5) is not a clone since it is not closed
under arbitrary identification of arguments, but it is a preclone.

In this paper we study a generalization of such preclones, so-called
S-preclones. On one hand they provide a classification of the generating sets
of operations for partially ordered algebras. But on the other hand these new
algebraic structures of S-preclones are applicable to situations where the argu-
ments of an operation should have different “properties” s ∈ S “expressible”
by relations (like order-preserving and order-reversing via partial order rela-
tions). The set S of “properties” (called signa) itself has an algebraic structure
which reflects composition of operations, i.e., we need S to be a monoid (e.g.
order-reversing composed with order-reversing gives order-preserving, thus S
is a two-element group for our motivating example, see Example 2.5). A uni-
versal algebraic perspective on partially ordered algebras can be found in [11].

Our results in the current paper (Part I) are about preclones of S-oper-
ations on a finite base set A. In a subsequent paper (Part II) we consider in
detail the case of Boolean S-preclones, where A is a 2-element set.

In Section 2 we introduce the basic notions of an S-operation, S-preclone,
S-relation and S-relational clone which generalize the classical notions in a
natural way. In Section 3 the Galois connection SPol–SInv induced by the

crucial property “S-operation S-preserves S-relation”, f
S
� �, is defined. It

is shown that the Galois closed sets of S-operations form an S-preclone and
likewise the Galois closed sets of S-relations form an S-relational clone.

Section 4 contains the central result that for a finite set A and a set F of
S-operations on A, the set SPol SInv F is the smallest S-preclone containing
F , hence all S-preclones are Galois closed (Theorem 4.1). On the relational
side the corresponding result holds (Theorem 4.6): for a set Q of S-relations,
SInv SPol Q is the smallest S-relational clone containing Q, i.e., the Galois
closures are exactly the S-relational clones.

Section 5 contains results about the lattice of all S-preclones on a fixed
(finite) set A. It is shown that this lattice is atomic and coatomic, with finitely
many atoms and coatoms. Several symmetries of the lattice, including some
that are determined by automorphisms of the monoid S, are established, and it
is proved that the clone lattice on A is embeddable in the lattice of S-preclones
in several ways. We conclude in Section 6 with some open problems and a brief
preview of the results that are contained in Part II.

2. S-preclones and S-relational clones for a monoid S

Definition 2.1 (Operations). Recall that an operation on a set A is a mapping
f : An → A for some n ∈ N+ := {1, 2, . . . }. The number n (notation ar(f)) is
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called the arity of f . Denote by Op(n)(A) the set of all n-ary operations on A,
and let Op(A) :=

⋃
n∈N+

Op(n)(A).

The i-th n-ary projection is the operation p
(n)
i ∈ Op(n)(A) given by the

rule p
(n)
i (a1, . . . , an) := ai for all (a1, . . . , an) ∈ An.

Definition 2.2 (S-operations). Assume that S is a fixed monoid with unit el-

ement e. Denote by SOp
(n)

(A) the set of all n-ary operations f : An → A
where each argument has a label s ∈ S. Such operations are called S-signed
operations, or S-operations for short. Let SOp(A) :=

⋃
n∈N+

SOp
(n)

(A).
The labels are given by the signum sgn(f) which is an n-tuple λ =

(s1, . . . , sn) ∈ Sn assigning si ∈ S to the i-th argument of f (i ∈ {1, . . . , n}).
We also say, that si is the signum of the i-th argument of f . For sgn(f) =
(s1, . . . , sn), let Sgn(f) := {s1, . . . , sn} be the set of components of sgn(f).

We write fλ if we want to indicate that f ∈ SOp(A) has signum λ;
furthermore, for f ∈ Op(n)(A) and λ = (s1, . . . , sn) we denote by fλ the
same function in SOp(A) equipped with signum λ. For unary functions f ∈
SOp

(1)
(A) with sgn(f) = (s) we also write fs (instead of f (s)). Sometimes

it is useful to have an explicit notation for the underlying function of some
f = fλ ∈ SOp(A) that is obtained by just ignoring the signum λ = sgn(f).
Then we shall write f̊ (or f̊ ); thus, f = (f̊)λ for f ∈ SOp(A) and (fλ)̊ = f
for f ∈ Op(A).

Definition 2.3 (S-preclones). A set F ⊆ SOp(A) is called an S-preclone if
it contains idA and is closed under the operations ζ, τ , ∇s, Δ, ◦ that are
defined as follows. Let f, g ∈ SOp(A) with sgn(f) = (s1, . . . , sn) ∈ Sn and
sgn(g) = (s′

1, . . . , s
′
m), and let s ∈ S. Then

(1) sgn(idA) = (e) (e is the neutral element of S) and

idA(x) := x (identity operation);

(2) if n ≥ 2 then sgn(ζf) = (sn, s1, . . . , sn−1) and

(ζf)(x1, x2, . . . , xn) := f(x2, . . . , xn, x1) (cyclic shift);

if n = 1 then ζf := f ,
(3) if n ≥ 2 then sgn(τf) = (s2, s1, s3, . . . , sn) and

(τf)(x1, x2, x3, . . . , xn) := f(x2, x1, x3, . . . , xn)

(permuting the first two arguments);

if n = 1 then τf := f ,
(4) for s ∈ S, sgn(∇sf) = (s, s1, . . . , sn) and

(∇sf)(x1, x2, . . . , xn+1) := f(x2, . . . , xn+1)

(adding a fictitious argument with signum s at the first place),

(5) if n ≥ 2 and s1 = s2 = s, then sgn(Δf) = (s, s3, . . . , sn) and

(Δf)(x1, x2, . . . , xn−1) := f(x1, x1, x2, . . . , xn−1),
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(identification of the first two arguments, if these have the same signum
s); otherwise Δf := f ,

(6) sgn(f ◦ g) = (s′
1s1, . . . , s

′
ms1, s2, . . . , sn) and

(f ◦ g)(x1, . . . , xm, xm+1, . . . , xm+n−1)

:= f(g(x1, . . . , xm), xm+1, . . . , xm+n−1) (composition).

For F ⊆ SOp(A) the S-preclone generated by F (i.e., the least S-preclone
containing F ) is denoted by S〈F 〉 or S〈F 〉A.

Remark 2.4. (A) With iterated applications of the basic operations of Defini-
tion 2.3, we can obtain further operations on S-operations, such as arbitrary
permutations of arguments and respective signa, adding a fictitious argument
of signum s at an arbitrary position, identification of arguments at positions i
and j if they have the same signum, or composing f with g in the i-th position.
We can also get arbitrary compositions of the form

f(g1(x1, . . . , xm1), g2(xm1+1, . . . , xm1+m2), . . . ,
gn(xm1+···+mn−1+1, . . . , xm1+···+mn

)),

where f is n-ary and gi is mi-ary for i ∈ {1, . . . , n}, and the signum of the
composition is determined analogously to Definition 2.3(6).

(B) By adding fictitious arguments and permuting arguments, we obtain
from idA every S-operation of the form (p(n)i )λ, where λ = (s1, . . . , sn) ∈
Sn with si = e. We call such S-operations trivial S-operations or (trivial)
projections. All other S-operations are nontrivial (in particular, there also
exist nontrivial projections where the essential argument has signum si 
= e,
e.g., the operations ids := ids

A := idλ
A with λ = (s), s ∈ S\{e}). The trivial

S-operations form an S-preclone, denoted by SJA, which is the least S-preclone
and is contained in every S-preclone.

(C) In the special case when S is the trivial monoid {e}, the labels of
arguments play no essential role, and hence this case clearly corresponds to
usual unsigned operations. In this case, the notion of S-preclone essentially
agrees with the notion of clone. For F ⊆ Op(A), we denote by 〈F 〉 or 〈F 〉A

the clone generated by F , i.e., the smallest clone containing F .
(D) S-preclones are special preclones, also known as operads, which can

be thought of as “clones where identification of arguments is not allowed”
(more precisely, they contain idA and are closed under ζ, τ , and ◦ (see Defini-
tion 2.3(2), (3) and (6)), ignoring all signa). The term preclone was introduced
by Ésik and Weil [4] in a study of the syntactic properties of recognizable sets
of trees. A general characterization of preclones as Galois closures via so-called
matrix collections can be found in [6]. The notion of operad originates from
the work in algebraic topology by May [10] and Boardman and Vogt [1]. For
general background and basic properties of operads, we refer the reader to the
survey article by Markl [9].

Example 2.5 (“motivating example”). Let (A,≤) be a poset. We consider op-
erations f ∈ Op(n)(A) (n ∈ N+) such that f in each argument is either or-
der-preserving (then the argument gets signum +) or order-reversing (signum
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−), respectively, i.e., for constants cj (j ∈ {1, . . . , n}\{i}) and xi, yi ∈ A
(i ∈ {1, . . . , n}) we have f(c1, . . . , xi, . . . , cn) ≤ f(c1, . . . , yi, . . . , cn) when-
ever xi ≤ yi or xi ≥ yi, respectively. All these operations can be seen as
S-operations and form an S-preclone F where S := {+,−} is understood
as a (multiplicative) group (isomorphic to the 2-element group {+1,−1})
with unit element +. E.g., if sgn(f) = (−,+) and sgn(g) = (+,−), then
(f ◦ g)(x1, x2, x3) = f(g(x1, x2), x3) has signum (+ · −,− · −,+) = (−,+,+)
according to 2.3(6), which coincides with the intuition for composition.

We give two further examples in a more formalized form.

Example 2.6. Let S′ := {+, o} be the 2-element monoid with zero o and let
Ŝ = {+,−, o} be the monoid obtained from the group S from Example 2.5 by
adding a zero, i.e., we have the multiplication tables

S′ + o
+ + o
o o o

and

Ŝ + − o
+ + − o
− − + o
o o o o

.

Let ≤ be a partial order on A. Let F ′ ⊆ S′
Op(A) and F̂ ⊆ ŜOp(A) be

the set of all S′- or Ŝ-operations, respectively, such that each argument with
signum s ∈ {+,−, o} has the property as given in the following table:

s property P
+ order-preserving
− order-reversing
o constant on each connected component

(the property for o is equivalent to order-preserving and order-reversing). Then
F ′ as well as F̂ are S-preclones for S = S′ and S = Ŝ, respectively.

Here, for a property P for unary functions g ∈ AA, we define that an
n-ary operation f(x1, . . . , xn) has property P in an argument, say in xi (i ∈
{1, . . . , n}), if each translation xi �→ f(c1, . . . , xi, . . . , cn) (xi on the i-th place)
has this property P (with c1, . . . , ci−1, ci+1, . . . , cn ∈ A).

Note that also Example 2.5 fits into this scheme: the arguments of the
S-operations in the S-preclone F (cf. Example 2.5) have the property order-
preserving if they have signum +, otherwise (signum −) they have the property
order-reversing.

Definition 2.7 (Relations). Let m ∈ N+. Recall that subsets of Am are called
m-ary relations on A. Since ∅ ⊆ Am, the empty set can be considered as m-
ary for arbitrary m. Sometimes it is convenient to write formally ∅(m) if ∅
is considered as an m-ary relation. Denote by Rel(m)(A) the set of all m-ary
relations on A, and let Rel(A) :=

⋃
m∈N+

Rel(m)(A).
It is often useful to think of an m-ary relation � as an m × |�| matrix

whose columns are the tuples belonging to �. Keeping this point of view in
mind, we will often regard a tuple belonging to a relation as a column, and we



   34 Page 6 of 29 P. Jipsen, E. Lehtonen and R. Pöschel Algebra Univers.

will refer to its components as rows. We are shortly going to consider certain
operations on relations, and it will be helpful to (informally) describe them in
terms of simple manipulations of rows of matrices.

We briefly recall the “elementary operations” ζ, τ , pr, × and ∧ on re-
lations (see, e.g., Lau [5, Section II.2.3]). Let σ and σ′ be m-ary and m′-ary
relations on a set A, respectively. Then ζσ := σ, τσ := σ and prσ := σ for
m = 1, and

ζσ := { (a2, a3, . . . , am, a1) | (a1, a2, . . . , am) ∈ σ } (m ≥ 2),

τσ := { (a2, a1, a3, . . . , am) | (a1, a2, . . . , am) ∈ σ } (m ≥ 2),

prσ := { (a2, . . . , am) | (a1, a2, . . . , am) ∈ σ } (m ≥ 2),

σ × σ′ := { (a1, . . . , am, b1, . . . , bm′) | (a1, . . . , am) ∈ σ,
(b1, . . . , bm′) ∈ σ′ },

σ ∧ σ′ := σ ∩ σ′ (if m 
= m′ we put σ ∧ σ′ := ∅(m)).

The operation ζ is called cyclic shift of rows, τ is called transposition of the first
two rows, pr is called deletion of the first row, × is called Cartesian product,
and ∧ is called intersection.

For m ∈ N+ and an equivalence relation ε on {1, . . . , m}, let

δm
ε := δm

ε,A := { (a1, . . . , am) ∈ Am | (i, j) ∈ ε =⇒ ai = aj }.

Formally we also allow ε = � (where � is considered as an extra top element
in the lattice of all equivalence relations, i.e., ε � � for all equivalence relations
ε) and define

δm
� := δm

�,A := ∅(m).

Relations of the form δm
ε,A for some m and ε are called diagonal relations on A.

The set of all diagonal relations on A is denoted by DA. Examples of diagonal
relations are the full m-ary relation Am, in particular ∇ := ∇A := A2 (formally
this is δ2{(1,1),(2,2)},A), and the binary equality relation Δ := ΔA := { (x, x) |
x ∈ A } (formally this is δ2{1,2}2,A).

A set Q of relations on A is called a relational clone if it is closed under the
“elementary operations” ζ, τ , pr, × and ∧ and contains the diagonal relations.
For Q ⊆ Rel(A), we denote by [Q] or [Q]A the relational clone generated by
Q, i.e., the smallest relational clone containing Q.

Definition 2.8 (S-relations). Let SRel
(m)

(A) be the set of all families � =

(�s)s∈S of m-ary relations �s ⊆ Am, and SRel(A) :=
⋃

m∈N+

SRel
(m)

(A),
the elements of which are called (finitary) S-relations.

Sometimes, instead of � = (�s)s∈S we use the notation � = (r1, . . . , rn)
where r1, . . . , rn is a list of all elements of all �s, i.e., n =

∑
s∈S |�s|, together

with the corresponding signum λ� := (s1, . . . , sn) specifying which element
belongs to which part �s, i.e., if ri was chosen from �s then we put si = s,
such that �s = { r | ∃i ∈ {1, . . . , n}: si = s and ri = r }. Note that in λ� each
s ∈ S appears exactly |�s| times.
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Remark: The signum λ� is characteristic for � and unique up to permutation
of the si’s. One might order the entries such that all signa si with si = s
appear consecutively, but we keep more flexibility and allow each signum (as
above) for λ� with the property that each s ∈ S appears exactly |�s| times.

It is straightforward to define operations on SRel(A) analogously to the
above-defined operations for usual relations, just by applying them compo-
nentwise to S-relations. This will lead to the notion of S-relational clones. We
mainly adopt the approach known from multi-sorted algebras as developed
in [7, Section 4, pages 13–14]. However, we still have to introduce special, in
some sense “trivial” S-relations, called S-diagonals, which generalize the usual
diagonal relations. The motivation will become clear later in Proposition 3.8.

Definition 2.9 (S-diagonals). An S-relation (�s)s∈S , say m-ary, is called an S-
diagonal (or an S-diagonal S-relation) if �s is a diagonal relation δm

εs
∈ DA for

each s ∈ S and the following condition is satisfied for all s, t ∈ S:

Ss ⊆ St =⇒ δm
εs

⊆ δm
εt

.

Here St denotes the left ideal { st | s ∈ S } generated by t. Note that Ss ⊆
St ⇐⇒ s ∈ St and δm

εs
⊆ δm

εt
⇐⇒ εt ⊆ εs (the case εs = �, i.e., δm

εs
= ∅, is

allowed).
The set of all S-diagonals is denoted by SDA.

Remark 2.10. Let I(S) := { s ∈ S | ∃s̄ ∈ S : s̄s = e } be the set of all elements
for which a left inverse exists. Then (for finite monoids S) any left inverse s̄
is also a right inverse (thus s̄ = s−1) and I(S) is a group (with unit e), the
largest subgroup of S. We have t ∈ I(S) ⇐⇒ St = S (otherwise St � S). If S
is a group, then an S-diagonal (δεs

)s∈S must be of the form (δm
ε )s∈S (εt = εs

for all s, t ∈ S since Ss = St = S).

Definition 2.11 (S-relational clones). A set of S-relations is called an S-rela-
tional clone if it contains δS (see below) and is closed under the operations ζ,
τ , pr, ×, and ∧ as well as under the operations μv and �v, which we will refer
to as index translation by v and v-self-intersection for v ∈ S. These operations
are defined as follows. For � = (�s)s∈S and �′ = (�′

s)s∈S in SRel(A), and v ∈ S,
we let
(1) δS := (ΔA)s∈S , i.e., δS

s = ΔA for all s ∈ S,
(2) ζ(�) = ζ((�s)s∈S) := (ζ�s)s∈S (cyclic shift),
(3) τ(�) = τ((�s)s∈S) := (τ�s)s∈S (transposition of the first two rows),
(4) pr(�) = pr((�s)s∈S) := (pr �s)s∈S (deletion of the first row),
(5) � × �′ = (�s)s∈S × (�′

s)s∈S := (�s × �′
s)s∈S (Cartesian product),

(6) � ∧ �′ = (�s)s∈S ∧ (�′
s)s∈S := (�s ∧ �′

s)s∈S (intersection),
(7) μv(�) = μv((�s)s∈S) := (�sv)s∈S (index translation by v),
(8) �v� = ((�v�)s)s∈S := (

⋂
{�s′ | s′v = s})s∈S (v-self-intersection)

(i.e., via the (right) multiplicative action of an element v ∈ S),
in particular, (�v�)s =

⋂
∅ = Am if s ∈ S \Sv and ar(�) = m.

For Q ⊆ SRel(A) the S-relational clone generated by Q, i.e., the least
S-relational clone containing Q, is denoted by S[Q] or S[Q]A.
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The operations (7) and (8) are special cases of a more general operation
called M-self-intersection:

Definition 2.12. Let M = (Ms)s∈S be a family of subsets of S satisfying the
following condition

(*) ∀s, s′ ∈ S : s′Ms ⊆ Ms′s ,

where s′Ms := {s′m | m ∈ Ms}. Then we define

(9) �M� = ((�M�)s)s∈S := (
⋂

{ �s′ | s′ ∈ Ms })s∈S (M-self-intersection),

in particular, (�M�)s := Am if Ms = ∅ and ar(�) = m.
Note that (�M�)s ⊆ �s′ for all s′ ∈ Ms.

Remark 2.13. For v ∈ S, consider the special families T v := ({sv})s∈S and
Mv = (Mv

s )s∈S with Mv
s := {x ∈ S | xv = s} (which easily can be seen to

satisfy condition (*) of Definition 2.12). Then we have μv(�) = �T v (�) (cf.
Definition 2.11(7)) and �v� = �Mv� (cf. Definition 2.11(8)).

For v ∈ S let αv : S → S, x �→ xv be the right multiplication with v. Then
Mv

s = α−1
v (s) for s ∈ S. For later use we mention the following properties of

Mv = (Mv
s )s∈S :

(a) e ∈ Mv
v ,

(b) Mv
s ∩ Mv

t = ∅ for s, t ∈ S, s 
= t,
(c) ∀s, t ∈ S : s ∈ Mv

t =⇒ sv = t.

These properties can be checked easily (e.g., (b) follows from the fact that the
Mv

s (s ∈ S) are the equivalence classes of the kernel of αv).

Remark 2.14. (A) If v ∈ S is an invertible element of the monoid S, then
Mv

s = {sv−1} for s ∈ S, thus Mv = T v−1
, in particular the operation �v

equals μv−1 (cf. Remark 2.13 and Definition 2.11(7),(8)). Consequently, if S
is a group and therefore each element is invertible, S-relational clones are
characterized by the closure under the operations (1)–(7) of Definition 2.11.

(B) Analogously to the case of usual relational clones (cf. [5, Part II, 2.5]
or [14, 1.1.9]), with the operations (1)–(8) it is possible to construct many
other operations under which an S-relational clone is closed. We mention here
some: all S-diagonal S-relations (see Lemma 2.15), arbitrary permutation of
rows, deletion of arbitrary rows, identification of rows, doubling of rows, re-
lational product, and so on. In particular, we will need in the proofs of later
theorems the following operations that are derivable from the “elementary
operations”. For an m-ary relation � and any z1, . . . , zt ∈ {1, . . . , m} (not nec-
essarily distinct elements), the projection of � to rows z1, . . . , zt is the t-ary
relation

prz1,...,zt
(�) := { (az1 , . . . , azt

) ∈ At | (a1, . . . , am) ∈ � }.

This naturally extends to S-relations by componentwise application: for � =
(�s)s∈S ∈ SRel

(m)
(A), prz1,...,zt

(�) := (prz1,...,zt
(�s))s∈S . Clearly, pr(�) =

pr2,...,m(�) for an m-ary � (cf. Definition 2.11(4)).
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Note also that the empty S-relation (∅)s∈S (that can be considered as
(∅(m))s∈S for an arbitrary m ∈ N+) belongs to every S-relational clone; it is
obtained by taking the intersection of two S-relations of distinct arities.

(C) It is well known (see, e.g., [14, 2.1.3(i)]) that in the classical case of
usual (unsigned) relational clones, the relational clone [Q] generated by a set Q
of relations (using the “elementary operations” δ, ζ, τ,pr,×,∧) equals the set
of relations that are primitively positively first-order definable (pp-definable)
from the relations in Q. More explicitly (cf. [13, 1.6]): Each primitive positive
first-order formula ϕ = ϕ(σ̄1, . . . , σ̄q;x1, . . . , xm), (i.e., ϕ contains only ∃,∧,=,
and relation symbols, say mi-ary σ̄i, i ∈ {1, . . . , q}, and free variable symbols,
say x1, . . . , xm) defines a so-called logical operation tϕ which can be applied to
mi-ary relations σi ⊆ Ami and gives the m-ary relation

tϕ(σ1, . . . , σq) := { (a1, . . . , am) ∈ Am | |= ϕ(σ1, . . . , σq; a1, . . . , am) }.

Then the closure [Q] is the closure under all pp-definitions, which means ex-
plicitly the closure under all logical operations tϕ.

As for S-relational clones, it follows from Definition 2.11 that a set of S-
relations is an S-relational clone if and only if it is closed under pp-definitions
(now we apply the same pp-formula to each component of S-relations), in-
dex translations and self-intersections. Moreover, S-relational clones are closed
also under M-self-intersections for arbitrary families M satisfying condition
(*) of Definition 2.12. In order to see this, in the proof of Lemma 3.9 we shall
explicitly show that each set of the form SInv F – and therefore, due to The-
orem 4.6, also each S-relational clone – is closed under M-self-intersections.

Lemma 2.15. SDA = S[∅]A = S[δS ]A is the least S-relational clone contained
in every S-relational clone.

Proof. We show that each S-diagonal S-relation can be generated from δS . It
is well known that DA = [Δ]A (cf., e.g., [14, 1.1.9(R1)], the diagonal relation
δ

{1;2,3}
3 (A) used there, can be derived from Δ with the “elementary operations”

from Definition 2.7 as follows: δ
{1;2,3}
3 (A) = pr(Δ) × Δ). Thus all (δm

ε )s∈S can
be constructed from δS = (Δ)s∈S . We show that all further S-diagonals can
be derived from these.

Let � = (δm
εs

)s∈S ∈ SDA (for notation, see Definition 2.9) and δS
ε :=

(δm
ε )s∈S . According to Definition 2.11(8), for v ∈ S, (�vδS

ε )s equals δm
ε if s ∈

Sv and it equals Am if s ∈ S \Sv. Consequently, the conditions in Definition 2.9
for the S-diagonal � imply � =

∧
{�vδS

εv
| v ∈ S } ∈ S[δS ].

It remains to mention that SDA really is an S-relational clone. Namely,
the closure under each of the operations (1)–(8) of Definition 2.11 can be
directly checked (however, it also follows immediately from Proposition 3.8
and Lemma 3.9). �
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3. Invariant S-relations and S-polymorphisms and the Galois
connection SPol–S Inv

In this section we introduce the Galois connection SPol–SInv induced by the

S-preservation relation
S
� and give some preliminary results. This parallels the

classical Galois connection Pol–Inv induced by the preservation relation on
usual (unsigned) operations and relations, which we will first briefly recall.

Notation 3.1. Let f ∈ Op(n)(A), and let ri = (r(1)i , . . . , r
(m)
i ) ∈ Am (i ∈

{1, . . . , n}) We write

f(r1, . . . , rn) :=
(
f(r(1)1 , . . . , r(1)n ), . . . , f(r(m)

1 , . . . , r(m)
n )

)

(componentwise application of f to m-tuples). Furthermore, if �i ⊆ Am (i ∈
{1, . . . , n}), then we let

f(�1, . . . , �n) := { f(r1, . . . , rn) | r1 ∈ �1, . . . , rn ∈ �n }.

Definition 3.2 (Preservation). Let f ∈ Op(n)(A) and � ∈ Rel(m)(A). We say
that f preserves � (or f is a polymorphism of �, or � is an invariant of f), and
we write f � �, if f(�, . . . , �) ⊆ �.

The relation � induces a Galois connection between operations and rela-
tions. The corresponding operators are denoted as follows.

Definition 3.3. Let F ⊆ Op(A) and Q ⊆ Rel(A). Then we define

Pol Q := { f ∈ Op(A) | ∀ � ∈ Q : f � � } (polymorphisms),

Inv F := { � ∈ Rel(A) | ∀ f ∈ F : f � � } (invariant relations).

It is well known that PolQ is a clone for any Q ⊆ Rel(A) and Inv F is a
relational clone for any F ⊆ Op(A). Moreover, if A is finite, then it holds that
〈F 〉 = Pol Inv F and [Q] = Inv PolQ ([2], cf. [14, Folgerung 1.2.4]).

Definition 3.4 (S-preservation). Let f ∈ SOp(A) with sgn(f) = (s1, . . . , sn)

and � = (�s)s∈S ∈ SRel
(m)

(A). The preservation property
S
� is defined by

f
S
� (�s)s∈S : ⇐⇒ ∀s ∈ S : f(�s1s, . . . , �sns) ⊆ �s. (1)

If f
S
� �, then we say that f S-preserves �, or f is an S-polymorphism of �,

or � is invariant for f . Note that in particular we have f(�s1 , . . . , �sn
) ⊆ �e (e

is the neutral element of S). If it is clear from the context that we deal with

S-operations and S-relations, then, for f
S
� �, we also say f preserves � or f

is a polymorphism of �.

For S-relations or S-operations of a special form, the S-preservation prop-
erty can be expressed by the usual preservation property:
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Lemma 3.5.

(i) For f ∈ SOp(A) and σ ∈ Rel(A) we have

f
S
� (σ)s∈S ⇐⇒ f̊ � σ.

Here (σ)s∈S is the S-relation (�s)s∈S with �s = σ for all s ∈ S.
(ii) If sgn(f) = (e, . . . , e) and � = (�s)s∈S, then

f
S
� � ⇐⇒ ∀s ∈ S : f̊ � �s.

Proof. This follows immediately from the definition of S-preservation (for (ii)
see also Proposition 4.7). �

The S-preservation relation
S
� induces a Galois connection between S-

operations SOp(A) and S-relations SRel(A). The corresponding operators are
denoted as follows.

Definition 3.6. Let F ⊆ SOp(A) and Q ⊆ SRel(A). Then we define

SPol Q := { f ∈ SOp(A) | ∀ � ∈ Q : f
S
� � } (S-polymorphisms),

SInv F := { � ∈ SRel(A) | ∀ f ∈ F : f
S
� � } (invariant S-relations).

Example 3.7. Let (A,≤) be a poset and S = {+,−}. Then the S-preclone F
considered in Example 2.5 can be characterized as

F = SPol � for the S-relation � = (�+, �−) := (≤,≥).

Moreover, let σ := (B1 × B1) ∪ · · · ∪ (Bm × Bm) where B1, . . . , Bm are
the connected components of the partial order ≤. Then the S′-preclone F ′ and
the Ŝ-preclone F̂ considered in Example 2.6 can be characterized by S′- and
Ŝ-relations, resp., as follows:

F ′ = S′
Pol{(≤,ΔA), (ΔA, σ)} ,

F̂ = ŜPol{(≤,≥,ΔA), (ΔA,ΔA, σ)} .

Trivial projections and S-diagonals play a special role: they can be con-
sidered as trivial with respect to S-preservation (in particular, this motivates
why S-diagonals should belong to each S-relational clone, cf. Definition 2.11(1)
and Lemma 2.15):

Proposition 3.8. We have SJA = SPol SRel(A) and SDA = SInv SOp(A), i.e.,
(trivial) projections are those S-operations which S-preserve every S-relation,
and S-diagonals are those S-relations which are invariant for every S-opera-
tion.

Proof. First we prove SJA = SPol SRel(A). It is easy to check that any (triv-
ial) projection (see Remark 2.4(B)) preserves every relation, i.e., SJA ⊆ SPol
SRel(A). Conversely, let f ∈ SPol SRel(A) with sgn(f) = (s1, . . . , sn). From
Lemma 3.5(i) we conclude that f̊ � σ for each σ ∈ Rel(A). Because Pol Rel(A) =
JA (this follows from well-known results about clones: since Inv JA = Rel(A),
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see [14, 1.1.15], one can conclude JA = Pol Inv JA = Pol Rel(A)) we get f̊ ∈ JA

is a projection, i.e., f(x1, . . . , xn) = xi. If si 
= e then f does not preserve
� := (Δ, . . . ,Δ,∇,Δ, . . . ,Δ) (with ∇ at the i-th place), a contradiction to the
choice of f . Thus si = e and f ∈ SJA; consequently SPol Rel(A) ⊆ SJA.

Now we show SDA = SInv SOp(A). Let f ∈ SOp(A) with sgn(f) =
(s1, . . . , sn) and � = (�s)s∈S = (δm

εs
)s∈S ∈ SDA, in particular we have �sit ⊆

�t for all t ∈ S since sit ∈ St (cf. Definition 2.9) for i ∈ {1, . . . , n}. Thus
f(�s1t, . . . , �snt) ⊆ f(�t, . . . , �t) ⊆ �t (note for the last inclusion that the
diagonal �t ∈ DA is preserved by every function, thus also by f̊), which shows

that f
S
� �. Thus SDA ⊆ SInv SOp(A).

Conversely, let � ∈ SInv SOp(A). Note that { f̊ | f ∈ SOp(A), Sgn(f) =
{e} } = Op(A). From Lemma 3.5(ii) we conclude that f̊ � { �s | s ∈ S } for
every f̊ ∈ Op(A). Thus { �s | s ∈ S } ⊆ Inv Op(A) = DA (the latter equality is
well known, see e.g., [14, 1.1.15]). Furthermore, let Ss ⊆ St, i.e., there exists

s1 ∈ S such that s = s1t. Consequently, from ids1
S
� � we get �s = ids1(�s) =

ids1(�s1t) ⊆ �t, which proves � ∈ SDA (because the compatibility condition in
Definition 2.9 is fulfilled). Thus we also have SInv SOp(A) ⊆ SDA. �

The operators SPol and SInv of the Galois connection produce S-pre-
clones and S-relational clones, as shown by the following lemma. The main
question, if every S-preclone and S-relational clone can be “produced” in this
way, shall be answered in the next section (Theorems 4.1, 4.6).

Lemma 3.9. Let F ⊆ SOp(A) and Q ⊆ SRel(A). Then SPol Q is an S-pre-
clone and SInv F is an S-relational clone. Moreover, SPol Q = SPol S[Q] and
SInv F = SInv S〈F 〉.

Proof. We show first that SPol Q is an S-preclone. Let � = (�s)s∈S be an
S-relation in Q. For all s ∈ S, idA(�es) = �es = �s; hence idA ∈ SPol Q. Let
f, g ∈ SPol Q with sgn(f) = (s1, . . . , sn) ∈ Sn and sgn(g) = (s′

1, . . . , s
′
m) ∈ Sm,

and let s ∈ S. If n = 1, then we have ζf = τf = f ∈ SPol Q; otherwise

(ζf)(�sns, �s1s, . . . , �sn−1s) = f(�s1s, . . . , �sns) ⊆ �s,

(τf)(�s2s, �s1s, �s3s, . . . , �sns) = f(�s1s, �s2s, �s3s, . . . , �sns) ⊆ �s.

For each t ∈ S,

(∇tf)(�ts, �s1s, . . . , �sns) = f(�s1s, . . . , �sns) ⊆ �s,

and if s1 = s2 = t then

(Δf)(�ts, �s3s, . . . , �sns) = f(�s1s, �s2s, . . . , �sns) ⊆ �s;

otherwise Δf = f ∈ SPol Q. Finally,

(f ◦ g)(�s′
1s1s, . . . , �s′

ms1s, �s2s, . . . , �sns)

= f(g(�s′
1s1s, . . . , �s′

ms1s), �s2s, . . . , �sns)

⊆ f(�s1s, �s2s, . . . , �sns) ⊆ �s.

This shows that SPol Q is an S-preclone.
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Now we show that SInv F is an S-relational clone. By Proposition 3.8
we have δS ∈ SDA ⊆ SInv F , thus condition (1) of Definition 2.11 is satisfied.
Let �, �′ ∈ SInv F , say � is m-ary and �′ is m′-ary. If m = 1, then ζ� = τ� =
pr � = � ∈ SInv F . If m 
= m′, then � ∧ �′ = (∅(m))s∈S ∈ SInv F . In all other
cases, it is straightforward to verify that for f ∈ F with sgn(f) = (s1, . . . , sn)
and π ∈ {ζ, τ,pr} we have

f(π�s1s, . . . , π�sns) = πf(�s1s, . . . , �sns) ⊆ π�s,

f(�s1s × �′
s1s, . . . , �sns × �′

sns)

⊆ f(�s1s, . . . , �sns) × f(�′
s1s, . . . , �

′
sns) ⊆ �s × �′

s,

f(�s1s ∧ �′
s1s, . . . , �sns ∧ �′

sns)

⊆ f(�s1s, . . . , �sns) ∩ f(�′
s1s, . . . , �

′
sns) ⊆ �s ∧ �′

s,

so f
S
� π�, f

S
� � × �′ and f

S
� � ∧ �′.

For the remaining two operations (i.e., index translation and self-inter-
section, see Definition 2.11(7),(8)) we use the more general operation M-self-
intersection (see Definition 2.12(9)). Because of Remark 2.13 this will prove
the result for the operations (7) and (8), too.

Thus let f ∈ F with sgn(f) = (s1, . . . , sn) and � ∈ SInv F , i.e., f
S
� �.

Furthermore, let M = (Ms)s∈S satisfy the condition (*) in Definition 2.12.
For shorter notation put �′ := �M�. We have to show f(�′

s1s, . . . , �
′
sns) ⊆ �′

s

for every s ∈ S. Since sis
′ ∈ siMs ⊆ Msis for each s′ ∈ Ms, by the definition

of �′
sis we have �′

sis ⊆ �sis′ for all s′ ∈ Ms (i ∈ {1, . . . , n}). Consequently,

f(�′
s1s, . . . , �

′
sns) ⊆ f(�s1s′ , . . . , �sns′) ⊆ �s′

for each s′ ∈ Ms, thus f(�′
s1s, . . . , �

′
sns) is contained in �′

s being the intersection

of all such �s′ . Consequently, f
S
� �M�.

This shows that SInv F is an S-relational clone.
Finally, the last statement of the Lemma follows from the above. Indeed,

we clearly have SPol S[Q] ⊆ SPol Q and Q ⊆ SInv SPol Q (by the general
properties of a Galois connection, here SPol–SInv). The latter implies S[Q] ⊆
SInv SPol Q since SInv SPol Q is an S-relational clone (by what we have shown
above); consequently SPol Q = SPol SInv SPol Q ⊆ SPol S[Q], which proves
the equality SPol Q = SPol S[Q]. The equality SInv F = SInv S〈F 〉 follows
analogously from the fact that SPol SInv F is an S-preclone. �

A characterization of the (usual) clones generated by S-operations, in
particular by S-preclones F , is also possible.

Proposition 3.10. Let F ⊆ SOp(A). Then the clone 〈F̊ 〉 ⊆ Op(A) generated
by F̊ (i.e., all functions of F ignoring the signum of the operations) can be
characterized as follows:

〈F̊ 〉 = Pol{σ | (σ)s∈S ∈ SInv F }.
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Proof. It is well known that 〈F̊ 〉 = Pol Inv F̊ ([2], cf. [14, Folgerung 1.2.4]). By
Lemma 3.5(i) we have σ ∈ Inv F̊ ⇐⇒ (σ)s∈S ∈ SInv F , which finishes the
proof. �

Definition 3.11. Let F ⊆ SOp(A) and � ∈ SRel
(m)

(A). Let

ΓF (�) :=
⋂

{σ ∈ SRel
(m)

(A) | � ⊆ σ ∈ SInv F },

where � ⊆ σ means �s ⊆ σs for each s ∈ S. Thus ΓF (�) is the least S-relation
which contains � and is invariant for F (note that SInv F is closed under
intersections, cf. Definition 2.11(6)). Moreover, we have ΓF (�) = ΓS〈F 〉(�) (by
definition, since SInv F = SInv S〈F 〉; see Lemma 3.9).

Lemma 3.12 (cf. [14, 1.1.20]). For any F ⊆ SOp(A) and � ∈ SRel(A),

ζΓF (�) = ΓF (ζ�), τΓF (�) = ΓF (τ�),

prz1,...,zm
(ΓF (�)) = ΓF (prz1,...,zm

(�)).

Proof. The claims about ζ and τ are easy to verify. For the claim about
prz1,...,zm

, observe that prz1,...,zm
(�) ⊆ prz1,...,zm

(ΓF (�)) ∈ SInv F and that
every S-relation σ ∈ SInv F that contains prz1,...,zm

(�) can be turned into
a relation σ′ ∈ SInv F with � ⊆ σ′ by introduction of fictitious rows and
identification of equal rows. �

Proposition 3.13 (Characterization of ΓF (�)).
(i) Let F ⊆ SOp(A) and � ∈ SRel(A). For i ∈ N we define

�(0) := �

�(i+1) := (�(i+1)
s )s∈S , where

�(i+1)
s := �(i)s ∪ { f(r1, . . . , rn) | f ∈ F (n), n ∈ N+,

r1 ∈ �
(i)
s1s, . . . , rn ∈ �

(i)
sns,

where (s1, . . . , sn) := sgn(f) }.

Then we have ΓF (�) =
⋃∞

i=0 �(i).
(ii) Let r ∈ ΓF (�)s for some s ∈ S. Then there exist an S-operation f ∈ S〈F 〉

with sgn(f) = (s1, . . . , sq) (for some q ∈ N+ and s1, . . . , sq ∈ S) and
rj ∈ �sjs (j ∈ {1, . . . , q}) such that r = f(r1, . . . , rq).

(iii) Let � ∈ SRel(A) and λ� = (s1, . . . , sn), � = (r1, . . . , rn) (cf. Defini-
tion 2.8). Then

(ΓF (�))e = { f(r1, . . . , rn) | f ∈ S〈F 〉, sgn(f) = λ� }.

Remark: Note that the union in Proposition 3.13(i) is in fact a finite union
because the increasing sequence �(0) ⊆ �(1) ⊆ · · · ⊆ �(i) ⊆ · · · ⊆ (Am)s∈S

(m = ar(�)) must stabilize after a finite number of steps (since A and S are
finite).

Proof. (i): Let γ :=
⋃∞

i=0 �(i). At first we show γ ∈ SInv F (this will imply
ΓF (�) ⊆ γ by definition of ΓF (�) since � ⊆ γ).
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Indeed, let f ∈ F , sgn(f) = (s1, . . . , sn) and rj ∈ γsjs for some s ∈ S,
j ∈ {1, . . . , n}. We have to show f(r1, . . . , rn) ∈ γs. Since γ is the union of the
increasing sequence (�(i))i∈N, there must exist i ∈ N such that rj ∈ �

(i)
sjs for all

j ∈ {1, . . . , n}. Consequently, we have f(r1, . . . , rn) ∈ �
(i+1)
s ⊆ γs by definition

of �
(i+1)
s .
It remains to show γ ⊆ ΓF (�). We show �(i) ⊆ ΓF (�) for all i ∈ N by

induction on i. For i = 0, �(0) = � ⊆ ΓF (�) is clear. Assume �(i) ⊆ ΓF (�) for
some i ∈ N. Then, for f ∈ F (n) with sgn(f) = (s1, . . . , sn), s ∈ S, r1 ∈ �

(i)
s1s ⊆

ΓF (�)s1s, . . . , rn ∈ �
(i)
sns ⊆ ΓF (�)sns, we get f(r1, . . . , rn) ∈ ΓF (�)s (because

ΓF (�) is invariant), which implies �
(i+1)
s ⊆ ΓF (�)s according to the definition

of �
(i+1)
s . Thus we also have γ ⊆ ΓF (�) and therefore, as shown above, equality.

(ii): According to (i) it is enough to show the claim for r ∈ �
(i)
s for each

i ∈ N. This we shall do by induction on i. For i = 0 and r ∈ �
(0)
s = �s we

obviously have id(r) = r, i.e., we can take q = 1, f = id ∈ S〈F 〉, r1 = r, s1 = e.
Assume that the claim holds for all elements in �

(i)
s and all s ∈ S. Let

r ∈ �
(i+1)
s . Then (according to the definition of �(i+1)) there exist f ∈ F (n)

with sgn(f) = (s1, . . . , sn) (n ∈ N+) and b1 ∈ �
(i)
s1s, . . . , bn ∈ �

(i)
sns such that

r = f(b1, . . . , bn). By induction hypothesis each bj ∈ �
(i)
sjs can be represented

as bj = fj(rj1, . . . , rjqj
) with sgn(fj) = (sj1, . . . , sjqj

) (j ∈ {1, . . . , n}) for
suitable rjk ∈ �sjksjs (k ∈ {1, . . . , qj}). Consequently, for

h(x11, . . . , x1q1 , . . . , xn1, . . . , xnqn
)

:= f(f1(x11, . . . , x1q1), . . . , fn(xn1, . . . , xnqn
))

we have

sgn(h) = (s11s1, . . . , s1q1s1, . . . , sn1sn, . . . , snqn
sn) and

r = h(r11, . . . , r1q1 , . . . , rn1, . . . , rnqn
), where rjk ∈ �sjksjs,

which shows the claim for �
(i+1)
s . By induction, (ii) is proved.

(iii): Let r ∈ ΓF (�)e. According to (ii) (for s = e) there exist f ∈ S〈F 〉
with sgn(f) = (t1, . . . , tq) and rki

∈ �ti
, ki ∈ {1, . . . , n}, i ∈ {1, . . . , q} such

that r = f(rk1 , . . . , rkq
). We can assume that all the rki

’s on arguments with
the same signum are different (otherwise the corresponding arguments can be
identified according to Definition 2.3(5)). Since ri ∈ �si

(by definition), we have
rki

∈ �ski
with ski

= ti and therefore sgn(f) = (t1, . . . , tq) = (sk1 , . . . , skq
).

For each rj which does not appear among the rki
’s, more precisely, for

each rj ∈ �sj
\ { rki

| ski
= sj , i ∈ {1, . . . , q} } (j ∈ {1, . . . , n}) we add

a fictitious argument with signum sj to f (according to Definition 2.3(4)).
Thus we obtain an S-operation f ′ ∈ S〈F 〉, the signum of which contains
exactly all s1, . . . , sn. With a suitable permutation of the arguments of f ′

(according to Definition 2.3(2), (3), cf. Remark 2.4(A)) we finally get an
S-operation with sgn(f ′′) = (s1, . . . , sn) = λ� such that f ′′(r1, . . . , rn) =
f(rk1 , . . . , rkq

) = r. �
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Proposition 3.15 below shows that the S-operations in an S-preclone
generated by F can be characterized by the preservation of special S-relations
ΓF (χλ) where the χλ are defined as follows.

Definition 3.14. For a signum λ = (s1, . . . , sn) ∈ Sn, let χλ ∈ SRel
(kn)

(A) be
defined by

χλ
s := { κi | si = s, i ∈ {1, . . . , n} } for s ∈ S.

In the above, for k := |A| and fixed n ∈ N+, the tuples κi are defined as
in the “classical” case ([14, 1.1.16]): (κ1, . . . , κn) is the (kn × n)-matrix with
columns κ1, . . . , κn such that the rows are all n-tuples from An (may be or-
dered lexicographically). Thus we have κi ∈ χλ

si
. With the notation introduced

in Definition 2.8 we have λ = λχλ .

Proposition 3.15. Let F ⊆ SOp(A), let λ = (s1, . . . , sn) ∈ Sn be a signum and

let g ∈ SOp
(n)

(A) with sgn(g) = λ. Then we have

g ∈ S〈F 〉 ⇐⇒ g
S
� ΓF (χλ).

Proof. The implication “=⇒” is clear since ΓF (χλ) is invariant (by definition)
for every S-operation in S〈F 〉 (cf. Lemma 3.9).

“⇐=”: g
S
� ΓF (χλ) implies that g(ΓF (χλ)s1 , . . . ,ΓF (χλ)sn

) ⊆ ΓF (χλ)e

(cf. 3.4(1)), in particular g(κ1, . . . , κn) ∈ ΓF (χλ)e. According to Proposi-
tion 3.13(iii) (for u = e) we have

ΓF (χλ)e = { f(κ1, . . . , κn) | f ∈ S〈F 〉, sgn(f) = λ }.

Hence there exists some f ∈ S〈F 〉(λ) such that g(κ1, . . . , κn) = f(κ1, . . . , κn).
Therefore g and f agree on each element of An (the rows of χλ), i.e.,
g = f ∈ S〈F 〉. �

4. The Galois closures for the Galois connection SPol–S Inv

Now we are able to characterize the Galois closures of the Galois connection
SPol–SInv. Recall that throughout the paper we assume that A and S are
finite.

Theorem 4.1. Let S be an arbitrary monoid. Then, for F ⊆ SOp(A), we have
S〈F 〉 = SPol SInv F,

i.e., the Galois closure is the S-preclone generated by F .

Proof. Since SPol SInv is a closure operator, we have the inclusion S〈F 〉 ⊆
SPol SInv S〈F 〉 = SPol SInv F (the last equality follows from Lemma 3.9).
For the converse inclusion let g ∈ SPol SInv F with sgn(g) = λ. Then g ∈
SPol ΓF (χλ) (since ΓF (χλ) is invariant by Definition 3.11) and we get g ∈ S〈F 〉
by Proposition 3.15. �

In Theorem 4.6 we shall characterize the Galois closed S-relational clones.
In preparation of the proof we need several lemmata.
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Lemma 4.2 (cf. [14, Lemma 1.2.2]). Let F ⊆ SOp(A). Then each invariant

� ∈ SInv
(m)

F (m ∈ N+) can be obtained from ΓF (χλ�) by projections. Con-
sequently, SInv F = S[{ΓF (χλ�) | � ∈ SRel(A) }].

Proof. According to Definition 2.8, for λ� = (s1, . . . , sn), we have �s = { ri |
si = s }. Thinking of � as the m×n matrix M = (r1, . . . , rn) (ri ∈ Am), we see
that each row of M appears as a row of the |A|n ×n matrix χλ� = (κ1, . . . , κn)
say, the j-th row of � is the zj-th row of χλ� (j ∈ {1, . . . , m}). Then � =
prz1,...,zm

(χλ�). By Lemma 3.12, we have ΓF (�) = prz1,...,zm
(ΓF (χλ�)). Since

� ∈ SInv F , we get � = ΓF (�) = prz1,...,zm
(ΓF (χλ�)). Therefore, SInv F ⊆

S[{ΓF (χλ�) | � ∈ SRel(A) }] by Remark 2.14(B). The inclusion S[{ΓF (χλ�) |
� ∈ SRel(A) }] ⊆ SInv F holds, because {ΓF (χλ�) | � ∈ SRel(A) } ⊆ SInv F

and SInv F is an S-relational clone by Lemma 3.9. �

Notation 4.3. For given Q ⊆ SRel(A) and � ∈ SRel(A) let

γ(�) := γQ(�) :=
⋂{

�′ ∈ S[Q] | � ⊆ �′ }

be the smallest S-relation in S[Q] that has the same arity as � and contains
� (the index Q for γQ is omitted if the Q ⊆ SRel(A) under consideration is
fixed). Note that γ(�) ∈ S[Q] because S[Q] is an S-relational clone and therefore
closed under intersections (cf. Definition 2.11(6)).

Lemma 4.4. Let Q ⊆ SRel(A) and F := SPol Q. If ΓF (χλ) = γ(χλ) for each
signum λ = (s1, . . . , sn) (s1, . . . , sn ∈ S, n ∈ N+), then S[Q] = SInv SPol Q.

Proof. By Lemma 3.9 and the general properties of Galois connections, we
have S[Q] ⊆ SInv SPol S[Q] = SInv F . In order to prove the converse inclusion,
it suffices to show that ΓF (χλ) ∈ S[Q] for all signa λ, because this implies, by
Lemma 4.2, that

SInv F = S[{ΓF (χλ�) | � ∈ SRel(A) }]

⊆ S[{ΓF (χλ) | λ ∈ S∗ }] ⊆ S[S[Q]] = S[Q],

where S∗ denotes the set of all signa (finite words over S). Furthermore,
γ(χλ) ∈ S[Q] by Definition 4.3. Thus the assumption ΓF (χλ) = γ(χλ) im-
plies ΓF (χλ) ∈ S[Q] and we are done. �

For the next lemmata we always assume that Q ⊆ SRel(A) is arbitrarily
chosen but fixed and that F := SPol Q.

Lemma 4.5. We have ΓF (χλ)e = γ(χλ)e for all signa λ = (s1, . . . , sn) (s1, . . . ,
sn ∈ S, n ∈ N+).

Proof. Recall that χλ
s = { κi | si = s, i ∈ {1, . . . , n} } for s ∈ S and λ =

(s1, . . . , sn), where (κ1, . . . , κn) is an |A|n ×n matrix with columns κ1, . . . , κn

such that the rows are all n-tuples from An.
Let γ := γ(χλ) and assume that there exists r ∈ γe \ ΓF (χλ)e (and we

are going to show that this leads to a contradiction). By Proposition 3.13(iii)
(take (r1, . . . , rn) = (κ1, . . . , κn) and note e ∈ I(S)), the function fr of signum



   34 Page 18 of 29 P. Jipsen, E. Lehtonen and R. Pöschel Algebra Univers.

λ that is defined by fr(κ1, . . . , κn) = r does not belong to F = SPol Q.
Therefore there exists an S-relation θ ∈ Q, say m-ary, that is not S-preserved
by fr, i.e., there exist a v ∈ S and tuples ri ∈ θsiv (i ∈ {1, . . . , n}) such that
a := fr(r1, . . . , rn) /∈ θv. By index translation by v, we obtain the S-relation
θ∗ := μv(θ) ∈ S[Q] with θ∗

s = θsv (s ∈ S) that is not S-preserved by fr either,
because ri ∈ θsiv = θ∗

si
(i ∈ {1, . . . , n}) and a /∈ θv = θ∗

e .
Consider the matrix M = (r1, . . . , rn). The rows of M occur as rows of

(κ1, . . . , κn); say the j-th row of M equals the hj-th row of χλ. Let (δq+m
τ )s∈S

be the diagonal relation with τ = { (hj , q + j) | j ∈ {1, . . . , m} }, and let
θ′ := (γ × θ∗)∧ δq+m

τ . In other words, θ′
s comprises those tuples from (γ × θ∗)s

whose hj-th and (q + j)-th components are equal, for j ∈ {1, . . . , m}. By
removing the last m rows, we obtain the S-relation θ′′ := pr1,...,q(θ′). Since
the tuple κi×ri belongs to (γ×θ∗)si

and hence also to θ′
si

, for all i ∈ {1, . . . , n},
we have κi ∈ θ′′

si
for all i ∈ {1, . . . , n}, i.e., χλ ⊆ θ′′. Moreover, θ′′ ⊆ γ holds

by construction. The S-relation θ′′ was built from relations in Q by using
operations described in Definition 2.11 and Remark 2.14; therefore θ′′ ∈ S[Q].

We show that r /∈ θ′′
e . Indeed, if r ∈ θ′′

e then there would exist a b ∈ θ∗
e

such that r × b ∈ δq+m
τ (recall the definitions of θ′ and θ′′, and that r =

fr(κ1, . . . , κn) ∈ γe thus r × b ∈ γe × θ∗
e), consequently

b = prh1,...,hm
(r) = prh1,...,hm

(fr(κ1, . . . , κn))

= fr(prh1,...,hm
(κ1), . . . ,prh1,...,hm

(κn)) = fr(r1, . . . , rn) = a /∈ θ∗
e ,

a contradiction.
Thus θ′′

e � γe and so θ′′
� γ. We conclude that γ is not the small-

est S-relation in S[Q] containing χλ. We have reached the desired contradic-
tion . �

The following theorem generalizes the characterization of (usual) rela-
tional clones (cf. [14, Satz 1.2.3]) to S-relational clones.

Theorem 4.6. Let S be an arbitrary monoid. Then, for Q ⊆ SRel(A), we have

S[Q] = SInv SPol Q,

i.e., the Galois closure is the S-relational clone generated by Q.

Proof. Again we use the notation F := SPol Q and γ as in the lemmata before.
Because of Lemma 4.4 it is enough to show ΓF (χλ)v = γ(χλ)v for each v ∈ S
and arbitrary signa λ.

By Lemma 4.5 this is true for v = e. Thus let v ∈ S \ {e} and let λ =
(t′1, . . . , t

′
p). We have to show ΓF (χλ)v = γ(χλ)v. Note that the entries of

λ could be permuted arbitrarily without changing this equality (this follows
from the fact that S-preclones are closed under permutation of arguments, cf.
Remark 2.4).

Let Λ = {t1, . . . , tn} be the set of all different entries in the signum λ,
i.e., Λ = {t′1, . . . , t

′
p}. Ordering the entries of λ correspondingly we can assume

that
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λ = (t1, . . . , t1︸ ︷︷ ︸
�1

, . . . , ti, . . . , ti︸ ︷︷ ︸
�i

, . . . , tn, . . . , tn︸ ︷︷ ︸
�n

),

where ti appears �i times (i ∈ {1, . . . , n}), thus p = t1 + · · · + tn. The corre-
sponding elements (columns) of χλ are denoted as follows

χλ = (κt1,1, . . . , κt1,�1︸ ︷︷ ︸
χλ

t1

, . . . , κti,1, . . . , κti,�i︸ ︷︷ ︸
χλ

ti

, . . . , κtn,1, . . . , κtn,�n︸ ︷︷ ︸
χλ

tn

)

Let Mv = (Ms)s∈S with Ms = {x ∈ S | xv = s } be the family as defined
in Remark 2.13 (for simplicity we write Ms instead of Mv

s ). Now we consider
the signum

λ̂ = (
s1∈Mt1︷ ︸︸ ︷

. . . , s1, . . . , s1︸ ︷︷ ︸
�1

, . . . , . . . ,

si∈Mti︷ ︸︸ ︷
. . . , si, . . . , si︸ ︷︷ ︸

�i

, . . . , . . . ,

sn∈Mtn︷ ︸︸ ︷
. . . , sn, . . . , sn︸ ︷︷ ︸

�n

, . . . )

=: (v1, . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , . . . , vn̂),

where each si ∈ Mti
appears exactly �i times (i ∈ {1, . . . , n}). Because of

Remark 2.13(b) no s ∈ S can appear in different Mti
.

At first consider the case λ̂ = ∅, i.e., Mt1 = · · · = Mtn
= ∅, consequently

(by the definition of Mt) we have {t1, . . . , tn} ∩ Sv = ∅. Let m := |Ap| be
the arity of χλ, and let d ∈ SDA denote the m-ary diagonal relation (cf.
Definition 2.9) with ds = ∅ for s ∈ Sv and ds = Am otherwise. We get

(γ(χλ) ∧ d)s =

{
γ(χλ)s ∧ ∅ = ∅ if s ∈ Sv,

γ(χλ)s ∧ Am = γ(χλ)s otherwise.

Then χλ ⊆ � := γ(χλ) ∧ d ∈ S[Q], consequently γ(χλ) ⊆ �, in particular we
have γ(χλ)v ⊆ �v = ∅. Therefore ΓF (χλ)v = γ(χλ)v = ∅, and we are done.

Thus, from now on, we can assume that Mt 
= ∅ for at least one t ∈
{t1, . . . , tn}. The S-relation χλ̂ consists of n̂ := �1 · |Mt1 | + · · · + �n · |Mtn

| ≥ 1
columns which are denoted by

χλ̂ = (

s1∈Mt1︷ ︸︸ ︷
. . . , κ̂s1,1, . . . , κ̂s1,�1 , . . . , . . . ,

sn∈Mtn︷ ︸︸ ︷
. . . , κ̂sn,1, . . . , κ̂sn,�n

, . . .),

i.e., χλ̂
s = {κ̂s,1, . . . , κ̂s,�i

} for s ∈ Mti
, i ∈ {1, . . . , n}.

Let m̂ := |A|n̂. Note that the colums of χλ and χλ̂ are elements of Am

and Am̂, respectively.
Choose the rows of χλ̂ with indices z1, . . . , zm such that (for notation,

see Remark 2.14(B))

prz1,...,zm
(χλ̂) = (

s1∈Mt1︷ ︸︸ ︷
. . . , κt1,1, . . . , κt1,�1 , . . . , . . . ,

sn∈Mtn︷ ︸︸ ︷
. . . , κtn,1, . . . , κtn,�n

, . . .),

i.e., prz1,...,zm
(κ̂s,j) = κti,j for s ∈ Mti

, j ∈ {1, . . . , �i}, therefore

(prz1,...,zm
(χλ̂))s = prz1,...,zm

(χλ̂
s ) = {κti,1, . . . , κti,�i

} = χλ
ti

(◦)
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κtn,1 κtn nκt1 1κt1,1

λ̂ = (v1, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , vn)

= ( . . . ,
1︷ ︸︸ ︷

s1 , . . . , s1 , . . .
︸ ︷︷ ︸

s1∈Mt1

, . . . , . . . ,
n︷ ︸︸ ︷

sn , . . . , sn , . . .
︸ ︷︷ ︸

sn∈Mtn

)

prz1,...,zm(χ
λ)

χλ = (
︷ ︸︸ ︷
. . . , κ̂s1,1, . . . , κ̂s1 1 , . . . , . . . ,

︷ ︸︸ ︷
. . . , κ̂sn,1, . . . , κ̂sn n , . . .)

...
...

...

...
...

...
...

...
...

...
...

⊆ χλ

1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . n

...
. . . . . .

. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

=
1
...

z1

...

zm

...
m

. . .

Figure 1. The signum λ̂ and the corresponding columns of
the S-relation χλ̂ with the projection prz1,...,zm

(χλ̂) ⊆ χλ

for s ∈ Mti
, i ∈ {1, . . . , n}. Note that the rows z1, . . . , zm must exist because

the rows of χλ̂ are exactly all tuples in Am̂ (cf. Definition 3.14). The structure
of λ̂ and χλ̂ and the introduced notation can be seen schematically in Figure 1.

We define � := prz1,...,zm
(γ(χλ̂)) and � := �Mv� = �v� (the last equation

follows from Remark 2.13). Since γ(χλ̂) ∈ S[Q], also � belongs to S[Q], moreover
we have �v ⊆ �e because of property Remark 2.13(a) (cf. Definition 2.11(8) or
2.12(9)).

In particular, χλ ⊆ � because (with the above-mentioned equality (◦)) we
have χλ

t = (prz1,...,zm
(χλ̂))s ⊆ (prz1,...,zm

(γ(χλ̂))s for all s ∈ Mt, t ∈ Λ (note
that �t =

⋂
{ �s | s ∈ Mt }). Consequently, γ(χλ) ⊆ � since γ(χλ) is the least

S-relation in S[Q] which contains χλ.
Now, for Γ := ΓF (χλ) we can prove Γv = γ(χλ)v. We have to show only

γ(χλ)v ⊆ Γv (the other inclusion is always fulfilled).
Let r ∈ γ(χλ)v. Then r ∈ �e since γ(χλ)v ⊆ �v ⊆ �e. By the definition

of � there must exist r̂ ∈ γ(χλ̂)e such that prz1,...,zm
(r̂) = r. By Lemma 4.5,

Γe = γ(χλ)e, thus r̂ ∈ Γe. According to Proposition 3.13(iii) (with � = χλ̂,
r = r̂) there exist f ∈ F with sgn(f) = λ̂ = (v1, . . . , vn̂) and r̂j ∈ χλ̂

vj

(j ∈ {1, . . . , n̂}) such that r̂ = f(r̂1, . . . , r̂n̂).

By the definition of λ̂, each vj belongs to Mt for some t ∈ Λ, consequently
prz1,...,zm

(χλ̂
vj

) = χλ
t = χλ

vjv, the last equality follows from condition 2.13(c).
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Applying prz1,...,zm
to r̂ = f(r̂1, . . . , r̂n̂), we get r = f(r1, . . . , rn̂) where

rj = prz1,...,zm
(r̂j) (j ∈ {1, . . . , n̂}) is an element of prz1,...,zm

(χλ̂
vj

) = χλ
vjv.

Thus r ∈ f(χλ
v1v, . . . , χλ

vn̂v) ⊆ f(Γv1v, . . . ,Γvn̂v) ⊆ Γv = ΓF (χλ)v (the last

inclusion follows from f
S
� ΓF (χλ), cf. 3.4(1), because f ∈ F ). Since r was

chosen arbitrarily, γ(χλ)v ⊆ ΓF (χλ)v and we are done. �

As a final remark to conclude this section, we would like to present a
connection between S-preclones and minions (and between the corresponding
Galois connections).

Let f : An → B and g : Am → B. We say that f is a minor of g, and
we write f ≤ g, if there exists a map σ : {1, . . . ,m} → {1, . . . , n} such that
f(a1, . . . , an) = g(aσ(1), . . . , aσ(m)) for all a1, . . . , an ∈ A. The minor relation
≤ is a quasiorder (a reflexive and transitive relation) on the set Fun(A,B) :=⋃

m∈N+
BAm

. Downwards closed subsets of (Fun(A,B),≤) are called minor-
closed classes or minions.

Minor-closed classes can be characterized with a Galois connection anal-
ogous to Pol–Inv (see Definition 3.3). Instead of relations, the dual objects are
now relation pairs, i.e., pairs (�, �′), where � ∈ Rel(m)(A) and �′ ∈ Rel(m)(B)
for some m ∈ N. Denote by RelP(A,B) the set of all such relation pairs.
Let f ∈ Fun(A,B) and (�, �′) ∈ RelP(A,B). We say that f preserves (�, �′),
and we write f � (�, �′), if f(�, . . . , �) ⊆ �′. For F ⊆ Fun(A,B) and Q ⊆
RelP(A,B), we define

PolP Q := { f ∈ Fun(A,B) | ∀ (�, �′) ∈ Q : f � (�, �′) } (polymorphisms),

InvPF := { (�, �′) ∈ Rel(A,B) | ∀ f ∈ F : f � (�, �′) } (invar. rel. pairs).

It was shown by Pippenger [12, Theorem 2.1] that if A and B are finite,
then a set F ⊆ Fun(A,B) is a minion if and only if F = PolP Q for some Q ⊆
RelP(A,B). This was later generalized by Couceiro and Foldes [3, Theorem 2.1]
for functions defined and valued on arbitrary sets; in this case, the Galois closed
sets of functions are the locally closed minions.

For s ∈ S, let F [s] := { f ∈ SOp(A) | Sgn(f) = {s} } be the S-signed part
of F , i.e., all S-operations in F where each argument has signum s.

Proposition 4.7. If F is an S-preclone on A, then for each s ∈ S, F [s] is a
minion; in particular, for the neutral element e of S, F [e] is a clone. Moreover
if F = SPol Q for some set Q ⊆ SRel(A), then F [s] = Pol{ (�st, �t) | � ∈
Q, t ∈ S }; in particular, F [e] = Pol{ �t | � ∈ Q, t ∈ S }.

Proof. It is clear from the definition that F [s] is minor-closed; in particular, it
is closed under arbitrary identification of arguments. For the neutral element
e, we furthermore have that F [e] is closed under composition; hence F [e] is a
clone (this also follows from Lemma 3.5(ii)). Moreover, an S-operation f with
sgn(f) = (s, . . . , s) S-preserves � = (�s)s∈S if and only if f(�st, . . . , �st) ⊆ �t

for all t ∈ S. The latter is equivalent to the condition that the operation f
(ignoring signum) preserves the relation pair (�st, �t) for all t ∈ S. Therefore,



   34 Page 22 of 29 P. Jipsen, E. Lehtonen and R. Pöschel Algebra Univers.

if F = SPol Q, then (ignoring signa)

F [s] = { f ∈ SOp(A) | sgn(f) = (s, . . . , s), f
S
� Q }

= { f ∈ Op(A) | f � { (�st, �t) | � ∈ Q, t ∈ S } }
= PolP{ (�st, �t) | � ∈ Q, t ∈ S }.

For the neutral element e of S, we get furthermore (see also Lemma 3.5(ii))
that

F [e] = PolP{ (�t, �t) | � ∈ Q, t ∈ S } = Pol{ �t | � ∈ Q, t ∈ S }. �

5. The lattice SLA of S-preclones

The S-preclones on a set A form a lattice SLA (with respect to inclusion). The
least element is SJA (cf. Remark 2.4) and the largest element is SOp(A). In
this section we deal with atoms and coatoms of SLA, with embeddings of the
lattice LA of (usual) clones on A into SLA, and with some inner symmetries
of SLA. But at first we shall look for generating systems of the S-preclone
SOp(A) and the S-relational clone SRel(A).

Proposition 5.1.

(1) The S-preclone SOp(A) is finitely generated.
For instance, for A = {0, 1, . . . , k − 1} we have

S〈{m(e,e)} ∪ { ids | s ∈ S }〉 = SOp(A) ,

where m(e,e) is the binary S-operation defined by m(x, y) := max(x, y)⊕1
(⊕ denotes addition modulo k) with sgn(m) = (e, e).

(2) The S-relational clone SRel(A) is finitely generated.
For instance, for A = {0, 1, . . . , k − 1} and k ≥ 3, we have
S[(Δ,∇, . . . ,∇), (≤,≤, . . . ,≤), (
=, 
=, . . . , 
=)] = SRel(A).

Here (σ, σ′, . . . , σ′) denotes the relation � ∈ SRel(A) with �e = σ and
�s = σ′ for s ∈ S\{e}.

(3) The lattice SLA is atomic and coatomic, i.e., each nontrivial S-preclone
contains a minimal one, and is contained in a maximal one.

Proof. (1): It is known (cf., e.g., [14, 5.1.4]), that m is a so-called Sheffer func-
tion, i.e., the clone generated by m is the full clone of all operations. Thus
S〈m〉 contains all functions f ∈ SOp(A) with Sgn(f) = {e}. Let g ∈ SOp(A)
with sgn(g) = (s1, . . . , sn) and let f ∈ SOp(A) be given by f(x1, . . . , xn) :=
g(x1, . . . , xn) (i.e., f̊ = g̊) and sgn(f) = (e, . . . , e). Then gλ(x1, . . . , xn) =
f(ids1(x1), . . . , idsn(xn)) (cf. Definition 2.3(6)), thus g ∈ S〈{f}∪{ids1 , . . . , idsn}〉
⊆ S〈{m} ∪ { ids | s ∈ S }〉. Since g was chosen arbitrarily, we are done.

(2): It is known (cf., e.g., [14, 1.1.22]), that for k ≥ 3, f̊ ∈ Pol{≤, 
=}
implies that f̊ is a projection (because [≤, 
=]A = Rel(A)). In case k = 2 one
must take a ternary relation σ (see [14, 5.4.5]). Thus, because of Lemma 3.5(i),
f ∈ SPol{(≤,≤, . . . ,≤), (
=, 
=, . . . , 
=)} (or f ∈ SPol(σ, σ, . . . , σ) for k = 2)
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implies that f̊ is a projection. From f
S
� (Δ,∇, . . . ,∇) we can conclude that

all arguments with signum s 
= e must be fictitious, i.e., f is a trivial projection
(∈ SJA). Consequently, by Theorem 4.6, the S-relational clone generated by
the above relations equals SInv SJA

3.8= SInv SPol SRel(A) = SRel(A).
(3): It is well known from universal algebra that the subalgebra lattice

of a finitely generated algebra is coatomic (cf. [14, proof of 3.1.5]). Thus it
follows from (1) that SLA (as lattice of sub-S-preclones of SOp(A)) is coatomic.
Analogously, by (2), the lattice of all S-relational clones is coatomic. However,
due to the Galois connection SPol–SInv and Theorems 4.1 and 4.6, the latter
lattice is dual to SLA, consequently SLA is atomic. �
Proposition 5.2. There are finitely many maximal and finitely many minimal
S-preclones in SLA.

Proof. (a) Let F �
SOp(A) be a maximal S-preclone (coatom). We consider

the following S-relations �(s), s ∈ S: �(e) := ΓF (χ(e,e)) and �(s) := ΓF (χ(s)) for
s ∈ S \ {e}. If all these �(s) were S-diagonals, then the functions m(e,e) and ids

(see Proposition 5.1(1)) would belong to F by Proposition 3.15, i.e., F would
contain a generating system for SOp(A), which contradicts the assumption
F �

SOp(A). Thus at least one of the �(s), say �(si), is nontrivial and we
have F ⊆ SPol SInv F ⊆ SPol �(si) �

SOp(A). By the maximality of F we get
F = SPol �(si). This means that each maximal S-preclone is determined by
an S-relation of bounded arity (more precisely, it is the arity of χ(e,e) or χ(s),
i.e., |A|2 or |A|). But there exist only finitely many S-relations of fixed arity.
Consequently there are only finitely many maximal S-preclones.

(b) Let F be a minimal S-preclone. Then F is generated by each non-
trivial S-operation f ∈ F \ SJA. We are going to show that there is always
a nontrivial function f ′ in F with arity at most m := |A2| · |S|. Since there
are only finitely many functions f ′ of fixed bounded arity, there are also only
finitely many minimal S-preclones (because they are of the form F = S〈f ′〉),
and we are done.

Let f ∈ F \ SJA, sgn(f) = (s1, . . . , sn). Then f does not preserve at least
one of the three binary relations (denoted by � here) in Proposition 5.1(2) gen-
erating SRel(A) (otherwise f ∈ SPol SRel(A) 3.8= SJA is trivial). The condition
f 
 � � means that there must exist s ∈ S and r1 ∈ �s1s, . . . , rn ∈ �sns such
that f(r1, . . . , rn) /∈ �s. Because � is binary, |�t| ≤ |A2| for all t ∈ S, i.e., there
exist at most |A2| · |S| different elements for r1, . . . , rn (|A2| for each signum
t ∈ S). Thus, if n > m, one can identify arguments in f(x1, . . . , xn) (namely
xi with xj if ri = rj and si = sj) and gets a function f ′ ∈ S〈f〉 = F of arity at
most m which still does not preserve �, i.e., f ′ /∈ SJA is nontrivial, which was
to be shown. �

Concerning maximal S-preclones in SLA we have the following character-
ization.

Proposition 5.3. Each maximal S-preclone F ≤ SOp(A) can be characterized
as F = SPol � for some � ∈ SRel(A) such that we have (∗)s for each s ∈ S,
where
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(∗)s : ⇐⇒
�s is a diagonal relation, or
Pol �s is a maximal clone and ar(�) = ar(�s) is the minimal
arity of a nontrivial relation in [�s] = Inv Pol �s.

Proof. Let F ∈ SLA be a maximal S-preclone and let � ∈ SInv F \ SDA.
Then F ⊆ SPol SInv F ⊆ SPol � �

SOp(A), thus, by the maximality of F ,
F = SPol � for each nontrivial S-relation � in SInv F .

Let F = SPol � be maximal and assume �s /∈ DA (not diagonal, not
empty) for some s ∈ S. If (∗)s is not satisfied, then (since �s is nontrivial)
there exists a minimal relational clone [σs] ⊆ [�s] where we choose σs such that
ar(σs) is minimal. Thus there exists a “construction” tϕ (logical operation with
pp-formula ϕ) such that σs = tϕ(�s). Thus �′ := tϕ(�) is a nontrivial S-relation
with �′

s = σs. Moreover we have �′ ∈ SInv F (by Lemma 3.9), consequently
F = SPol �′ as well. By construction, �′

s satisfies (∗)s. Clearly ar(�′) ≤ ar(�).
If �′ does not satisfy (∗)s for all s ∈ S, one chooses the next s′ ∈ S

with nontrivial �′
s′ and repeats the above procedure getting �′′ = tϕ′(�′) with

some tϕ′ such that tϕ′(�′
s′) = σ′

s′ with minimal relational clone [σ′
s′ ] (and

minimal arity ar(σ′
s′) = ar(�′′) ≤ ar(�′)). Note that σ′

s := tϕ′(�′
s) ∈ [�′

s] = [σs]
and therefore either σ′

s ∈ DA (this, in particular, is the case if ar(�′′) <
ar(σs) = ar(�′)) or [σ′

s] = [σs] is minimal (by minimality of [σs]). Consequently
�′′ := tϕ′(�′) satisfies both (∗)s and (∗)s′ .

One can continue this until one gets an S-relation ω with F = SPol ω
satisfying (∗)s for each s ∈ S (i.e., that each ωs is trivial or Polωs is a maximal
clone and ar(ω) is the minimal arity of a nontrivial relation in [ωs]). �
Remark 5.4. The maximal clones that appear in the conditions (∗)s are known
from the classical result of Rosenberg [18]. Therefore Proposition 5.3 provides
useful candidates for determining all maximal S-preclones. It “only” remains
the task to exclude those � which do not give a maximal S-preclone F = SPol �
(such as, trivially, all diagonal S-relations). This we shall do in Part II for
Boolean S-preclones (there exist 9 maximal Boolean S-preclones for the two-
element group S).

At the end of this section we shall deal with the complexity of SLA versus
LA and present two (nearly trivial) embeddings of the clone lattice LA into
the S-preclone lattice SLA. Moreover we generalize symmetries of LA (inner
automorphisms) to SLA.

Proposition 5.5. We define the mappings Ψ,Φ : LA → SLA as follows (for
F ∈ LA):

Ψ(F ) := S〈{ f ∈ SOp(A) | f̊ ∈ F and Sgn(f) = {e} }〉,
Φ(F ) := { f ∈ SOp(A) | f̊ ∈ F }.

Then Ψ is a lattice embedding into the interval [SJA,Ψ(Op(A))]SLA
in SLA,

i.e., into the principal ideal generated by Ψ(Op(A)) in SLA, and Φ is a lattice
embedding into the interval [Φ(JA), SOp(A)]SLA

, i.e., into the principal filter
generated by Φ(JA) in SLA (where Φ(JA) = S〈{ ids | s ∈ S }〉). If S is a group
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then Φ is an embedding onto the principal filter generated by S〈{ ids | s ∈ S }〉
in SLA.

Proof. For a clone F ∈ LA, Ψ(F ) is obtained by taking the functions in F ,
giving all arguments the signum e, and then adding an arbitrary number of
fictitious arguments of arbitrary signum in all possible ways. Thus each S-
operation in Ψ(F ) has essential arguments only for signum e, in particular we
have (Ψ(F )[e])̊ = F (note that the e-part of each S-preclone is a clone by
Proposition 4.7). Thus Ψ is injective; moreover Ψ(JA) = SJA.

Clearly, Φ(F ) is an S-preclone. For a clone F ∈ LA, Φ(F ) contains, for
each operation f ∈ F , every S-operation g with g̊ = f and arbitrary signum.
Thus Φ(Op(A)) = SOp(A) and Φ(JA) = S〈{ ids | s ∈ S }〉. Note also that
(Φ(F ))̊ = F .

From the definitions it easily follows that Ψ and Φ are lattice embeddings
(the image of joins (or meets) are joins (or meets) of the images).

If S is a group, then { ids | s ∈ S } ⊆ H (for some H ∈ SLA) implies
the following property for H: If fλ ∈ H then fλ′ ∈ H for arbitrary signa
λ = (s1, . . . , sn), λ′ = (s′

1, . . . , s
′
n). This proves H = Φ(F ) with F = { f̊ | f ∈

H } ∈ LA and we are done. In fact, for si, s
′
i there exists ui ∈ S such that

s′
i = siui (i ∈ {1, . . . , n}). Then fλ′

(x1, . . . , xn) = f(idu1(x1), . . . , idun(xn)) is
a composition of f and the ids (cf. Definition 2.3(6)) and therefore belongs to
H by the assumption on H. �

The preceding result contains two embeddings of the lattice of clones into
the lattice of S-preclones. It is worth noting that Proposition 3.10 defines an
inverse of the map Φ by mapping each S-preclone to the clone generated by
all operations in the S-preclone, ignoring the signa of these operations.

Definition 5.6. Let π : A → A be a permutation on A. Then, for f ∈ SOp(A),

� = (�s)s∈S ∈ SRel
(m)

(A), F ⊆ SOp(A) and Q ⊆ SRel(A) we define the
π-dual fπ, �π = (�π

s )s∈S , Fπ and Qπ as follows:

fπ(x1, . . . , xn) := π(f(π−1x1, . . . , π
−1xn)), sgn(fπ) := sgn(f),

�π
s := π�s := { (πa1, . . . , πam) | (a1, . . . , am) ∈ �s }, s ∈ S,

Fπ := { fπ | f ∈ F }, Qπ := { �π | � ∈ Q }.

An S-operation f with fπ = f and an S-preclone F with Fπ = F are called
π-selfdual. (π-selfdual S-relations and S-relational clones are defined analo-
gously.)

Remark 5.7. The mapping (−)π : SOp(A) → SOp(A) : f �→ fπ is an au-
tomorphism, called an inner automorphism, of the full S-preclone SOp(A)
considered as an algebra equipped with the operations idA, ζ, τ,∇s,Δ, ◦ (cf.,
e.g., [8], [14, 3.4.1]).

For the classical clone Op(A), there are only inner automorphisms ([8,
Theorem 2]). However, for S-preclones there are further automorphisms, which
are induced by the automorphisms of the monoid S.
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Definition 5.8. Let h : S → S be an automorphism of the monoid S. For
f ∈ SOp(A), with sgn(f) = (s1, . . . , sn) and � ∈ SRel(A) we define fh and �h

as follows:

sgn(fh) := h(sgn(f)) = (h(s1), . . . , h(sn)),

fh(x1, . . . , xn) := f(x1, . . . , xn) (i.e., f̊h := f̊),

�h := (�h−1(s))s∈S ,

equivalently, �h
h(s) := �s for s ∈ S.

Note that �h is well defined because h is bijective.

Remark 5.9. The mapping (−)h : SOp(A) → SOp(A) : f �→ fh changes only
the signum of f and not the underlying function f̊ . It is also an automorphism
of the full S-preclone 〈SOp(A); idA, ζ, τ,∇s,Δ, ◦〉 (considered as an algebra).
This can be checked easily. We show only for ◦ that indeed (f ◦ g)h = fh ◦ gh

(we have to check the signa only; for the notation, see Definition 2.3(6)):

sgn((f ◦ g)h) = h(sgn(f ◦ g)) = (h(s′
1s1), . . . , h(s′

ms1), h(s2), . . . , h(sn))

= (h(s′
1)h(s1), . . . , h(s′

m)h(s1), h(s2), . . . , h(sn))

= sgn(fh ◦ gh).

The automorphisms also provide inner symmetries of the lattice SLA.

Proposition 5.10. The mappings (−)π : SLA → SLA : F �→ Fπ and (−)h :
SLA → SLA : F �→ Fh are lattice automorphisms.

Proof. It is easy to check that (F1 ∧ F2)π = (F1 ∩ F2)π = Fπ
1 ∩ Fπ

2 = Fπ
1 ∧ Fπ

2

and (F1 ∨ F2)π = (S〈F1 ∪ F2〉)π = S〈(F1 ∪ F2)π〉 = S〈Fπ
1 ∪ Fπ

2 〉 = Fπ
1 ∨ Fπ

2 ,
analogously for h instead of π. �

Finally, we show the interplay of the “duality” operator (−)π and the
“signum permuting” operator (−)h with the Galois connection SPol–SInv:

Proposition 5.11. Let π be a permutation on A, let h be an automorphism of
S and f ∈ SOp(A), � ∈ SRel(A), F ⊆ SOp(A), Q ⊆ SRel(A). Then we have

(i) f
S
� � ⇐⇒ fπ S

� �π, f
S
� � ⇐⇒ fh S

� �h,
(ii) SInv Fπ = (SInv F )π, SInv Fh = (SInv F )h,
(iii) SPol Qπ = (SPol Q)π, SPol Qh = (SPol Q)h.

Proof. (i): Let sgn(f) = (s1, . . . , sn) and s ∈ S. Then

f(�s1s, . . . , �sns) ⊆ �s ⇐⇒ πf(π−1π�s1s, . . . , π
−1π�sns) ⊆ π�s

⇐⇒ πf(π−1�π
s1s, . . . , π

−1�π
sns) ⊆ �π

s

⇐⇒ fπ(�π
s1s, . . . , �

π
sns) ⊆ �π

s .

According to 3.4(1) we get the first part of (i).
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Furthermore, with (t1, . . . , tn) := (h(s1), . . . , h(sn)) = sgn(fh) and t :=
h(s) we have (according to the definitions):

f(�s1s, . . . , �sns) ⊆ �s ⇐⇒ f(�h
h(s1s), . . . , �

h
h(sns)) ⊆ �h

h(s)

⇐⇒ f(�h
h(s1)h(s)

, . . . , �h
h(sn)h(s)) ⊆ �h

h(s)

⇐⇒ fh(�h
t1t, . . . , �

h
tnt) ⊆ �h

t .

According to 3.4(1) we get the second part of (i) (note that if s runs through
all elements of S then also t = h(s) does so, because h is bijective).

(ii) and (iii) follow directly from (i). �

6. Concluding remarks

In Sect. 2 we defined the Galois connection SPol–SInv for S-preclones and S-
relational clones, and Theorems 4.1, 4.6 show that on a finite set, S-preclones
correspond exactly to Galois closed sets of S-operations and S-relational clones
are captured precisely by Galois closed sets of S-relations. Since the correspon-
dence of clones with relational clones is a fundamental result that has many
applications, one can now ask whether similar applications hold for S-preclones
and S-relational clones. For example:

Problem. Classify the maximal S-preclones for a finite monoid S and finite
set A (analogously to Rosenberg’s classification of maximal clones [18]).

The motivating example for S-preclones is based on the 2-element group
S = {+,−} and the S-relation (≤,≥) for a poset (A,≤) (cf. Examples 2.5 and
3.7). S-preclones for this group are referred to as ±-preclones, and the problem
above may be more approachable if it is first restricted to ±-preclones.

Likewise, for any result about clones, one might investigate whether a
similar result holds about S-preclones.

Proposition 5.2 shows that for a finite set A there are only finitely many
maximal and finitely many minimal S-preclones. In Part II we take a detailed
look at the lattice of ±-preclones over a 2-element set and find a complete list of
atoms and coatoms of this lattice. In particular, it is shown that SPol{(≤,≥)}
(see Example 3.7) is a maximal ±-preclone.

Moreover, there appears the question if the notions of S-preclone and
S-relational clone can be extended to the setting where the monoid S of signa
is only assumed to be a semigroup.

Finally it is an interesting problem to develop the theory of S-algebras
(A, (fi)i∈I) with fundamental operations fi ∈ SOp(A) for a fixed finite monoid
S.
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Erné, M., Wismath, S.L. (eds.) Galois Connections and Applications. Mathe-
matics and Its Applications, vol. 565, pp. 231–258. Kluwer Academic Publishers,
Dordrecht (2004)
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Logiken. Rozpr. ČSAV Řada Mat. Přir. Věd. Praha 80(4), 3–93 (1970)

Peter Jipsen
Faculty of Mathematics
Chapman University
Orange CA
USA
e-mail: jipsen@chapman.edu

Erkko Lehtonen
Department of Mathematics
Khalifa University of Science and Technology
Abu Dhabi
United Arab Emirates
e-mail: erkko.lehtonen@ku.ac.ae

Reinhard Pöschel
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