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MAPPING CALIFORNIA RICE USING OPTICAL AND SAR DATA FUSION WITH 

PHENOLOGICAL FEATURES IN GOOGLE EARTH ENGINE 

Wenzhao Li, Hesham El-Askary, Daniele C. Struppa 
Schmid College of Science and Technology, Chapman University, Orange, CA, 92866 

 
ABSTRACT 

 
California, known for its diverse agriculture, is also a major 
producer of rice, especially in its northern regions in 
Sacramento River Valley. Traditional methods, 
predominantly reliant on optical-based satellite imagery, 
encounter limitations due to atmospheric interference and 
sensor resolution. The ability of Synthetic Aperture Radar 
(SAR) to penetrate atmospheric distortions and exhibit high 
sensitivity to vegetation structure presents a distinct 
advantage over optical-based methods. Utilizing Optical and 
SAR data fusion, this study advances the enhanced pixel-
based phenological feature composite (Eppf) method using 
SVM classification algorithm, which can track phenological 
changes and patterns, providing valuable insights for 
agricultural planning and management. We demonstrate that 
Radar Vegetation Index (RVI) derived from SAR data, 
offers an improved alternative for identifying and mapping 
rice fields with enhanced accuracy. Subsequent research will 
focus on enhancing the suggested approach and 
investigating its relevance and adaptability to different types 
of crops. 
 
Index Terms— Rice Mapping, Data Fusion, Sacramento 
River Valley, Radar Vegetation Index, Google Earth Engine 
 

1. INTRODUCTION 
 
The Sacramento River Valley (SRV) is the largest rice-
growing region in California. The recent drought and water 
shortage in 2022 had made its rice grower plant less grain to 
be the smallest since 1977 [1]. Mapping and monitoring rice 
fields is essential for efficient resource allocation, aiding in 
sustainable agricultural practices by optimizing water, 
fertilizer, and pesticide usage. The detailed data obtained 
supports informed decision-making regarding planting 
schedules, irrigation, and harvesting, thereby enhancing 
yield and contributing to food security. Additionally, this 
process enables early detection of potential issues like 
diseases or pests, allowing for prompt interventions and 
minimizing crop losses. Remote sensing (RS) technology 
has been harnessed to comprehensively monitor vegetation 
growth patterns, offering extensive spatial coverage and 
temporal flexibility, surpassing the limitations of traditional 
field surveys [2]–[7]. This approach allows data collection 
over large geographical areas and at various time intervals, 
facilitating continuous crop monitoring and capturing 

integral changes in growth stages and irrigation events. The 
recent method advances also introduced RS phenological 
features to separate of rice with others (e.g., dry and wetland 
vegetation), such as combined Consideration of Vegetation 
phenology and Surface water variations (CCVS) method [8], 
and enhanced pixel-based phenological feature composite 
(Eppf) method [9], where both chose one or more RS 
vegetation indices for different phenological periods (e.g., 
transplanting, tillering), achieving overall higher accuracies 
than many other un-phenological approaches. However, 
these existing methods used only a single optical sensor 
(MODIS or Sentinel-2), and the Eppf method had to 
combine three years of data (2017-2019) to save enough 
sampling images for phenological features, thus limiting 
their capacity for annual monitoring and yield estimation. 
Meanwhile, the unique capability of Synthetic Aperture 
Radar (SAR) to overcome atmospheric interferences and 
demonstrate heightened sensitivity to the structure of 
vegetation and land surface, offering a marked edge over 
techniques reliant on optical data on various applications 
[10]. This study is fundamentally designed to integrate two 
distinct types of remote sensing data: optical data, drawn 
from the Sentinel-2 and Landsat-8 satellites, and SAR data, 
sourced from the Sentinel-1 satellite. The objective of this 
integration is to maximize the potential of the phenological 
remote sensing approach for annual rice mapping, 
particularly in SRV region, where accurate and timely rice 
mapping can significantly contribute to resource 
management and yield optimization. 
 

2. METHODOLOGY 
 
As shown in the workflow chart in Figure 1, this study can 
be divided into three stages: (1) Data preprocessing, (2) 
Phenology analysis, and (3) Rice mapping. For the Data 
preprocessing stage, the Sentinel-2 and Landsat-8 imagery 
are processed by filtering images with cloud percentage > 
70%. Sentinel-1 imagery is also processed to filter the 
speckle noise, which is considered strictly impact mapping 
accuracy [11]. Besides, the Landsat-8 sensor is adjusted to 
be harmonized with Sentinel-2 using parameters in [12] for 
data merging. Time series of optical indices (EVI2, BSI, 
LSWI, NDVI, and PSRI) and Sentinel-1 specialized RVI 
index are produced (the rationale of indices choice can be 
found in [8], [9], [13]). For the Phenology analysis stage, the 
CCSV method employs a growth curve from the indices and 
ratio of change (RCLE) for later use. For the Eppf method, 



the indices are composed for each predefined period (Bare 
soil, Transplanting, Growth, and Maturity) [9] in 2018 with 
median reducer. GCVI and EVI are additionally introduced. 
For the Rice mapping stage, CCSV identifies rice with 
RCLE and LSWI with the threshold values. For Eppf, an 
SVM classifier is used to obtain a rice distribution map. The 
maps will be evaluated with the 2018 survey data [8]. All 
these three stages are deployed fully on Google Earth 
Engine to achieve high efficiency, also showing great 
potential for further utilization anywhere worldwide. 

The performance of the model was evaluated by visual 
comparison with the California statewide crop mapping data  
(https://data.cnra.ca.gov/dataset/statewide-crop-mapping) 
[14], and quantitatively (~ 400000 sampling observations 
over the study area) using a range of accuracy assessment 
metrics, including overall accuracy, Kappa coefficient, 
sensitivity, and specificity, and the results were compared 
with ground truth survey data. Overall accuracy provides a 
holistic view of the model's performance by measuring the 
proportion of correctly predicted observations to the total 
observations. The Kappa coefficient, on the other hand, 
offers an assessment of the model's accuracy while 
accounting for the accuracy obtained by chance, thereby 
presenting a more robust measure of reliability. Sensitivity 
(also known as true positive rate) quantifies the model's 
ability to correctly identify positive instances, in this case, 
rice fields, while specificity (true negative rate) gauges the 
model's proficiency in correctly identifying negative 

instances, namely non-rice fields. Together, these metrics 
provide a comprehensive view of the model's performance, 
allowing us to ascertain its effectiveness in differentiating 
rice fields from other types of land cover as compared to the 
survey data. 

 
3. RESULTS AND DISCUSSION 

 
Figure 2 presents a comparative view of the mapping 
outcomes from different methodologies, namely, the CCSV 
(Fig. 2a), the Eppf utilizing only Sentinel-2 (Fig. 2b), the 
Eppf employing harmonized Sentinel-2 and Landsat-8 data 
(Fig. 2c), and the Eppf integrating Sentinel-1/2 and Landsat-
8 data (Fig. 2d). These results are juxtaposed against the 
2018 rice survey data [14] for a comprehensive evaluation 
(Fig. 2e).  
The CCSV result delineates a less precise mapping 
compared to all Eppf outcomes, with extraneous pixeled 
regions being erroneously identified as rice fields, as 
denoted by the black squared regions in Fig. 2a. This 
discrepancy could be attributed to the inherent design of the 
original CCSV, which was tailored for MODIS daily data, 
whereas the Sentinel-2 data utilized in this study has a 
longer revisit time of at least ten days. Nevertheless, it's 
worth noting that the CCSV still manages to capture a 
generally accurate depiction of rice distribution, negating 
the need for sampling that is typically necessitated in the 
Eppf approach. 

Fig. 1 Workflow chart of the study 

https://data.cnra.ca.gov/dataset/statewide-crop-mapping


When comparing Fig. 2b and Fig. 2c, no significant 
disparities can be discerned in relation to the distribution of 
rice fields, with the red circled region being inaccurately 
marked as rice in both instances. This observation suggests 
that the incorporation of additional images from Landsat-8 
does not markedly alter the median indices values for each 
period, resulting in similar SVM classifiers as employed in 
Fig. 2b, which may be due to the simplified parameter based 
fusion method applied here [12]. Thus, the incorporation of 
Landsat-8 imagery seems to have a minimal effect on the 
resultant classification of rice fields in this case. 
Furthermore, a noticeable enhancement in the mapping 
results is observed with the inclusion of the RVI index 
derived from Sentinel-1 SAR images (Fig. 2d). This 
demonstrates the efficacy of integrating SAR data with 
optical imagery for rice field mapping. Specifically, the area 
demarcated by the red circle, which was previously 
mismarked in the optical-only imagery, is now correctly 

identified as having no rice coverage, aligning more 
accurately with the survey map.  
Table 1 shows similar results as shown in Figure 2, that the 
model with Sentinel-1 SAR contribution shows higher 
overall accuracy and Kappa values. This would suggest that 
the model is highly reliable in correctly identifying and 
mapping rice fields, and that its accuracy is not simply due 
to chance. However, for the same rice mapping model 
presented in Table 1, relatively low sensitivity but high 
specificity values would mean that the model sometimes 
fails to correctly identify areas that are actually rice fields, 
but it is very good at correctly identifying areas that are not 
rice fields. This could result in underestimation of the total 
rice cultivation area due to the results presented are pixel-
based according to satellite imagery. Transitioning from 
pixel-based to object-based results via a further 
segmentation process can enhance the accuracy of crop 
mapping, particularly in addressing underestimation issues. 
This underestimation often arises from mixed pixels, which 

Fig. 2 Rice distribution map from a) CCVS, b-d) Eppf methods, and e) Survey data 



contain both rice and non-rice elements, being misclassified 
as non-rice. Aggregating these mixed pixels into larger areas 
allows for better recognition of rice presence, reducing 
underestimation. Ultimately, object-based results offer a 
more realistic representation of agricultural landscapes, 
underscoring the value of this segmentation process in crop 
mapping models. 

Table 1 Accuracy assessment of different models 

 Accuracy Kappa Sensitivity Specificity 
CCVS 0.86 0.60 0.54 0.98 
Eppf_S2 0.93 0.82 0.85 0.96 
Eppf_S2_LS8 0.93 0.82 0.86 0.96 
Eppf_S1/2_LS8 0.94 0.86 0.84 0.98 
 
The study shows the fusion of optical and SAR images can 
improve the rice mapping accuracy with the phenological 
feature in California rice fields, which open ups new 
avenues for agricultural monitoring and resource 
management using advanced remote sensing methods, 
underscoring the potential for further improvements and 
applications. Future work will delve into refining the 
proposed methodology and exploring its applicability to 
other crop types by: 1) using customized Harmonized 
Landsat Sentinel-2 (HLS) product for optical imagery 
fusion; 2) improving the sampling process with the 
automatic and layered approach [15]; 3) optimizing and 
localizing the phenology periods for California rice growth; 
4) implementing image segmentation to convert the pixel-
based to object-based maps; 5) using other advanced 
machine learning algorithms (e.g., deep learning).  
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