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GENERALIZED q-FOCK SPACES AND A NEW TYPE OF STIRLING

NUMBERS

DANIEL ALPAY, PAULA CEREJEIRAS, UWE KAEHLER, AND BARUCH SCHNEIDER

Abstract. Using q-calculus we study a family of reproducing kernel Hilbert spaces
which interpolate between the Hardy space and the Fock space. We give characterizations
of these spaces in terms of classical operators such as integration and backward-shift, and
their q-calculus counterparts. We introduce an apparently new family of numbers, close
to, but different from, the q-Stirling numbers of the second kind.

1. Introduction

1.1. Prologue. The Hardy space of the open unit disk D, here denoted by H2 =H2(D),
is the reproducing kernel Hilbert space with reproducing kernel

1

1 − zw =
∞

∑
n=0

znwn, z,w ∈ D,
and plays a key role in operator theory, linear system theory and Schur analysis. On the
other hand, the Bargmann-Fock-Segal space, here denoted by F and called Fock space
for short, is the reproducing kernel Hilbert space with reproducing kernel

ezw =
∞

∑
n=0

znwn

n!
, z,w ∈ C,

and plays a key role in quantum mechanics (and more recently in signal processing).

The Hardy space H2 can be characterized (up to a positive multiplicative factor for the
inner product) as the only Hilbert space of power series converging at the origin and such
that

(1.1) R∗0 =Mz,

where Mz is the operator of multiplication by z and

(1.2) R0f(z) = f(z) − f(0)
z

.

Note that in H2 we have the identities

(1.3) R0R
∗
0 = I , and R0Mz −MzR0 = I −R∗0R0 = C∗C,

where Cf = f(0) and I is the identity operator. We remark that

(1.4) I −R∗0R0 = C∗C,
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which we will call structural identity, is the simplest of a family of identities characterizing
de Branges spaces.

Similarly, and besides Bargmann celebrated characterization ∂∗ = Mz (see [10, 11]), the
Fock space is (still up to a positive multiplicative factor for the inner product) the only
Hilbert space of power series converging at the origin and such that

(1.5) R∗0 = I,
where I is the integration operator (see [7])

(1.6) (If)(z) = ∫[0,z] f(s)ds.
1.2. The paper. The q-calculus allows to define a continuum of spaces between H2 and
F , namely the family of reproducing kernel Hilbert spaces H2,q indexed by q ∈ [0,1] and
with reproducing kernel

Kq(z,w) = ∞∑
n=0

znwn

[n]q! , q ∈ [0,1], z,w ∈ D1/1−q,

where in the above expression

D1/1−q =
⎧⎪⎪⎨⎪⎪⎩
D∞ = C, q = 1,
{z ∈ C ∶ ∣z∣ < 1

1−q
} , q ∈ [0,1) .

Furthermore, [0]q! = 1 and [n]q! = 1 ⋅ (1+ q) ⋅ (1+ q + q2)⋯(1+ q +⋯+ qn−1), n ∈ N. Thus,
in this notation, we have

H2,0 =H2 and H2,1 = F ,
with

K0(z,w) ∶= k2,0(z,w) = 1

1 − zw
and K1(z,w) ∶= k2,1(z,w) = ezw.

The q-calculus allows to gather into a common umbrella problems pertaining to the clas-
sical Hardy space H2 of the open unit disk and problems pertaining to the Fock space.
Consider now

(1.7) Rqf(z) = f(z) − f(qz)
(1 − q)z , 0 ≤ q < 1,

while for q = 1, we consider R1 = ∂. In this way we have a progression between two fun-
damental linear operators in analysis, namely the backward-shift and the differentiation
operators. Then, one can introduce the q-Fock space H2,q as the unique (up to a mul-
tiplicative positive constant) space of power series such that R∗q = Mz. The case q = 1
corresponds to the classical Fock space (see [10]). It is important to note already at this
stage that these operators satisfy a q-commutator relation (see also Lemma 2.2)

(1.8) RqMz − qMzRq = I .
2. q-calculus

2.1. Iterative powers of the operator Rq. Recall that Rq was defined by (1.7).

Proposition 2.1. Let Λqf(z) = f(qz). We have

(2.9) Rn
q f(z) = Π

n
k=1(1 − qkΛq)(1 − q)n Rn

0f(z), 0 ≤ q < 1, n = 1,2, . . .
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Proof. Firstly, we observe the intertwining between R0 and Λq,

R0Λqf(z) = R0f(qz) = f(qz) − f(0)
z

= q f(qz) − f(0)
qz

= qΛqR0f(z).
Secondly,

Rqf(z) = f(z) − f(qz)(1 − q)z = f(z) − f(0) − f(qz) + f(0)
(1 − q)z

= 1

1 − q

f(z) − f(0)
z

−
q

1 − q

f(qz) − f(0)
qz

= (1 − qΛq)R0

1 − q
f(z).

Hence,

R2
qf(z) = ((1 − qΛq)R0

1 − q
)
2

f(z)
= (1 − qΛq)R0(1 − qΛq)R0(1 − q)2 f(z)
= (1 − qΛq)(1 − q2Λq)R2

0(1 − q)2 f(z),
and by induction the result holds:

Rn
q f(z) = ((1 − qΛq)R0

1 − q
)
n

f(z)
= (1 − qΛq)R0(1 − qΛq)R0⋯(1 − qΛq)R0(1 − q)n f(z)
= (1 − qΛq)(1 − q2Λq)R2

0⋯(1 − qΛq)R0(1 − q)n f(z)
⋮

= (1 − qΛq)(1 − q2Λq)⋯(1 − qnΛq)Rn
0(1 − q)n f(z).

�

As we will see later (see Theorems 4.4 and 4.5), R∗q has completely different properties
depending on which of the spaces at hand we compute the adjoint.

2.2. A new type of q−Stirling numbers.

Lemma 2.2 (q-commutator). For the q-commutator it holds the following identity:

(2.10) [Rq,Mz]q ∶= RqMz − qMzRq = I .

Proof. We have

RqMzz
n = Rqz

n+1 = (1 + q +⋯+ qn)zn, n = 0,1,2, . . .
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while

qMzRqz
n = qMzRq1 = 0, n = 0,

qMzRqz
n = qMz(1 + q +⋯ + qn−1)zn−1 = (q + q +⋯+ qn)zn, n = 1,2, . . .

so that it holds (RqMz − qMzRq)zn = zn, for all n ∈ N0. �

We define our q−Stirling numbers as coefficients S(n, k) of the following commutation
relation (see [6]):

(2.11) (MzRq)n ∶= n

∑
k=1

S(n, k)Mk
z R

k
q , n ∈ N.

Lemma 2.3. We have for these q−Stirling numbers the following recursion formula

S(1,1) = 1;
S(n,n) = S(n − 1, n − 1)qn−1, n = 2,3, . . . ;

S(n, k) = (1 + q +⋯+ qk−1)S(n − 1, k) + qk−1S(n − 1, k − 1), k = 2, . . . , n − 1.
Proof. In order to simplify notation, we write the expression for the q−Stirling numbers
as

(ab)n ∶= n

∑
k=1

S(n, k)akbk.
From the q−commutator we get ba = 1 + qab so that

bna = bn−1(ba) = bn−1(1 + qab) = bn−1 + q(bn−1a)b
= bn−1 + q [bn−2 + q(bn−2a)b] b = (1 + q)bn−1 + q2(bn−2a)b2

⋮

= (1 + q +⋯ + qn−1)bn−1 + qnabn.
Replacing in the above formula for the q−Stirling numbers we obtain

(ab)n = n

∑
k=1

S(n, k)akbk

= (ab)n−1(ab) = [ n−1∑
k=1

S(n − 1, k)akbk](ab)
=

n−1

∑
k=1

S(n − 1, k)ak(bka)b = n−1

∑
k=1

akS(n − 1, k) [(1 + q +⋯+ qk−1)bk−1 + qkabk] b

=
n−1

∑
k=1

[(1 + q +⋯+ qk−1)S(n − 1, k)akbk + qkS(n − 1, k)ak+1bk+1]
=

n−1

∑
k=1

(1 + q +⋯+ qk−1)S(n − 1, k)akbk + n

∑
k=2

qk−1S(n − 1, k − 1)akbk

= S(n − 1,1)ab + n−1

∑
k=2

[(1 + q +⋯ + qk−1)S(n − 1, k) + qk−1S(n − 1, k − 1)]akbk + qn−1S(n − 1, n − 1)anbn,
so that we have S(1,1) = 1,

S(n,1) = S(n − 1,1), S(n,n) = qn−1S(n − 1, n − 1),
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for n = 2,3, . . . and
S(n, k) = (1 + q +⋯+ qk−1)S(n − 1, k) + qk−1S(n − 1, k − 1),

for k = 2, . . . , n − 1. �

One can easily see the first q−Stirling numbers

S(n, k) 1 2 3 4

1 1
2 1 q

3 1 2q + q2 q3

4 1 q3 + 3q2 + 3q q5 + 2q4 + 3q3 q6

Remark 2.4. We need to point out that the above q-Stirling numbers are not the q-
Stirling numbers of the first or of the second kind already existent in the literature.
These were obtained by studying the corresponding partition problems in q-calculus (for
a review on this topic see [12, 13]). Here we obtain them as coefficients of the expansion
of (MzRq)n in (2.11) following a similar idea as in [6]. Only in the classic case of q = 1
these type of coefficients coincide with the Stirling numbers of the second kind, i.e. with
the numbers of partitions of a set of n objects into k non-empty subsets.

3. The q-Fock space

Consider the positive definite function Eq(zw) given by the q-exponential:

(3.1) Eq(z) = ∞∑
k=0

zk

[k]q! =
1

∏∞j=0(1 − z(1 − q)qj) =∶
1

(z(1 − q); q)∞ , z ∈ D1/1−q,

evaluated at zw, with [0]q = 1 and [k]q = 1+q+⋯+qk−1 for k = 1,2, . . . , and [k]q! = ∏k
j=0[j]q,

i.e. [k]q! = [1]q[2]q⋯[k]q = 1 ⋅ (1 + q) ⋅ (1 + q + q2)⋯(1 + q +⋯ + qk−1).
The term (a; q)n = ∏n−1

j=0 (1 − aqj) denotes the q-Pochhammer symbol.

Definition 3.1. We denote by H2,q the reproducing kernel Hilbert space of functions
analytic in ∣z∣ < 1

1−q
with reproducing kernel Eq(zw).

As stated before when q = 0 we get back the classical Hardy space of the open unit disk,
while q → 1 leads to the classical Fock space; see e.g. [14, 15, 18] for the former, [20] for
the latter.
For functions belonging to the q-Fock space we have the following characterization based
on its power series expansion.

Lemma 3.2. f(z) = ∑∞n=0 anzn belongs to H2,q if and only if

(3.2)
∞

∑
n=0

[n]q! ∣an∣2 <∞.

Based on the q-Jackson integral (see [16], [17])

∫
a

0
f(x)dqx ∶= (1 − q)a ∞∑

k=0

qkf(qka),
we can define the following q-integral transform.
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Definition 3.3. Given a bounded function f ∶ [0,−1+1/(1−q)] → R we define its q-integral
transform as

Mqf(z) = ∫ 1/(1−q)
0

tz−1f(qt)dqt ∶= ∞∑
k=0

qk( qk

1 − q
)z−1f( qk+1

1 − q
).

With the help of this q-integral transform we get that the coefficients 1
[n]q! satisfy the

moment problem

[n]q! =Mq(E−1q )(n + 1) = ∫ 1/(1−q)
0

tnE−1q (qt)dqt
= (q; q)∞(1 − q)n

∞

∑
k=0

q(n+1)k
(q; q)k , 0 < q < 1, n ∈ N0,

where (a; q)n = Πn−1
j=0 (1 − aqj) denotes the q-Pochhammer symbol and (q; q)n = (q;q)∞

(qn+1;q)∞ .
For the disk D1/(1−q) we have the measure (see [19])

dµq(z) = (q; q)∞ ∞

∑
k=0

qk

(q; q)k dλrk(z),
where rk = qk/2√

1−q
while dλrk is the normalized Lebesgue measure in the circle of radius rk.

This leads to the following characterization of the space H2,q.

Theorem 3.4. The space H2,q corresponds to the space of all analytic functions in the
disk D 1

1−q
= {z ∶ ∣z∣ < 1

1−q
} satisfying the condition

∬
D 1

1−q

∣f(z)∣2dµq(z) <∞.

The inner product of H2,q is given by

1

2π∬D 1

1−q

f(z)g(z)dµq(z) = ∞∑
n=0

fngn [n]q! .
Proof. We have

1

2π∬D 1

1−q

znzmdµq(z) = (q; q)∞
2π

∞

∑
k=0

qk

(q; q)k rn+mk ∫
2π

0
ei(n−m)θdθ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=2πδn,m

= δn,m(q; q)∞ ∞

∑
k=0

qk

(q; q)k r2nk
= δn,m

(q; q)∞(1 − q)n
∞

∑
k=0

q(n+1)k
(q; q)k .

�

Combining this result with our moment problem we obtain

[n]q! =Mq(E−1q )(n + 1) = ∫ 1/(1−q)
0

tnE−1q (qt)dqt = δn,m

2π ∬D 1

1−q

znzmdµq(z).
We observe that for q → 1 we obtain dµq(z) = 1

2
e−∣z∣2dxdy.
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Also we get a convolution-type formula for our q-integral transform.

Lemma 3.5. Given bounded functions f1, f2 ∶ [0,−1+1/(1−q)]→ R it holds (pointwisely)

(3.3) Mq(f1)(z)Mq(f2)(z) = ( 1

1 − q
)z−1Mq(f1 ○ f2)(z),

where

(3.4) f1 ○ f2 (q qm

1 − q
) ∶= m

∑
k=0

f1 ( qk+1
1 − q

)f2 (qm+1−k
1 − q

) .
Proof. From Definition 3.3 we have

Mq(f1)(z)Mq(f2)(z) = ( ∞∑
k=0

qk( qk

1 − q
)z−1f1( qk+1

1 − q
))( ∞∑

n=0

qn( qn

1 − q
)z−1f2( qn+1

1 − q
))

=
∞

∑
k,n=0

qk+n( qk+n

(1 − q)2 )
z−1

f1( qk+1
1 − q

)f2( qn+1
1 − q

)
= ( 1

1 − q
)z−1 ∞∑

m=0

qm( qm

1 − q
)z−1 ( m

∑
k=0

f1( qk+1
1 − q

)f2(qm+1−k
1 − q

))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∶=f1○f2(q qm

1−q
)

.

�

For the multiplication operator Mz we have the following fact.

Proposition 3.6. Mz is bounded from H2,q into itself with norm ∥Mz∥ ≤ 1
1−q

.

Proof. This follows from

1
1−q
− zw

∏∞j=0(1 − zw(1 − q)qj) =
1

1 − q

1

∏∞j=1(1 − zw(1 − q)qj) .
Since the kernel 1

1−q
1

∏
∞
j=1(1−zw(1−q)qj) is positive definite in D1/1−q so is the kernel

1
1−q
− zw

∏∞j=0(1 − zw(1 − q)qj) ,
and we conclude with the characterization of multipliers in a reproducing kernel Hilbert
space. �

Lemma 3.7. (see e.g. [2, Exercise 4.2.25, pp. 165 and 185])

(3.5) (Rqf)(z) = λf(z) ⇐⇒ f(z) = c

∏∞j=0(1 − λ(1 − q)zqj) .
Proposition 3.8. The q-exponential satisfy

(3.6) (RqEq(⋅w))(z) = wEq(zw).



8 D. ALPAY, P. CEREJEIRAS, U. KAEHLER, AND B. SCHNEIDER

Proof. We note that Eq(qzw) = (1 − zw(1 − q))Eq(zw) and so

(RqEq(⋅w))(z) = Eq(zw) −Eq(qzw)(1 − q)z
= Eq(zw) − (1 − zw(1 − q))Eq(zw)(1 − q)z
= wEq(zw).

�

Theorem 3.9. Let q ∈ [0,1). The only Hilbert space of functions which is analytic in a
neighborhood of the origin and for which

(3.7) R∗q =Mz

is H2,q (up to a multiplicative factor for the inner product).

Proof. We have that Eq(zw) =Kq(z,w) is the reproducing forH2,q, i.e. f(z) = ⟨f,Eq(⋅z)⟩H2,q
.

Using (3.6) we can write:

(R∗qEq(⋅w)) (z) = ⟨R∗qEq(⋅w),Eq(⋅z)⟩H2,q

= ⟨Eq(⋅w),RqEq(⋅z)⟩H2,q

= ⟨Eq(⋅w), zEq(⋅z)⟩H2,q

= zEq(zw).
�

Proposition 3.10. The space H2,q is a de Branges-Rovnyak space.

Proof. This follows from [3, Theorem 2.1 p. 51], since the sequence [k]q! , for k = 0,1, . . .
is an increasing sequence with initial term 1. �

We now compute the adjoint of Rq in H2,q. Since

(3.8) ⟨zn, zm⟩
H2,q
= [n]q! δn,m,

we have

⟨zn,Rqz
m⟩

H2,q
= ⟨zn, zm − qmzm(1 − q)z ⟩

H2,q

= (1 + q +⋯ + qm−1) ⟨zn, zm−1⟩
H2,q

= (1 + q +⋯ + qn) [n]q! = [n + 1]q!
= ⟨zn+1, zm⟩

H2,q
=∶ ⟨R∗qzn, zm⟩H2,q

.

Therefore, we obtain R∗q =Mz.

In the case q = 1 the Fock space can be characterized (up to a multiplicative positive factor
in the inner product) as the only Hilbert space of power series converging in a convex
neighborhood of the origin and such that

(3.9) (R∗0f)(z) = ∫[0,z] f(s)ds,
that is, R∗0 coincides with the integration operator. It is therefore natural to try and
define the integral in H2,q by R∗q for q ∈ (0,1).
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Lemma 3.11. The operator R0 is bounded in H2,q and it holds that (with ek(z) = zk)
(3.10) R∗0ek = ek+1

1 + q +⋯ + qk
, k = 0,1, . . .

Proof. We have for k ≥ 1 and ℓ ≥ 0
⟨R0ek, eℓ⟩H2,q

= ⟨ek−1, eℓ⟩H2,q

= δk−1,ℓ [ℓ]q!
= δk−1,ℓ⟨ek, ek⟩H2,q

[ℓ]q![k]q!
= δk−1,ℓ⟨ek, ek⟩H2,q

1

1 + q +⋯+ qℓ

= ⟨ek,R∗0eℓ⟩H2,q
,

with

(3.11) R∗0eℓ = eℓ+1

1 + q +⋯+ qℓ
.

�

Consider the q-Jackson integral

∫
a

0
f(x)dqx ∶= (1 − q)a ∞∑

k=0

qkf(qka),
which is said to converge provided that the sum on the right-hand-side converges abso-
lutely.

Lemma 3.12.

(3.12) ∫
z

0
xℓdqx = zℓ+1 1

1 + q +⋯ + qℓ
.

Proof. By definition we have

∫
z

0
xℓdqx = z(1 − q) ∞∑

k=0

qk(qkz)ℓ = zℓ+1(1 − q)( ∞∑
k=0

(q1+ℓ)k)
= zℓ+1(1 − q) 1

1 − qℓ+1
= zℓ+1 1

1 + q +⋯+ qℓ
.

�

It is well know that

(3.13) ∂∗ =Mz

in the Fock space, and that in fact the Fock space is characterized (up to a positive
multiplicative constant in the inner product) by this equality; see [10]. In [8] it is proved
that in the Hardy space we have

(3.14) ∂∗ =Mz∂Mz ,

and that the above equality does characterize the Hardy space (as usual, up to a positive
multiplicative constant in the inner product). We now prove a formula which is valid for
q ∈ [0,1] and englobes the two above formulas.
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Theorem 3.13. Let q ∈ [0,1]. Then in H2,q it holds that

(3.15) ∂∗ =Mz∂R
∗
0

and this equality characterizes the space H2,q up to a positive multiplicative constant in
the inner product.

When q = 0 (Hardy space) we have R∗0 that R∗0 =Mz and so (3.15) reduces to

Mz∂Mz ,

i.e. (3.14). When q = 1 (Fock space), we have R∗0 = I (the integration operator) and
∂Iek = ek, k = 0,1, . . .. We thus get back (3.13).

Proof of Theorem 3.13. Let k ∈ N0. Let us set a priori ∂∗ek = ak,qek+1 for some ak,q ∈ C.
We have on the one hand

⟨∂∗ek, ek+1⟩H2,q
= ⟨ek, ∂ek+1⟩H2,q

= (k + 1)⟨ek, ek⟩H2,q

= (k + 1) [k]q!
and on the other hand, with ∂∗ek = ak,qek+1 we have

⟨∂∗ek, ek+1⟩H2,q
= ak,q⟨ek+1, ek+1⟩H2,q

= ak,q [k + 1]q! .
Thus

ak,q [k + 1]q! = (k + 1) [k]q!
from which we get

(3.16) ak,q = k + 1

1 + q +⋯+ qk
.

In view of (3.11), we can write

∂∗ek = (k + 1)Mzek

1 + q +⋯+ qk

= (k + 1)R∗0ek
=Mz∂R

∗
0ek

since
Mz∂ek+1 = (k + 1)ek+1, k = 0,1, . . .

�

Note that in (3.16), we set ak,0 = k + 1 and ak,1 = 1, as it should be.

Theorem 3.14. We have

(3.17) M∗
z = RqMzR0.

Proof. For m = 1,2, . . . we get

⟨zn,RqMzR0z
m⟩

H2,q
= ⟨zn,RqMzz

m−1⟩
H2,q
= ⟨zn,Rqz

m⟩
H2,q

.

By Proposition 3.10 we obtain

⟨zn,RqMzR0z
m⟩

H2,q
= ⟨zn,Rqz

m⟩
H2,q
= ⟨Mzz

n, zm⟩
H2,q

.
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We conclude our proof with the observation that 0 = ⟨zn,RqMzR0z0⟩H2,q
= ⟨Mzzn, z0⟩H2,q

.

�

4. The space F2,q

The space F2,q appeared in [5] motivated by a study of discrete analytic functions.

Definition 4.1. Consider the reproducing kernel

K2,q(z,w) = ∞∑
n=0

znwn

([nq]!)2 .
Then the corresponding reproducing kernel Hilbert space F2,q is the space of all functions
f(z) = ∑∞n=0 fnzn such that ∑∞n=0 ∣fn∣2([nq]!)2 <∞.

In this way, we have Kq =∶ K1,q and K2,q as the reproducing kernels of H2,q and F2,q,

respectively. As both kernels are positive definite and the same holds for its difference
K1,q −K2,q we get that F2,q is contractively included in H2,q (see [1, 9]).

Remark 4.2. We observe that for f1(z) = f2(z) = E−1q (z) we have

[Mq(E−1q )(n + 1)]2 = ( 1

1 − q
)n ∞

∑
m=0

qm( qm

1 − q
)z−1 [ m

∑
k=0

E−1q ( qk+11 − q
)E−1q (qm+1−k1 − q

)]
([n]q! )2 = ( 1

1 − q
)n ∞

∑
m=0

qm( qm

1 − q
)n m

∑
k=0

(qk+1; q)∞(qm+1−k; q)∞.
Hence, we get as density ω2,q of our q-Fock space F2,q

(4.1) ω2,q(∣z∣) ∶= ( 1

1 − q
)∣z∣

2−1 (E−1q ○E−1q )(∣z∣2),
and satisfying to

(4.2) Mq(ω2,q)(n + 1) = ( 1

1 − q
)nMq(E−1q ○E−1q )(n + 1) = ([n]q! )2.

Now, we can define Tq ∶H2 ↦ F2,q given as zn → zn

[n]q! .

Lemma 4.3. In H2 it holds:

(4.3) RqTq = TqR0.

Proof. The case of n = 0 is immediate. For n = 1,2, . . . we have

RqTqz
n = Rq ( zn

[n]q! ) =
1

[n]q! (1 + q +⋯ + q
n−1)zn−1

= 1

[n − 1]q! z
n−1 = Tqz

n−1 = TqR0z
n.

�

Theorem 4.4. The map Tq is an isometry from H2 onto F2,q.
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Proof. We have ⟨en, em⟩F2,q
= ([n]q! )2δn,m. Hence, we get

⟨Tqen, Tqem⟩F2,q
= 1

[n]q!
1

[m]q! ⟨en, em⟩F2,q

= δn,m
([n]q! )2([n]q! )2

= δn,m
= ⟨en, em⟩H2

.

�

Theorem 4.5. In F2,q it holds that

(4.4) R∗qen = en+1[n]q , n = 0,1, . . .
and

(4.5) I −R∗qRq = C∗C,
and this structural identity characterizes the space F2,q up to a multiplicative factor.

Proof. To prove (4.4) we write

⟨R∗qen, em⟩Fq,2
= ⟨en,Rqem⟩F2,q

= [m]q⟨en, em−1⟩Fq,2

= δm−1,n([n]q!)2[m]q.
On the other hand we show that one can assume that R∗qen = αnen+1; we have

⟨R∗qen, em⟩ = αn⟨en+1, em⟩F2,q

= αnδn+1,m([n + 1]q!)2.
Comparing these equalities we obtain

αn([n + 1]q!)2 = ([n]q!)2[n]q,
so that αn = 1

[n]q . It follows that

R∗qRqen = { 0, n = 0,
en, n = 1,2, . . .

and hence the result. �

From the previous computations we also have:

Proposition 4.6. R∗0 is an isometry in F2,q.

Proof. This is a direct consequence of the fact that

R0R
∗
0en = en,

for all n ∈ N0. �

From Lemma 3.12 we have:
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Proposition 4.7. In F2,q, it holds
R∗q = I,

where I is the integration operator.

We now use well a known method in characteristic function theory (see e.g. [4] in the
case of Pontryagin spaces) and rewrite (4.5) as

(Rq

C
)
∗

(Rq

C
) = I .

The operator

(I 0
0 1
) − (Rq

C
)(Rq

C
)
∗

is therefore positive and for instance using its square root, one can find a Hilbert space
H̃ and operators B and D,

(B
D
) ∶ H̃ Ð→ F2,q ⊕C,

such that

(I 0
0 1
) − (Rq

C
)(Rq

C
)
∗

= (B
D
)(B

D
)
∗

.

The operator matrix

(4.6) (Rq B

C D
)

is co-isometric. We set

(4.7) Sq(z) = D + zC(I − zRq)−1B.

We now look into the properties of the matrix (4.6). We observe that

(I 0
0 1
) = (Rq B

C D
)(Rq B

C D
)
∗

= (RqR∗q +BB∗ RqC∗ +BD∗

CR∗q +DB∗ CC∗ +DD∗
) ,

so that we get

DD∗ = 1 −CC∗, BB∗ = I −RqR
∗
q , BD∗ = −RqC

∗.

Hence, from (4.7) we get

Sq(z)[Sq(w)]∗ = [DI + zC(I − zRq)−1B][D∗I +wB∗(I −wR∗q )−1C∗]
=DD∗I + zC(I − zRq)−1BD∗ +wDB∗(I −wR∗q )−1C∗ + zwC(I − zRq)−1BB∗(I −wR∗q)−1C∗
= (1 −CC∗)I + zC(I − zRq)−1BD∗ +wDB∗(I −wR∗q)−1C∗ + zwC(I − zRq)−1BB∗(I −wR∗q)−1C∗
so that

I − Sq(z)[Sq(w)]∗
= CC∗I − zC(I − zRq)−1BD∗ −wDB∗(I −wR∗q)−1C∗ − zwC(I − zRq)−1BB∗(I −wR∗q )−1C∗
= CC∗I + zC(I − zRq)−1RqC

∗
+wCR∗q(I −wR∗q )−1C∗ − zwC(I − zRq)−1(I −RqR

∗
q)(I −wR∗q)−1C∗

= C(I − zRq)−1[ (I − zRq)(1 −wR∗q) + zRq(I −wR∗q) +w(I − zRq)R∗q − zw(I −RqR
∗
q )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(A)

](I −wR∗q)−1C∗.
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Easy calculations give now

(A) = (I − zRq)(I −wR∗q) + zRq(I −wR∗q) +w(I − zRq)R∗q − zw(I −RqR
∗
q )

= I − zRq −wR
∗
q + zwRqR

∗
q + zRq − zwRqR

∗
q +wR

∗
q − zwRqR

∗
q − zwI + zwRqR

∗
q

= (1 − zw)I ,
Hence, it holds that

(4.8)
I − Sq(z)Sq(w)∗

1 − zw
= C(I − zRq)−1[(I −wRq)∗]−1C∗, z,w ∈ D.

The operator Sq bears various names in operator theory; it is the characteristic operator
function, or the transfer function, or the scattering function, associated to the operator
matrix (4.6). From (4.8) one sees that Sq is analytic and contractive in the open unit
disk, i.e. is a Schur function.

When q = 0 we have for f(z) = ∑∞n=0 cnzn that

C(I − zR0)−1f = f(z), z ∈ D.
Here, for 0 < q ≤ 1 we define

fq(z) = C(I − zRq)−1f, z ∈ D.
As CRn

q f = [n]q! cn we get that the coefficients

(4.9) cn = CRn
q f[n]q!

are independent of q and one has fq(z) = f(z), that is, we obtain f(z) = C(I − zRq)−1f
for all z ∈ D.
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