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Alternative robust ways of witnessing nonclassicality in the simplest scenario
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In this paper we relate notions of nonclassicality in what is known as the simplest nontrivial scenario
(a prepare and measure scenario composed of four preparations and two binary-outcome tomographically
complete measurements). Specifically, we relate the established method developed by Pusey [M. F. Pusey,
Phys. Rev. A 98, 022112 (2018)] to witness a violation of preparation noncontextuality, that is not suitable
in experiments where the operational equivalences to be tested are specified in advance, with an approach
based on the notion of bounded ontological distinctness for preparations, defined by Chaturvedi and Saha [A.
Chaturvedi and D. Saha, Quantum 4, 345 (2020)]. In our approach, we test bounded ontological distinctness for
two particular preparations that are relevant in certain information processing tasks in that they are associated
with the even and odd parity of the bits to communicate. When there exists an ontological model where this
distance is preserved we talk of parity preservation. Our main result provides a noise threshold under which
violating parity preservation (and so bounded ontological distinctness) agrees with the established method for
witnessing preparation contextuality in the simplest nontrivial scenario. This is achieved by first relating the
violation of parity preservation to the quantification of contextuality in terms of inaccessible information as
developed by Marvian (I. Marvian, arXiv:2003.05984.), that we also show, given the way we quantify noise, to
be more robust in witnessing contextuality than Pusey’s noncontextuality inequality. As an application of our
findings, we treat the case of two-bit parity-oblivious multiplexing in the presence of noise. In particular, given
that we have a noise threshold below which preparation contextuality holds, we use it to establish a condition for
which preparation contextuality is present in the case where the probability of success exceeds that achieved by
any classical strategy.

DOI: 10.1103/PhysRevA.109.032212

I. INTRODUCTION

It is important in quantum foundations to have an appro-
priate definition of what it means for a given quantum feature
to resist an explanation within the classical worldview, i.e.,
an appropriate notion of nonclassicality. In this respect, one
of the leading notions of nonclassicality is preparation con-
textuality [1], which refers to the impossibility of a theory to
admit of an ontological model that represents operationally
equivalent preparations as identical probability distributions
on the ontic state space. A first challenge to witness such
a notion in actual experiments is that the target operational
equivalences to test, that are specified a priori, are not in
general verified. A solution to this issue is to test contextuality
not for these target operational equivalences, but to consider
the a posteriori operational equivalences holding for the noisy
preparations that are actually obtained in the experiment. This
solution was first adopted by Mazurek et al. in [2]. It was then
also used by Pusey in [3] to witness preparation contextuality
in what is known as the simplest nontrivial scenario, which

*massy@math.ucsb.edu
†lorenzo.catani4@gmail.com

consists of four preparations and two binary-outcome tomo-
graphically complete measurements (Fig. 1).

Despite its success, the approach of considering the a
posteriori operational equivalences, that we will refer to as
Pusey’s approach, is not suitable to treat certain information
processing tasks defined in the simplest nontrivial scenario
and powered by preparation contextuality, such as the two-bit
parity-oblivious multiplexing (POM) [4], in the presence of
noise. The reason is that in those tasks the preparations in-
volved, and so the operational equivalences, must be specified
in advance (they guarantee that the parity constraint is satis-
fied), and it is not possible to reanalyze the data in terms of
some other sets of preparations. For this reason, in this paper
we consider an alternative approach to witness nonclassical-
ity in the simplest nontrivial scenario, and we relate it with
Pusey’s approach. More precisely, we consider an approach
that still refers to the a priori ideal preparations and that is
based on a more general notion of classicality named bounded
ontological distinctness for preparations (BODP) [5].1

1The simplest nontrivial scenario for testing BODP would consist
of three rather than four preparations, as shown in [5]. Nevertheless
we keep the already used terminology of Pusey in [3] that is of
common use when referring to the scenario under consideration here.
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FIG. 1. The simplest nontrivial scenario. Four preparations (vertices of the blue square) and two tomographically complete measurements
(corresponding to the x and y axes) are represented within the Bloch circle and the gbit square (in black). (a) The noiseless case. The a priori
operational equivalence of Eq. (6) is represented by the vector �0 (in red). (b) The noisy case. The a posteriori operational equivalence of Eq. (7)
is represented by the vector �c (in red); the midpoints �P+, �P− (in green) represent even and odd parity mixtures, respectively.

Bounded ontological distinctness for preparations general-
izes the notion of preparation noncontextuality, that demands
that operational equivalences are mapped to ontological
equivalences, insofar as it demands that also differences are
preserved between the operational theory and the ontological
model of the theory. Unlike [5], we here define differences
in terms of distances: the operational distance is the maximal
gap over all measurements between the outcome probabilities
of the preparations, and the ontological distance is the total
variational distance between the ontic distributions [6]. With
this notion of classicality, we can now treat the simplest non-
trivial scenario in the presence of noise and still refer to the a
priori ideal preparations, by addressing the distance the noisy
ones have with respect to them.

We test BODP for the distance between the even- and
odd-parity mixtures of the preparations (i.e., P+ and P− in
Fig. 1) in the simplest nontrivial scenario. We take this to be
the relevant distance because it quantifies the parity commu-
nicated in POM in the presence of noise. We refer to the case
with zero difference between the operational and ontological
parity distances as satisfying parity preservation.

In order to connect our approach based on parity preser-
vation to Pusey’s approach based on preparation noncontex-
tuality, we use a third approach developed by Marvian in
[6]. Marvian’s approach quantifies preparation contextuality
in terms of the “inaccessible information” of an ontological
model, defined as the largest distance between a pair of ontic
distributions associated to operationally equivalent prepara-
tions.

In summary, in this paper we present several results on
the connection between these three approaches and on the
application of such connection.

(1) Focusing on the simplest nontrivial scenario, we
compare the noise thresholds for witnessing preparation con-
textuality in Marvian’s and Pusey’s approaches. We find that

Marvian’s is more robust,2 in that it detects contextuality
given δ < 0.1, while Pusey’s requires δ < 0.06 (Theorems 2
and 1). Here, the noise parameter δ represents the maximum
allowed deviation of the noisy experimental preparations from
the corresponding noiseless target preparations in terms of
maximum distinguishability with a one-shot measurement.
This means that, in a one-shot measurement, the noisy prepa-
rations cannot be distinguished from the ideal preparations
with probability greater than 1+δ

2 .
(2) We relate preparation contextuality as witnessed in

Marvian’s approach and violations of parity preservation.
More precisely, we provide bounds defined in terms of the
operational statistics for which a violation of Marvian’s equal-
ity implies a violation of parity preservation and vice versa
(Theorem 3).

(3) We rewrite the above result in terms of a noise bound by
taking into account the noise parameter δ (Theorem 4). As a
consequence, we also find that under the threshold δ = 0.007,
the three approaches—Pusey’s, Marvian’s, and ours—agree
on detecting nonclassicality; therefore an experimenter can
choose the approach that they prefer in order to test nonclas-
sicality (Theorem 6).

(4) We apply the results above to the case of POM in the
presence of noise, which is played in the simplest nontriv-
ial scenario. It has been shown that winning the game with
a probability of success greater than 3

4 + ε
4 (which can be

achieved with a strategy involving classical bits) implies a vio-
lation of BODP [5], and more precisely, of parity preservation
(Theorem 8). Here ε corresponds to the parity communicated

2These thresholds depend on how the noise is modeled (see dis-
cussion on this in Sec. VII). The better robustness of Marvian’s
inequality is due to the better precision in bounding the relevant
parameters in terms of the noise δ.
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as a consequence of the noise. Given that the threshold for
violating the parity preservation is δ < 0.007, and that below
this threshold preparation noncontextuality is also violated
(Theorem 6), we have a condition for which POM in the
presence of noise is powered by preparation contextuality,
thus extending the result of the noiseless case [4]. This finding
is not at all obvious, given that a violation of BODP does
not, in general, imply a violation of preparation noncontex-
tuality, and a probability of success greater than 3

4 + ε
4 has

been proven only to imply a violation of BODP, but not of
preparation noncontextuality. Moreover, we note that in order
to obtain such a result, it is insufficient to combine the no-go
theorem of the noiseless case (i.e., that a probability of success
greater than 3

4 implies preparation contextuality) with the fact
that preparation contextuality holds whenever δ � 0.1. This
is because in the noisy POM one can in principle exploit the
noise to communicate some parity also in classical strategies,
thus improving the probability of success from 3

4 to 3
4 + ε

4 .
In the remainder of the paper, we first describe, in Sec. II,

the simplest nontrivial scenario. In Sec. III, we provide the
basic background and terminology regarding operational the-
ories, ontological models, preparation noncontextuality, and
distances. In Sec. IV, we describe Pusey’s, Marvian’s, and
our approach based on BODP. In Sec. V, we connect these
approaches and state our results. In Sec. VI, we treat the
two-bit parity-oblivious multiplexing in the presence of noise,
extending the result of the noiseless case. We conclude, in
Sec. VII, by summarizing our findings and outlining future
research.

II. THE SIMPLEST NONTRIVIAL SCENARIO

In this paper we focus on what is known as the simplest
nontrivial scenario [3], meaning that we consider theories
associated with experiments consisting of four preparations
{Pi j} = {P00, P01, P10, P11} and two binary-outcome tomo-
graphically complete measurements {X,Y }.3 The reason why
this is the simplest nontrivial scenario is that, as shown in
Appendix B of [3], any other scenario with fewer preparations
or measurements always admits the existence of a prepara-
tion noncontextual model. A geometrical representation of
the scenario is depicted in Fig. 1, where the preparations
are represented as vectors in the Cartesian plane with the x
axis specifying the difference between the probabilities of
obtaining outcomes 0 and 1 for that preparation given the
measurement X , and the y axis specifying the same expression
but given the measurement Y ; i.e., for i, j ∈ {0, 1},

xi j = P (0|Pi j, X ) − P (1|Pi j, X ), (1)

3 The assumption of tomographic completeness guarantees that
there cannot exist other measurements that distinguish the opera-
tional equivalences between preparations. We refer the reader to
[2,7–9] for discussions on how to experimentally deal with the
assumption of tomographic completeness. Let us emphasize that
X and Y are general measurements and do not represent the Pauli
X and Y measurements unless we are explicitly in the case of qubit
quantum theory. We adopt this notation for compatibility with the
operational statistics being expressed via Cartesian coordinates.

yi j = P (0|Pi j,Y ) − P (1|Pi j,Y ), (2)

�Pi j = (xi j, yi j ). (3)

Notice that these coordinates take values in [−1, 1],
and so the preparations can at maximum span the square
�P00 = (1, 1), �P01 = (−1, 1), �P10 = (1,−1), �P11 = (−1,−1).
This square corresponds to the gbit state space [10,11],
describing a nonphysical theory beyond qubit quantum
theory.

With the case of quantum theory, the four preparations giv-
ing the maximum violation of noncontextuality inequalities
[3,4,12,13] are (modulo the application of a unitary transfor-
mation on both preparations and measurements) denoted by
{Pid

00, Pid
01, Pid

10, Pid
11}, and correspond to the vectors

�Pid
00 ≡

(
1√
2
,

1√
2

)
, �Pid

01 ≡
(

1√
2
,− 1√

2

)
,

�Pid
10 ≡

(
− 1√

2
,

1√
2

)
, �Pid

11 ≡
(

− 1√
2
,− 1√

2

)
. (4)

These are associated to the pure quantum states in the equator
of the Bloch sphere located at angles π

4 , 3π
4 , 5π

4 , 7π
4 with re-

spect to the +1 eigenstate of the Pauli X measurement. The
superscript “id” stands for “ideal,” stressing that these are
the preparations one aims to prepare in a test of preparation
contextuality in the simplest scenario.

Notably, this choice of preparations and measurements also
provides the optimal quantum strategy in protocols like the
two-bit parity-oblivious multiplexing [4], two-bit quantum
random access codes [14], the CHSH∗ game [15], and several
others [16].

The coordinates (operational statistics) of the vector
uniquely determine the preparation it represents. It follows
that two preparations Pa and Pb are operationally equivalent—
denoted by Pa � Pb—if and only if their coordinate vectors
are equal:

Pa � Pb ⇐⇒ �Pa = �Pb. (5)

Notice how the four ideal points �Pid
00, �Pid

01, �Pid
10, and �Pid

11 form
two operationally equivalent decompositions of the prepara-
tion represented by the vector �0 = (0, 0) at the intersection of
the x and y axes (the completely mixed state I

2 ), i.e.,

1
2

�Pid
00 + 1

2
�Pid
11 = �0 = 1

2
�Pid
01 + 1

2
�Pid
10. (6)

This operational equivalence is termed the a priori operational
equivalence, as it is the target operational equivalence one
aims to obtain in an ideal experimental test of preparation
contextuality in the simplest scenario prior to performing the
actual realistic experiment.

In realistic experimental scenarios, one cannot exactly pre-
pare the ideal preparations, but necessarily obtains some noisy
version of them, which we denote by { �P00, �P01, �P10, �P11}.4
These obey an operational equivalence different from the one

4Notice that we assume that only the preparations, and not the
measurements, are subjected to noise.
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of Eq. (6), that we denote by the vector �c:

p �P00 + (1 − p) �P11︸ ︷︷ ︸
�Pp

= �c = q �P01 + (1 − q) �P10︸ ︷︷ ︸
�Pq

(7)

for two probability weights p, q ∈ [0, 1], where we denote
the two operationally equivalent preparations as Pp and Pq.
This latter operational equivalence is termed the a posteriori
operational equivalence.

III. ONTOLOGICAL MODELS, NONCONTEXTUALITY,
AND DISTANCES

In this section we provide the relevant background material
to discuss preparation noncontextuality in the simplest sce-
nario as well as the definitions of the distances that we use.

A. Operational theories and ontological models

The simplest scenario is an example of a prepare and
measure scenario. An operational theory associated with a
prepare and measure scenario is defined by a list of possible
preparations, measurements, and the probabilities P (k|P, M )
of obtaining the outcome k for the measurement M given
that the system is prepared in the preparation P. An onto-
logical model of an operational theory is meant to provide a
realist explanation of the operational predictions of the the-
ory [17]. It does so by stipulating the existence of an ontic
state space for each given system, denoted with �, which is
mathematically represented by a measurable set. Each point
λ ∈ � represents an ontic state that describes all the physical
properties of the system. The ontological model associates
each preparation P in the operational theory with a conditional
probability distribution μP(λ) ≡ μ(λ|P) over ontic states. We
call these epistemic states as they represent states of knowl-
edge about the underlying ontic states. Each measurement
element {k, M} is associated with a conditional probability
distribution ξ (k|λ, M ). The latter corresponds to the proba-
bility of obtaining outcome k given that measurement M is
implemented on a system in the ontic state λ. An ontological
model of an operational theory reproduces the predictions of
the theory via the classical law of total probability:

P (k|P, M ) =
∑
λ∈�

ξ (k|λ, M )μ(λ|P). (8)

Here we consider ontological models for theories associated
with the simplest scenario. This means theories whose prepa-
rations belong to the convex hull of the four preparations
{Pi j} and whose measurements are the two tomographically
complete binary-outcome measurements X and Y that are as-
sumed not to be subjected to noise.

B. Preparation noncontextuality

An ontological model is preparation noncontextual if op-
erationally equivalent preparation procedures are represented
by identical probability distributions in the ontological model
[1]. More formally, two preparation procedures P and P′
are operationally equivalent if they provide the same op-
erational statistics for all possible measurements, i.e., ∀M :
P (k|P, M ) = P (k|P′, M ). In this case, we write P � P′. An

ontological model is preparation noncontextual if any two
such preparations are represented by the epistemic states:

P � P′ ⇒ μP = μP′ . (9)

An operational theory is termed preparation noncontextual
if there exists a preparation noncontextual ontological model
for the theory. Notice that, in this paper, we only consider
noncontextuality with respect to preparation procedures, but
the definition can be applied also to transformation and mea-
surement procedures [1].

C. Distances

In order to quantify the distance between two probability
distributions μa and μb in the ontological model we use the
total variational distance, which is the standard choice (see
also [6]):

d (μa, μb) ≡ 1

2

∑
λ

|μa(λ) − μb(λ)|. (10)

On the other hand, we define the distances between two
preparations Pa and Pb in the operational theory by the largest
difference in the probabilities of measurement outcomes be-
tween two preparations across all available measurements and
respective outcomes in the theory:

d (Pa, Pb) ≡ max
k,M

{|P (k|Pa, M ) − P (k|Pb, M )|}. (11)

For binary-outcome measurements, this quantity is the same
for both the 0 and 1 outcome:

d (Pa, Pb) = max
M

{|P (0|Pa, M ) − P (0|Pb, M )|}
= max

M
{|P (1|Pa, M ) − P (1|Pb, M )|}. (12)

Given that there are only two measurements, X and Y , the
operational distance can be equivalently expressed in the sim-
plest scenario as follows:

d (Pa, Pb) ≡ 1
2 max{|xa − xb|, |ya − yb|}. (13)

The motivations for employing this specific operational dis-
tance are that it provides clear geometrical intuitions and
that it makes the calculations tractable, as we will discuss in
Sec. VII.

IV. APPROACHES

In this section we describe the three approaches consid-
ered in this paper: the first is due to Pusey [3] and provides
robust noncontextuality inequalities for the simplest scenario;
the second is due to Marvian [6] and witnesses preparation
contextuality as the degree of what he defines as inaccessible
information; the last is our approach which rephrases bounded
ontological distinctness [5] in terms of the difference between
the operational and ontological distances, and which specifi-
cally considers the preparations associated with the even- and
odd-parity mixtures (P+ and P− in Fig. 1), thereby introducing
the notion of parity preservation.
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A. Pusey’s approach

This approach allows one to test preparation contextu-
ality in the simplest scenario considering the a posteriori
operational equivalence of Eq. (7) and provides eight non-
contextuality inequalities obtained by exploiting a connection
to Bell inequalities in the famous Clauser-Horne-Shimony-
Holt (CHSH) scenario [18]. The requirement of preparation
noncontextuality for this a posteriori operational equivalence
implies the existence of an ontological model for which the
epistemic states μp and μq associated with the operationally
equivalent preparations Pp and Pq are such that μp = μq. It
is shown in [3] that this would be sufficient to make the
ontological model preparation noncontextual, i.e., that any
other operational equivalence within the convex hull of {Pi j}
corresponds to an ontological equivalence in the model.

Pusey’s inequalities are denoted by S(xi j, yi j ) � 0. In
terms of the coordinates (xi j, yi j ) of the noisy preparations,
one can write a representative of them as

S(xi j, yi j ) = p(x00 + y00 + x11 + y11)

+ q(x01 − y01 + x10 − y10)

+ (y10 − x10 − x11 − y11) − 2 � 0. (14)

This inequality is maximally violated, in quantum theory,
by the choice of states and measurements described in the
previous section [Fig. 1(a)], and the expression takes the
value S(xid

i j , yid
i j ) = 4( 1√

2
) − 2 ≈ 0.82. The algebraic maxi-

mum value of S(xi j, yi j ) is 2, which is obtained when
considering the vertices of the gbit square.

We emphasize again that Pusey’s approach, which consid-
ers the a posteriori operational equivalence, is not suitable
when considering cases that require the operational equiva-
lence to be specified in advance. An example is the case of the
parity-oblivious multiplexing protocol, where the a posteri-
ori operational equivalence does not embody the requirement
of parity obliviousness, unlike the a priori operational
equivalence.

B. Marvian’s approach

Marvian’s approach quantifies preparation contextuality
through the notion of inaccessible information, which is de-
fined to be the largest distance between pairs of epistemic
states associated to equivalent preparation procedures, mini-
mized over all possible ontological models:

Cmin
prep ≡ inf

Models
sup

Pa�Pb

d (μa, μb). (15)

We note that the inaccessible information Cmin
prep of an oper-

ational theory is zero if and only if the theory admits of a
preparation noncontextual model:

Cmin
prep = 0 ⇐⇒ preparation noncontextuality. (16)

The equality in Eq. (16) is referred to as Marvian’s prepara-
tion noncontextuality equality.

In [6], Marvian provides a lower bound on Cmin
prep in terms of

operational quantities to witness preparation contextuality. In
the simplest scenario, these quantities reduce to a function of
the preparations—here denoted with γ (xi j, yi j )—the details

of which are provided in Appendix B:

Cmin
prep � γ (xi j, yi j ). (17)

In contrast to the notion of bounded ontological distinctness
and parity preservation that are defined in the next subsec-
tions, the approaches of Marvian and Pusey both refer to
the same notion: preparation noncontextuality. Therefore, they
always agree in detecting contextuality in the noiseless case.
However, in the noisy case and given the way we quantify
noise, they provide different thresholds below which they are
guaranteed to be violated. In short, we say that they provide
a different robustification. This is why they are treated sepa-
rately and it is important for our purposes to consider both.

C. BODP

BODP was introduced in [5] and it is a criterion of
classicality that requires the equivalence of the operational
distinguishability between any two preparations in the oper-
ational theory and the ontological distinctness between their
ontic representations, generalizing the notion of preparation
noncontextuality and being based on the same credentials
(a methodological principle inspired by Leibniz [19,20], or,
equivalently, a principle of no operational fine tuning [21]).
The operational distinguishability sPa,Pb

O of a pair of prepara-
tions Pa and Pb is defined as

sPa,Pb
O ≡ 1

2 max
M

{P (0|Pa, M ) + P (1|Pb, M )}, (18)

where the maximum is over all measurements in the opera-
tional theory.

The ontological distinctness sμa,μb
� for the corresponding

pair of epistemic states μa and μb is defined as

sμa,μb
� ≡ 1

2

∑
λ

max{μa(λ), μb(λ)}. (19)

We say that an operational theory admits of a model satisfying
BODP if the value of operational distinguishability for any
pair of preparations in the theory equals the value of onto-
logical distinctness for the pair of epistemic states. That is,
bounded ontological distinctness for preparations demands
the following equality to hold for all pairs of preparations and
corresponding epistemic states:

BODP ⇐⇒ sPa,Pb
O = sμa,μb

� ∀a, b. (20)

To see that a model satisfying BODP is preparation non-
contextual, we consider any operationally equivalent pair
Pa and Pb and observe that the expression in Eq. (18) reduces
to 1

2 when Pa � Pb. Given that sPa,Pb
O represents the maximum

probability of distinguishing the two preparations, the value
1
2 asserts the fact that operationally equivalent procedures are
completely indistinguishable. The BODP criterion in Eq. (20)
would then imply that the summation in Eq. (19) equals 1,
which entails that μa(λ) = μb(λ) ∀λ ∈ �. We therefore have
the implication

BODP ⇒ preparation noncontextuality. (21)

While the above is always true, we emphasize that the con-
verse does not necessarily hold.

In general, an operational theory may not admit of an
ontological model satisfying BODP, thus implying that there
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exists a pair of preparations for which sμa,μb
� − sPa,Pb

O > 0. The
difference sμa,μb

� − sPa,Pb
O is not explicitly treated by the authors

of [5], however it is of crucial relevance in the present paper
given that we want to quantify this notion of nonclassicality
and consider how it robustifies in the case of realistic noisy
scenarios, like the simplest scenario. We quantify the violation
of BODP as the difference of operational and ontological
distances . Such quantification can be simply related to the
original definition of BODP in terms of distinguishability and
distinctness, as we now show. Recalling Eqs. (1), (2), and (13),
and considering the available measurements in the simplest
scenario, the relationship between operational distinguishabil-
ity and distance is established given that

sPa,Pb
O = 1

2
max

M
{P (0|Pa, M ) + P (1|Pb, M )}

= max

{
1 + 1

2 |xa − xb|
2

,
1 + 1

2 |ya − yb|
2

}

= 1 + d (Pa, Pb)

2
. (22)

A similar relationship holds between the ontological distinct-
ness and distance:

sμa,μb
� = 1

2

∑
λ

max {μa(λ), μb(λ)}

= 1

2

(
1 + 1

2

∑
λ

|μa(λ) − μb(λ)|
)

= 1 + d (μa, μb)

2
. (23)

We denote with DPa,Pb the difference between the ontolog-
ical and operational distances for the pair of preparations
Pa and Pb and their associated epistemic states. The expres-
sion Dmin

Pa,Pb
denotes the difference DPa,Pb minimized over all

possible ontological models. That is,

DPa,Pb ≡ d (μa, μb) − d (Pa, Pb), (24)

Dmin
Pa,Pb

≡ inf
Models

DPa,Pb . (25)

Combining Eqs. (22)–(24), we view the difference of oper-
ational distinguishability and ontological distinctness as half
the difference in operational and ontological distances:

sμa,μb
� − sPa,Pb

O = 1
2DPa,Pb . (26)

Therefore sμa,μb
� − sPa,Pb

O = 0 if and only if DPa,Pb = 0 and
BODP can be equivalently expressed as the difference be-
tween operational and ontological distances being zero for all
pairs:

BODP ⇐⇒ Dmin
Pa,Pb

= 0 ∀Pa, Pb. (27)

D. Parity preservation

In this paper we test BODP for the difference between
the operational and ontological distance, DP+,P− , of the even-
and odd-parity mixtures, P+ = P00+P11

2 and P− = P01+P10
2 (see

Fig. 1). The operational distance d (P+, P−) indeed codifies the
information about the parity between the bits i and j labeling

FIG. 2. Noise bound of δ. Ideal points are indicated at the center
of the blue squares. These squares of radius 2δ represent regions
where noisy points reside and, in accordance with Eq. (13), contain
all preparations with an operational distance of at most δ from the
ideal points, i.e., d ( �Pi j, �Pid

i j ) � δ. In other words, noisy points in the
blue squares cannot be distinguished from their ideal counterparts
with a probability greater than δ in any one-shot measurement.

the four preparations {Pi j} if one measures the preparation
with the measurements X and Y . For example, if d (P+, P−) =
0, then by measuring X and Y on P+ and P− one would always
get the same outcome, thus obtaining a probability 1

2 for dis-
tinguishing between them and no information about the parity
between the bits i and j. If d (P+, P−) = 0 then some informa-
tion about the parity between the bits i and j can be obtained
by measuring X and Y . If d (P+, P−) is preserved in the on-
tological model, meaning DP+,P− = 0, we say that there is
parity preservation . Clearly, a violation of parity preservation
implies a violation of BODP, but not vice versa. If an opera-
tional theory does not admit of a parity preserving ontological
model, then Dmin

P+,P− > 0. The focus on parity preservation is
relevant in the context of POM and will allow us to connect a
violation of BODP with a violation of preparation noncontex-
tuality given certain bounds (Theorems 3 and 4).

V. RESULTS

In this section we report the main results (see Table I for a
concise summary), all of which are proven in the Appendices.
We begin with Lemma 1, which reformulates Pusey’s prepa-
ration noncontextuality inequality with the specification of a
noise parameter δ (see Fig. 2). This enables us to determine,
in Theorem 1, a noise threshold below which the noncontex-
tuality inequality is violated. The same is done for Marvian’s
preparation noncontextuality equality (Lemma 2) and a noise
threshold is found below which it is still violated (Theorem
2). We continue by establishing a connection between Mar-
vian’s noncontextuality equality and parity preservation in
Lemma 3. As a consequence of this lemma, in Theorem 3,
we provide conditions for which a violation of one notion
implies a violation of the other. That is, we show that with
enough preparation contextuality, one is certain to violate
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TABLE I. Three robust ways of witnessing nonclassicality in the simplest scenario. Violating Pusey’s inequality and Marvian’s equality
are ways of witnessing preparation contextuality. Our approach is based on the notion of parity preservation. A violation of parity preservation
is an instance of a violation of BODP. Violating parity preservation under the indicated threshold means also a violation of preparation
noncontextuality.

Approach Notion of nonclassicality Reference to a priori ideal preparations Noise threshold of violation

Pusey’s Preparation contextuality No δ < 0.06
Marvian’s Preparation contextuality No δ < 0.1
This paper Violation of BODP Yes δ < 0.007

parity preservation, and vice versa. The parameters for the
conditions in Theorem 3 are defined from the experimental
data and can be rewritten, with the aid of Lemma 4, in terms of
the noise parameter δ. In this way, Theorem 3 can be rephrased
into Theorem 4. The latter is used to quantify the amount of
noise needed to guarantee a violation of parity preservation—
Theorem 5. Finally, having obtained the noise thresholds for
violating each notion of nonclassicality considered in this
paper, we provide what is arguably the most relevant result—
Theorem 6—that establishes a noise threshold below which
all three approaches agree in witnessing nonclassicality.

A. Threshold for violating Pusey’s inequality

The results of this subsection are proven in Appendix A.
Lemma 1. Suppose the preparations {Pi j} of the simplest

scenario satisfy a noise bound d ( �Pi j, �Pid
i j ) � δ, where δ is the

noise parameter and {Pid
i j } are the ideal a priori preparations.

Pusey’s expression S(xi j, yi j ) of Eq. (14) satisfies the follow-
ing lower bound in terms of the noise parameter δ:

S(xi j, yi j ) � 2
√

2 − 2 − 16δ + 32
√

2δ2, (28)

where {xi j, yi j} are the coordinates of the preparations {Pi j}.
Given that the corresponding preparation noncontextuality

inequality is S(xi j, yi j ) � 0, solving for the right-hand side in
Eq. (28) results in a violation threshold of δ ≈ 0.06, which
leads to the following theorem (see Fig. 3).

Theorem 1. If d ( �Pi j, �Pid
i j ) � 0.06, then S(xi j, yi j ) > 0 and

Pusey’s preparation noncontextuality inequality is violated.

B. Threshold for violating Marvian’s equality

The results of this subsection are proven in Appendix B.
Lemma 2. Suppose the preparations {Pi j} of the simplest

scenario satisfy a noise bound d ( �Pi j, �Pid
i j ) � δ, where δ is the

noise parameter and {Pid
i j } are the ideal a priori preparations.

Marvian’s inaccessible information of Eq. (15) of the scenario
satisfies the following lower bound in terms of the noise
parameter δ:

Cmin
prep �

√
2 − 4δ − 1

4(
√

2 − 4δ)
. (29)

Given that preparation noncontextuality coincides with
Cmin

prep = 0, and we obtain a threshold of violation δ ≈ 0.1
when solving for the right-hand side in Eq. (29), we have the
following theorem (see Fig. 3).

Theorem 2. If d ( �Pi j, �Pid
i j ) � 0.1, then Cmin

prep > 0 and Mar-
vian’s preparation noncontextuality equality is violated.

C. Relating Marvian’s equality to parity preservation

We begin by establishing the following inequality, proven
in Appendix C, connecting Dmin

P+,P− to Cmin
prep, thus relating our

approach to Marvian’s.
Lemma 3. Given the simplest scenario with even- and odd-

parity preparations P+ and P− and inaccessible information
Cmin

prep, there exist functions α1, α2, and α3 of the preparations
{Pi j} satisfying

Dmin
P+,P− � α1C

min
prep − α2, (30a)

Dmin
P+,P− � α1C

min
prep + α3. (30b)

By rearranging the terms, these relationships lead to the
following theorem.

Theorem 3. Given the simplest scenario with even- and
odd-parity preparations P+ and P− and inaccessible infor-
mation Cmin

prep, there exist functions α1, α2, and α3 of the

FIG. 3. Preparation contextuality witnessed by Pusey’s and Mar-
vian’s approaches. The solid blue and dashed red curves plot the
functions on the right-hand sides of Eqs. (28) and (29), respectively.
They provide upper bounds to Pusey’s and Marvian’s expressions,
respectively, in terms of the noise parameter δ. What is relevant in
the figure is the range of δ in which each function takes a positive
value, thus detecting contextuality. The specific values of the two
functions are not to be compared as they are meaningful only within
the scope of each approach.
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preparations {Pi j} such that

Cmin
prep >

α2

α1
⇒ Dmin

P+,P− > 0, (31a)

Dmin
P+,P− > α3 ⇒ Cmin

prep > 0. (31b)

In other words, we have established that a sufficient cri-
terion for violating parity preservation is Cmin

prep > α2
α1

and, in
turn, a sufficient criterion for violating Marvian’s prepara-
tion noncontextuality equality is Dmin

P+,P− > α3. The parameters
α1, α2, and α3 are evaluated solely from the experimental
data and are obtained without making reference to δ. Given
any four preparations {Pi j}, one can directly calculate the
values of α1, α2, and α3 and refer to Theorem 3 to see if
there is a violation of one notion of classicality given enough
violation of the other. Theorem 3 can be rephrased in terms of
the noise parameter δ via the following lemma, as proven in
Appendix D.

Lemma 4. Given the functions α1, α2, and α3, if each
noisy preparation Pi j satisfies d ( �Pi j, �Pid

i j ) � δ, the following
upper bounds hold:

α2

α1
� 2(1 + 2

√
3)δ − 4

√
2δ2

1 − 2
√

2δ
, (32a)

α3 � 4
√

3δ

1 − 2
√

2δ − 4
√

3δ
. (32b)

Combining the previous two results, we arrive at the fol-
lowing statement, which recasts Theorem 3 in terms of the
noise bound δ.

Theorem 4. Given the simplest scenario with even- and
odd-parity preparations P+ and P− and inaccessible infor-
mation Cmin

prep, if each Pi j satisfies d ( �Pi j, �Pid
i j ) � δ, then the

following implications hold:

Cmin
prep >

2(1 + 2
√

3)δ − 4
√

2δ2

1 − 2
√

2δ
⇒ Dmin

P+,P− > 0, (33a)

Dmin
P+,P− >

4
√

3δ

1 − 2
√

2δ − 4
√

3δ
⇒ Cmin

prep > 0. (33b)

D. Threshold for nonclassicality

The results in the previous subsection ensure that for any
given value of Cmin

prep, one can find a noise bound δ such that
if noisy preparations Pi j lie within δ distance of the ideal
preparations Pid

i j , then α2
α1

is reduced sufficiently to guarantee
that indeed Cmin

prep > α2
α1

and therefore parity preservation is
violated.

Equating the right-hand sides of inequalities (29) and
(32a), we find the threshold for which Marvian’s inequality
gives a sufficient lower bound to violate parity preservation as
in Eq. (31a), which results to be δ ≈ 0.007 (see Fig. 4).

That is, if δ � 0.007, then Eq. (32a) gives us α2
α1

< 0.063
whereas Eq. (29) gives us Cmin

prep > 0.069, so that indeed
Cmin

prep > α2
α1

and Dmin
P+,P− takes on positive values. We have now

established the following theorem.
Theorem 5. If d ( �Pi j, �Pid

i j ) � 0.007, then Dmin
P+,P− > 0 and

parity preservation is violated.
Given that Marvian’s and Pusey’s approaches both exhibit

a violation if δ � 0.06, we can therefore conclude sufficient

FIG. 4. Violation of parity preservation. The solid green curve
indicates the function of δ in Eq. (33a). For values of δ smaller than
about 0.007 (see Theorem 5), the dashed red curve upper bounding
Cmin

prep from Eq. (29) exceeds the solid green curve and implies, via
Eq. (33a) in Theorem 4, that parity preservation is violated, i.e.,
Dmin

P+,P− > 0.

conditions for equivalency in witnessing nonclassicality be-
tween all three approaches as follows.

Theorem 6. If the noise parameter δ satisfies δ � 0.007,
then S(xi j, yi j ) > 0,Cmin

prep > 0, and Dmin
P+,P− > 0. Therefore, all

three criteria of classicality are violated.
In Appendix F, we present analogous results for the special

case in which the noise manifests as quantum depolarizing
noise. In this context, the noise parameter δ indicates the
distance of the noisy preparation from the ideal one along the
radial direction (as depicted in Fig.9). For this specific sce-
nario, the noise threshold below which all approaches witness
nonclassicality is 0.02.

VI. PARITY-OBLIVIOUS MULTIPLEXING
IN THE PRESENCE OF NOISE

In this section we treat the m-bit parity-oblivious multi-
plexing protocol in both the noiseless and noisy scenarios.
In particular, we focus on the m = 2 case. Indeed, in this
instance, the protocol’s setting involving four preparations and
two measurements corresponds to the simplest scenario of
Fig. 1.

A. Noiseless case

The m-bit parity-oblivious multiplexing protocol was first
introduced in 2009 by Spekkens et al. [4]. Since then, it has
motivated further investigation and substantial research on
relating it to other scenarios [16,22–27], and on developing
protocols with preparation contextuality as a resource for the
computational advantage [28–36].

As we anticipated, we here consider the case m = 2. Let
us imagine that Alice prepares a two-bit string, that we denote
with x. Bob wishes to learn the value of a single bit among
the two (without Alice knowing which one) with a probability
at least p. Alice and Bob can try to achieve this by agreeing
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on a strategy that consists of Alice sending some information
carriers and Bob performing certain measurements. However,
the task contains an additional constraint, called parity obliv-
iousness : Alice cannot communicate the parity of the two-bit
string x to Bob. Let us denote the bit that Bob outputs as b. The
integer y denotes which of the two bits b should correspond to,
and xy denotes the actual bit in Alice’s string.

The probability of success of the game takes, in general,
the following form in terms of the probabilities P(b|Px, My),
where Px denotes the preparations of Alice, given the bit string
x she has to communicate, and My denotes the measurements
of Bob, given the bit y to be guessed:

p(b = xy) = 1
8 [P (0|P00, M0) + P (0|P01, M0)

+ P (1|P10, M0) + P (1|P11, M0)

+ P (0|P00, M1) + P (0|P10, M1)

+ P (1|P01, M1) + P (1|P11, M1)]. (34)

The optimal classical probability of success satisfies p(b =
xy) � 3

4 , as the only classical encoding that transfers some
information to Bob without violating parity obliviousness
consists of encoding only a single bit xi. Given that y is chosen
at random, any bit xi would perform the same. Therefore,
Alice and Bob can agree on Alice always sending x1 and Bob
outputting b = x1. The probability of success is given by the
probability that y = 1, which is 1

2 , and the probability that
Bob outputs correctly (at random, with probability 1

2 ) in the
other case where y = 1, that occurs with probability 1

2 . For
this optimal classical strategy we obtain p(b = xy) = 1

2 + 1
4 =

3
4 , as already stated. This value is the same as the Bell bound
of the CHSH game and two-bit quantum random access codes
[14,18]. In [4], Spekkens et al. proved the following theorem
(here stated only for the case m = 2).

Theorem 7. The optimal success probability in two-bit
parity-oblivious multiplexing of any operational theory that
admits of a preparation noncontextual ontological model sat-
isfies p(b = xy) � 3

4 .

This theorem indicates that preparation contextuality is a
necessary resource for performing the two-bit parity-oblivious
multiplexing protocol with higher success probability than the
one achievable by optimal classical strategies. Moreover, it
turns out that, by using the same optimal quantum strategy of
two-bit quantum random access codes [14] [associated with
the preparations Pid

i j and measurements X and Y of Fig. 1(a)],
the probability of success is ωQ(POM) = cos2( π

8 ) ≈ 0.85. It
can be shown that this value is the maximum achievable with
quantum strategies [4]. Notice that, when Bob measures on
the X or Y basis, he cannot gain any information about the
parity, as the parity 0 and parity 1 mixtures— 1

2 Pid
00 + 1

2 Pid
11 and

1
2 Pid

01 + 1
2 Pid

10, respectively—correspond to the same quantum
state (the completely mixed state).

B. Noisy case

The two-bit parity-oblivious multiplexing protocol in re-
alistic scenarios necessarily involves noisy preparations, that
allow some parity to possibly be communicated to Bob. If one
wants to generalize Theorem 7 of the noiseless case and show
that preparation contextuality still powers the protocol in the

noisy scenario, one faces a couple of challenges. First, one
must assume that the noise could potentially be used to com-
municate parity, thus allowing classical strategies to achieve
a probability of success greater than the ones of the noiseless
case. Then, once one finds the value of the optimal classical
probability of success in the noisy case, one must show that
performing better than that implies a proof of preparation
contextuality.

We denote the two-bit parity-oblivious multiplexing proto-
col in the presence of noise with ε − POM, where ε denotes
the noise in terms of the maximum probability of parity com-
municated, i.e., the operational distance d (P+, P−) between
the even- and odd-parity mixtures. We first notice that, in
order to witness the possible nonclassicality associated with
a certain probability of success, Pusey’s approach is not ideal.
It considers a posteriori operational equivalences, thus not
explicitly referring to the parity that can be communicated
as a consequence of the noise and which may be part of the
reason for the given probability of success. We now show
how our approach based on the notion of parity preservation,
that explicitly refers to the violation of parity obliviousness, is
more suitable for the task.

In order to find an optimal classical strategy in ε − POM,
we can mirror the optimal strategy described in the noiseless
case of the previous subsection, this time taking into account
the ε parity that can be communicated. Namely, we take into
account that Bob knows the parity of x, that is, x1 + x2 (the
addition is modulo 2), with probability ε. Without loss of
generality, we can assume that Alice and Bob always agree
on Alice sending the first bit, x1. If y = 1, then Bob outputs
b = x1 and wins with probability 1. If y = 2, then with proba-
bility ε Bob knows the parity and therefore the value of x2 [i.e.,
he outputs b = x1 + (x1 + x2) = x2 and wins with probability
1], and with probability (1 − ε) he does not know the parity
and can at best make a random guess about the value of x2 and
so win with probability 1

2 . In summary, this strategy results
in the probability of success p(b = xy) = 1

2 × 1 + 1
2 [ε × 1 +

(1 − ε) × 1
2 ] = 3

4 + ε
4 . This leads to the following lemma.5

Lemma 7. The optimal probability of success in two-bit
ε-parity-oblivious multiplexing using a classical strategy sat-
isfies p(b = xy) � 3

4 + ε
4 .

In Appendix E, we prove the following theorem, which is
an application of Proposition 2 and the results of Sec. 4.2 of
[5].

Theorem 8. The optimal success probability in two-bit
parity-oblivious multiplexing of any operational theory that
admits of a parity preserving ontological model satisfies
p(b = xy) � 3

4 + ε
4 .

In other words, if one obtains a probability of success
greater than the classical probability of success, then par-
ity preservation is violated. Moreover, we have shown in
Theorem 6 that under a certain threshold, this implies that

5Notice that there is no classical strategy that can perform better
than the one we described here. We indeed assumed that Bob uses
the knowledge of parity to his maximum possible advantage and that
Alice communicates a bit of information, which is the best she can
do.
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Marvian’s equality (as well as Pusey’s inequality) is also
violated. Therefore, we have shown that as long as the noise
is below a certain threshold, preparation contextuality is
still present whenever parity-oblivious multiplexing manifests
computational advantage over classical strategies.

VII. CONCLUSION

One essential desideratum for a good notion of nonclassi-
cality is that it should be experimentally testable. Motivated
by this, we examined three approaches to test nonclassicality
in the simplest nontrivial scenario, which involves four noisy
preparations and two tomographically complete measure-
ments. Specifically, we investigated Pusey’s and Marvian’s
approaches for witnessing preparation contextuality, along
with an approach for witnessing a violation of BODP.

We showed that these three approaches align in detecting
nonclassicality as long as the level of experimental noise
remains below a certain threshold, δ < 0.007 (in the case
of quantum depolarizing noise, this improves to δ < 0.02).
Therefore, experimenters have the flexibility to choose the
approach that best suits their needs when testing for nonclassi-
cality in their experiments, provided the noise remains within
this range. This flexibility becomes particularly relevant in
scenarios where certain approaches are not suitable, such as in
the noisy parity-oblivious multiplexing protocol. In the latter
case, we argued that the appropriate notion to test is parity
preservation, that refers to the a priori ideal preparations and
explicitly allows one to quantify the violation of the parity
constraint. Nevertheless, by virtue of our results, below the
noise threshold δ < 0.007, Marvian’s and Pusey’s approaches
can also be employed to detect nonclassicality in the exper-
iment. Indeed, below this threshold, we also established that
preparation contextuality is still present when one performs
the protocol with a success probability greater than what can
be achieved with classical strategies.

Crucial to obtain our results is the way we characterized
noise through the noise parameter δ. The latter quantifies—via
the operational distance—the deviation in the measurement
statistics between the experimentally realized and the ideal
target preparations. Our choice of operational distance cor-
responds to the maximum difference over the x and y
coordinates of the statistics between the preparations. There
are two reasons for employing it. First, it is geometrically
intuitive, as witnessed by the fact that preparations with δ

noise distance from the ideal ones belong to a square of radius
2δ around those (see Fig. 2). Second, it makes calculations
tractable. We give a couple of examples.

(1) Distances over the coordinates are easily identified
within Pusey’s expression [Eq. (14)], making it possible to
bound it.

(2) The operational distance between P+ and P− [Eq. (E1)]
coincides with the parity that can be communicated in
ε − POM, thus allowing for a straightforward proof of
Theorem 8.

With alternative definitions of operational distance like the
maximum relative entropy or the total variational distance [6]
we would have not exploited the above lucrative features.
We leave for future research the question of how the results
change by using these other ways of characterizing noise.

It is important to emphasize that determining a mathemat-
ical threshold below which both preparation noncontextuality
and parity preservation are violated (Theorems 5 and 6) is not
straightforward. While we expected the existence of a noise
threshold below which both parity preservation (and conse-
quently BODP) and preparation noncontextuality are violated,
it was not clear how and if this could be found. In particular,
it was not immediately obvious how to quantitatively relate
preparation contextuality, that deals with operational equiv-
alences and corresponding ontological inequivalences, with
violations of BODP (and parity preservation), which deal with
operational distances and corresponding greater ontological
distances. The key to our achievement in obtaining such a
threshold hinges on Lemma 3. The latter ultimately leads to
a function of the noise parameter δ in Theorem 4 [Eq. (33a)]
which intersects Marvian’s witness of contextuality Cmin

prep (as
shown in Fig. 4), revealing a region where not only prepara-
tion noncontextuality but also parity preservation is violated.
Our success in finding this function lies in the way we recast
the operational equivalence in terms of even- and odd-parity
mixtures. We managed not only to allow for a connection
between preparation noncontextuality and parity preservation
but also to retain the amount of parity preservation violation,
as shown in Appendix C. Open is the question whether a
more precise threshold can be obtained, but we expect this
to involve more intricate methods.

Our method based on parity preservation can be seen as
an application of the results contained in [5] in the context
of the simplest scenario. In connection with this previous
work, it is important to highlight that we reformulated it using
the concept of distances instead of distinguishabilities. This
reformulation offers a clear alternative interpretation of both
the operational and ontological differences. In addition, we re-
obtained the proof presented in [5] about the ε − POM being
powered by a violation of BODP, stressing that the violation
is in terms of parity preservation. Consequently, we noticed,
by virtue of Theorem 6, that ε − POM is also powered by
preparation contextuality as long as the noise parameter δ is
below 0.007.

The results of this paper are relevant for applications in
information processing tasks that aim to witness nonclassi-
cality and that are set in the simplest nontrivial scenario. We
recall how these tasks—examples of which are the two-bit
parity-oblivious multiplexing that we treated here and other
versions of the two-bit quantum random access codes—are of
central importance because they are the primitive communica-
tion tasks where nonclassicality can be certified in a device or
semidevice independent way. The question remains open as to
whether the methods presented in this paper can be extended
to scenarios beyond the simplest nontrivial case. We leave this
interesting avenue for future research.
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APPENDIX A: PROOF OF LEMMA 1

Suppose the preparations {Pi j} of the simplest scenario
satisfy a noise bound d ( �Pi j, �Pid

i j ) � δ, where δ is the noise
parameter and {Pid

i j } are the ideal a priori preparations. Pusey’s
expression S(xi j, yi j ) of Eq. (14) satisfies the following lower
bound in terms of the noise parameter δ:

S(xi j, yi j ) � 2
√

2 − 2 − 16δ + 32
√

2δ2, (A1)

where {xi j, yi j} are the coordinates of the preparations {Pi j}.
Proof. Let us consider Pusey’s noncontextuality inequality

of Eq. (14) for the case where we insert the coordinates of the
preparations Pi j satisfying the operational equivalence (7):

p(x00 + y00 + x11 + y11) + q(x01 − y01 + x10 − y10)

+ (y10 − x10 − x11 − y11) − 2 � 0. (A2)

Suppose d ( �Pi j, �Pid
i j ) � δ. Given the coordinates of �Pid

i j spec-
ified in Eq. (4), it follows that lδ � |xi j |, |yi j | � uδ , where lδ =

1√
2

− 2δ and uδ = 1√
2

+ 2δ. This can be seen in Fig. 2, where

any noisy point �Pi j within an operational distance of δ from
the ideal points �Pid

i j has coordinates whose absolute values lie

within the range [ 1√
2

− 2δ, 1√
2

+ 2δ]. Further, p, q � 1−4
√

2δ
2

(see Fig. 5).
Applying these bounds to Eq. (A2), we obtain

S(xi j, yi j ) = p(x00 + y00 + x11 + y11)

+ q(x01 − y01 + x10 − y10)

+ (y10 − x10 − x11 − y11) − 2

� 1 − 4
√

2δ

2
(lδ + lδ − uδ − uδ )

+ 1 − 4
√

2δ

2
(lδ + lδ − uδ − uδ )

+ (lδ + lδ + lδ + lδ ) − 2

= 2(1 − 4
√

2δ)(lδ − uδ ) + 4lδ − 2

= 2(1 − 4
√

2δ)

(
1√
2

− 2δ − 1√
2

− 2δ

)

+ 4

(
1√
2

− 2δ

)
− 2

= 2
√

2 − 2 − 16δ + 32
√

2δ2. (A3)

�

FIG. 5. An example where the weight p in Eq. (7) takes the
minimum possible value, corresponding to p = 1−4

√
2δ

2 . This can be
seen by noting that p is the weight associated to the distance between
�P11 and �c and observing that the Euclidean distance between �P11 and
�c equals 1 − 4

√
2δ, while the Euclidean distance between �P11 and �P00

equals 2.

APPENDIX B: PROOF OF LEMMA 2

Suppose the preparations {Pi j} of the simplest scenario
satisfy a noise bound d ( �Pi j, �Pid

i j ) � δ, where δ is the noise pa-
rameter and {Pid

i j } are the ideal a priori preparations. Marvian’s
inaccessible information of Eq. (15) of the scenario satisfies
the following lower bound in terms of the noise parameter δ:

Cmin
prep �

√
2 − 4δ − 1

4(
√

2 − 4δ)
. (B1)

Proof. We begin by using an inequality proven in [6], that
provides a lower bound for the inaccessible information of an
operational theory:

Cmin
prep � Pguess − (

1 − d−1
d β−1

min

)
(d − 1)dn−1

. (B2)

The values n and d represent the number of measurements in
the theory and number of outcomes for each measurement,
respectively. In the simplest scenario, we have d = n = 2.
The expression Pguess is interpreted in [6] as the guessing
probability in a certain game therein defined. In the case of
the simplest scenario, Pguess = 1.6

6The preparations that give the maximal guessing probability of
1 are �R00 = (1, 0), �R01 = (−1, 0), �R10 = (0, 1), and �R11 = (0, −1).
Although these four points are not in our a priori simplest scenario,
we can augment the convex hull of the { �Pi j}s with the set of these
additional four points, U = {(±1, 0), (0, ±1)}, as they do not affect
or contribute to the contextuality of the scenario. They indeed cor-
respond to the stabilizer states in qubit theory, that are known not
to violate preparation noncontextuality inequalities [12]. This can be
also seen through Pusey’s preparation noncontextuality expression,
whereby (a) the calculated value of S(xi j, yi j ) for U is zero and (b)
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With these values, we have that Eq. (B2) reduces to the
following:

Cmin
prep � 1

4β−1
min. (B3)

The remaining term, βmin, is obtained from the operational
statistics and so the right-hand side in Eq. (B3) is just a func-
tion of the preparations—it is what we referred to as γ (xi j, yi j )
in Eq. (17). Let us now define and bound βmin. Following [6],
we have

βmin ≡ inf
P

max
i, j

2dmax(P,Qi j ), (B4)

where the infimum is taken over all preparations P in the the-
ory, Qi j ≡ 1

2 R0i + 1
2 R1 j for i, j ∈ {0, 1}, and the distance dmax

is the operational maximum relative entropy for preparations:

dmax(Pa, Pb) ≡ − log2 sup{u : u � 1, ∃Pa′ :

Pb � uPa + (1 − u)Pa′ }. (B5)

Considering our choices of �R00 = (1, 0), �R01 = (−1, 0),
�R10 = (0, 1), and �R11 = (0,−1), we have �Q00 =
( 1

2 , 1
2 ), �Q01 = ( 1

2 ,− 1
2 ), �Q10 = (− 1

2 , 1
2 ), and �Q11 = (− 1

2 ,− 1
2 ).

We can now bound βmin from above:

βmin = inf
P

max
i, j

2dmax(P,Qi j )

= inf
P

max
i, j

2− log2 sup{u:u�1,∃Pa:Qi j�uP+(1−u)Pa}

= inf
P

max
i, j

[sup{u : u � 1, ∃Pa : Qi j

� uP + (1 − u)Pa}]−1

= max
i, j

(
sup

{
u : u � 1, ∃Pa : Qi j

� u
I

2
+ (1 − u)Pa

})−1

� max
i, j

({
u : Qi j � u

I

2
+ (1 − u)Si j

})−1

=
({

u : Q00 � u
I

2
+ (1 − u)S00

})−1

=
({

u :
1√
2

= u · 0 + (1 − u)(1 − 2
√

2δ)

})−1

=
(√

2 − 4δ − 1√
2 − 4δ

)−1

=
√

2 − 4δ√
2 − 4δ − 1

. (B6)

the maximal value of contextuality via S(xi j, yi j ) is always attained
with the initial four noisy preparations Pi j . We augment the set of
preparations in our simplest scenario with U for the purposes of
utilizing Marvian’s guessing probability; the inclusion of U allows us
to employ the inequality in Eq. (B2) in a manner that detects nonclas-
sicality appropriately. That is, with Pguess = 1, the right-hand side of
Eq. (B2) is positive precisely when there is preparation contextuality.

FIG. 6. The points �Ri j correspond to the states Ri j used to evalu-
ate Pguess. Their equal mixtures, denoted �Qi j , are used in calculating
βmin. The set of �Si j denotes the points that are radially furthest from
the �Qi j which are guaranteed to lie within the convex hull of the noisy
preparations. That the points �Si j are radially furthest away from the
origin (the completely mixed state) is what ensures dmax to be the
largest distance. Note that with less noise (smaller δ) the value of
sup{u} increases, since the stationary �Qi j would then be (relatively)
closer to �0 than the �Si j ; this in turn decreases 1

u , which bounds βmin

from above.

In the fourth line we use the fact that, as also shown in
[6], the infimum is achieved for the completely mixed state
I
2 . The upper bound in the fifth line arises from finding the
smallest value that sup{u} can be guaranteed to achieve from
mixing I

2 with a preparation Pa in our theory to output a
fixed Qi j . Any �Pa that lies within the convex hull of the noisy
points is a candidate to mix with I

2 , and the optimal value is
achieved with the preparations indicated by �Si j (see Fig. 6).
Due to symmetry, the value of u is the same for any pair of
�Qi j and �Si j . In line 6 we choose, without loss of generality,
i j = 00 to calculate the u value. We conclude with solving

1√
2

= (1 − u)(1 − 2
√

2δ) for u.

Therefore β−1
min �

√
2−4δ−1√

2−4δ
. This inequality applied to

Eq. (B3) establishes the result. �

APPENDIX C: PROOF OF LEMMA 3

Given the simplest scenario with even- and odd-parity
preparations P+ andP− and inaccessible information Cmin

prep,
there exist functions α1, α2, and α3 of the preparations {Pi j}
satisfying

Dmin
P+,P− � α1C

min
prep − α2, (C1a)

Dmin
P+,P− � α1C

min
prep + α3. (C1b)

Proof. We first recall that

p �P00 + (1 − p) �P11︸ ︷︷ ︸
�Pp

= �c = q �P01 + (1 − q) �P10︸ ︷︷ ︸
�Pq

and that �P+ = 1
2

�P00 + 1
2

�P11 and �P− = 1
2

�P01 + 1
2

�P10.
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We then define a weight r and preparations P+′ and P−′ that
pair with P+ and P− such that the following two criteria hold.

(1) P+′ and P−′ are also convex combinations of
{P00, P11} and {P01, P10}, respectively.

(2) �Pp and �Pq can be recast using one common weight r as

(1 − r) �P+ + r �P+′︸ ︷︷ ︸
�Pp

= �c = (1 − r) �P− + r �P−′︸ ︷︷ ︸
�Pq

. (C2)

With Eq. (C2), we are able to write μp = (1 − r)μ+ +
rμ+′ and μq = (1 − r)μ− + rμ−′ . We now show how the
quantities just defined allow one to lower and upper bound
the distance d (μp, μq ), and so Cmin

prep, in terms of d (μ+, μ−) −
d (P+, P−), thus obtaining the wanted result.

We can constructively define the weight r as follows. To
start, observe that �c is either a convex combination of { �P+, �P00}
or { �P+, �P11}, and that the weight p determines which com-
bination of the two pairs gives �c. The same is true for �c
being expressed as a convex combination of either { �P−, �P01}
or { �P−, �P10}, with the weight q determining which pair. With
this in mind, we define the even- and odd-parity weights,
r+ and r−, to be (here all magnitudes || · || indicate Euclidean
length)

r+ ≡
⎧⎨
⎩

|| �P+−�c||
|| �P+− �P00|| p � 1

2

|| �P+−�c||
|| �P+− �P11|| p � 1

2

, r− ≡
⎧⎨
⎩

|| �P−−�c||
|| �P−− �P01|| q � 1

2

|| �P−−�c||
|| �P−− �P10|| q � 1

2

.

(C3)

We now take r to be the maximum of these two values, as
this ensures that our first criterion outlined earlier is satisfied,
namely, that the preparations P+′ and P−′ can be expressed as
convex combinations of {P00, P11} and {P01, P10}, respectively.
In practice, one of either P+′ or P−′ will equate to the original
noisy Pi j , with the other corresponding to a strict convex
combination (see Fig. 7). The specifics will depend on the
weights in Eq. (7).

We now have

d (μp, μq ) = d ((1 − r)μ+ + rμ+′ , (1 − r)μ− + rμ−′ )

� (1 − r)d (μ+, μ−) + rd (μ+′ , μ−′ )

� (1 − r)d (μ+, μ−) + r, (C4)

where the first inequality follows from the triangle inequality
and the second inequality follows from d (μ+′ , μ−′ ) � 1.

It therefore follows that

1

1 − r
d (μp, μq ) � d (μ+, μ−) + r

1 − r

1

1 − r︸ ︷︷ ︸
α1

d (μp, μq ) −
[

r

(1 − r)
+ d (P+, P−)

]
︸ ︷︷ ︸

α2

� d (μ+, μ−) − d (P+, P−). (C5)

Similarly, we have

d (μp, μq ) = d ((1 − r)μ+ + rμ+′ , (1 − r)μ− + rμ−′ )

� (1 − r)d (μ+, μ−) − rd (μ+′ , μ−′ )

� (1 − r)d (μ+, μ−) − r, (C6)

FIG. 7. (a) In this example p < 1
2 and q > 1

2 , implying that �c is
a combination of { �P+, �P11} and { �P−, �P01}, respectively, as shown on
the left side. We also note that r+ > r−, as shown on the right side,
so that r+ will be used as the ratio r. (b) The intersection �c has been
recast (left side) in terms of two new convex combinations { �P−, �P−′ }
and { �P+, �P+′ } that use the same weight r (right side). Given that these
combinations are themselves mixtures of the a priori preparations in
Eq. (7), they can be used to express �Pp and �Pq. We note that in this
example �P+′ = �P11, while �P−′ is now a strictly convex combination
of �P− and �P01. (Choosing r to have been the minimum rather than
maximum would have retained �P−′ = �P01; however, �P+′ would have
then been outside of the convex hull of our preparations and thus
outside of the operational theory.)

which gives us

1

1 − r
d (μp, μq ) � d (μ+, μ−) − r

1 − r

1

1 − r︸ ︷︷ ︸
α1

d (μp, μq ) +
[

r

(1 − r)
− d (P+, P−)

]
︸ ︷︷ ︸

α3

� d (μ+, μ−) − d (P+, P−). (C7)

In the expressions above [Eqs. (C5) and (C7)], we have iden-
tified the functions α1, α2, and α3. Taking the infimum of
Eqs. (C5) and (C7) over all ontological models, and noting
that Cmin

prep is the infimum of d (μp, μq) across all models, the
desired result is proven. �
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FIG. 8. (a) The point �c lies within the greater rhombus region shaded in green. The points �P+, �P− lie within the inscribed square shaded in
blue. The dotted red line illustrates the maximal distance between points lying in each region, which is of length 4

√
3δ. (b) An example of the

minimum possible Euclidean distance between a preparation vector �Pi j and midpoint vector �P+ or �P−, here shown with the case of �P00 and �P+,
where || �P+ − �P00|| = 1 − 2

√
2δ.

APPENDIX D: PROOF OF LEMMA 4

Given the functions α1, α2, andα3, if each noisy prepara-
tion Pi j satisfies d ( �Pi j, �Pid

i j ) � δ, the following upper bounds
hold:

α2

α1
� 2(1 + 2

√
3)δ − 4

√
2δ2

1 − 2
√

2δ
. (D1a)

α3 �
4
√

3δ

1−2
√

2δ

1 − 4
√

3δ

1−2
√

2δ

. (D1b)

Proof. From Eq. (C5), we have α1 = 1
1−r and α2 = r

1−r +
d (P+, P−), so that

α2

α1
= d (P+, P−)(1 − r) + r. (D2)

Note that �P+ and �P− are averages of points contained in
δ neighborhoods of the ideal points. Therefore, �P+ and �P−
are each contained in a δ neighborhood of the origin, which
implies that

d (P+, P−) � 2δ. (D3)

Next, we observe that �c is the intersection point of two line
segments contained in diagonal strips of radius 2

√
2δ centered

in the origin. Thus �c is contained within a tilted square of
side length 4

√
2δ centered in the origin. It follows that the

maximal Euclidean distance between �P+ or �P− and �c is 4
√

3δ

[see Fig. 8(a)]. This yields

|| �P+ − �c||, || �P− − �c|| � 4
√

3δ. (D4)

Moreover, since || �P00 − �P+|| = 1
2 || �P00 − �P11|| (and sim-

ilarly for the case with �P−), the minimum value of the
denominators in Eq. (C3) occurs when || �P00 − �P11|| is mini-
mized [see Fig. 8(b)], that corresponds to the value 2 − 4

√
2δ.

This leads to

|| �P+ − �P00||, || �P+ − �P11||, || �P− − �P01||, ||P0 − P10||
� 1 − 2

√
2δ. (D5)

Combining Eqs. (D4) and (D5) with Eq. (C3), it follows
that

r = max{r+, r−} � 4
√

3δ

1 − 2
√

2δ
. (D6)

Referring back to Eq. (D2), this yields

α2

α1
= d (P+, P−)(1 − r) + r

� d (P+, P−) + r

� 2δ + 4
√

3δ

1 − 2
√

2δ

= 2(1 + 2
√

3)δ − 4
√

2δ2

1 − 2
√

2δ
. (D7)

This establishes the first bound. For the second bound, we
refer to Eq. (C7):

α3 = r

1 − r
− d (P+, P−)

� r

1 − r

�
4
√

3δ

1−2
√

2δ

1 − 4
√

3δ

1−2
√

2δ

= 4
√

3δ

1 − 2
√

2δ − 4
√

3δ
. (D8)

�

032212-14



ALTERNATIVE ROBUST WAYS OF WITNESSING … PHYSICAL REVIEW A 109, 032212 (2024)

APPENDIX E: PROOF OF THEOREM 8

The optimal success probability in two-bit ε-POM of any
operational theory that admits of a parity preserving ontolog-
ical model satisfies p(b = xy) � 3

4 + ε
4 .

Proof. Suppose {P+, P−} can be distinguished in a single-
shot measurement with probability ε. That is,

max
M=X,Y

{|P (k|P+, M ) − P (k|P−, M )|} = ε. (E1)

This expression can be recast as max{ 1
2 |x+ − x−|, 1

2 |y+ −
y−|} = ε. Therefore, by definition we have d (P+, P−) = ε.
Considering Eq. (22), this means that sP+,P−

O = 1+ε
2 . Our as-

sumption of parity preservation entails that d (μ+, μ−) = ε.
Thus, Eq. (23) now reads as sμ+,μ−

� = 1+ε
2 , which also means

that sP+,P−
O = sμ+,μ−

� . In other words, we have

sμ00+μ11,μ01+μ10
� = sP00+P11,P01+P10

O = 1 + ε

2
. (E2)

It follows from the results of Proposition 2 in [5] that

1

2

(
sP00+P01,P10+P11
O

) + 1

2

(
sP00+P10,P01+P11
O

)
� 1 + 1+ε

2

2
= 3

4
+ ε

4
. (E3)

The probability of success is the averaged sum of all possible
ways Bob can win, given a randomly chosen measurement
X,Y and state P00, P01, P10, P11, and an output 0,1 that Bob
guesses based on the outcome of his measurement. This
amounts to

p(b = xy)

= 1

8
[P (0|P00, X ) + P (0|P01, X )

+ P (1|P10, X ) + P (1|P11, X )

+ P (0|P00,Y ) + P (0|P10,Y )

+ P (1|P01,Y ) + P (1|P11,Y )]

= 1

2

(
P

(
0| 1

2 P00 + 1
2 P01, X

)
2

+ P
(
1| 1

2 P10 + 1
2 P11, X

)
2

)

+ 1

2

(
P

(
0| 1

2 P00 + 1
2 P10,Y

)
2

+ P
(
1| 1

2 P01 + 1
2 P11,Y

)
2

)

= 1

2

(
sP00+P01,P10+P11
O

) + 1

2

(
sP00+P10,P01+P11
O

)
. (E4)

By combining Eqs. (E3) and (E4) we obtain
p(b = xy) � 3

4 + ε
4 . �

APPENDIX F: THE CASE OF QUANTUM
DEPOLARIZING NOISE

In this Appendix we focus on the simplest nontrivial sce-
nario in the case where preparations are contained within the
unit Bloch disk and the experimental noise is assumed to be
modeled by a quantum depolarizing channel. In this case,
noisy preparations Pi j are mixtures of the ideal preparations
Pid

i j with the completely mixed state I
2 (see Fig. 9).

FIG. 9. Depolarizing noise constrained to a bound of δ. Ideal
preparations are indicated at the center of the shaded squares. Noisy
preparations are assumed to lie on the dotted red segments. In accor-
dance with Eq. (13), they have an operational distance of at most δ

from the ideal ones.

We begin with an updated bound on Pusey’s expression and
subsequent threshold for violating preparation noncontextual-
ity based on this bound.

Lemma 8. Suppose the preparations {Pi j} of the simplest
scenario satisfy a noise bound d ( �Pi j, �Pid

i j ) � δ, where δ is the
noise parameter and {Pid

i j } are the ideal a priori preparations.
Pusey’s expression S(xi j, yi j ) of Eq. (14) satisfies the follow-
ing lower bound in terms of the noise parameter δ:

S(xi j, yi j ) � 2
√

2 − 2 − 8δ + 8
√

2δ2 − 4δ

1 − √
2δ

, (F1)

where {xi j, yi j} are the coordinates of the preparations {Pi j}.
The proof follows that of Lemma 1 in Appendix A, with

the following changes in values: uδ = 1√
2

and p, q � 1−2
√

2δ

2−2
√

2δ
.

Given that the corresponding preparation noncontextuality in-
equality is S(xi j, yi j ) � 0, solving for the right-hand side in
Eq. (F1) results in a violation threshold of δ ≈ 0.07, which
leads to the following theorem.

Theorem 9. If d ( �Pi j, �Pid
i j ) � 0.07, then S(xi j, yi j ) > 0 and

Pusey’s preparation noncontextuality inequality is violated.
In the case of quantum depolarizing noise, Lemma 2 and

Theorem 2 are left unchanged. This is not the case for Lemma
4, that provides a different bound than the one in Eq. (32a).
We provide the modified statement below.

Lemma 9. Given the functions α1 and α2, if each noisy
preparation Pi j satisfies d ( �Pi j, �Pid

i j ) � δ, the following upper
bound holds:

α2

α1
� δ +

√
2δ

1 − 2
√

2δ
. (F2)

The proof follows that of Lemma 4 in Appendix D,
with the following changes in values: d (P+, P−) � δ;
�c = �0; || �P+ − �c||, || �P− − �c|| �

√
2δ; || �P+ − �P00||, || �P+ −

�P11||, || �P− − �P01||, ||P0 − P10|| � 1 − 2
√

2δ; and r �
√

2δ

1−2
√

2δ
.
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Combining Eq. (F2) with Eq. (31a) leads to the following
theorem.

Theorem 10. Given the simplest scenario with even-
and odd-parity preparations P+ and P− and inaccessible
information Cmin

prep, if each Pi j satisfies d ( �Pi j, �Pid
i j ) � δ, then the

following implication holds:

Cmin
prep > δ +

√
2δ

1 − 2
√

2δ
⇒ Dmin

P+,P− > 0. (F3)

Equating the right-hand sides of inequalities (29) and (F2),
we find the threshold for which Marvian’s inequality provides
a sufficient lower bound to violate parity preservation as in

Eq. (F3), which results in δ ≈ 0.02. Consequently, the follow-
ing theorem holds.

Theorem 11. If d ( �Pi j, �Pid
i j ) � 0.02, then Dmin

P+,P− > 0 and
parity preservation is violated.

Given that both Marvian’s and Pusey’s approaches ex-
hibit a violation if δ � 0.07, we obtain the following noise
threshold below which all methods agree in witnessing non-
classicality in the simplest scenario in the case of quantum
depolarizing noise.

Theorem 12. If the noise parameter δ satisfies δ � 0.02,
then S(xi j, yi j ) > 0,Cmin

prep > 0, and Dmin
P+,P− > 0. Therefore, all

three criteria of classicality are violated.
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