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ON LATTICES OF z-IDEALS OF FUNCTION RINGS

Themba Dube — Oghenetega Ighedo

(Communicated by Constantin Tsinakis )

ABSTRACT. An ideal I of a ring A is a z-ideal if whenever a, b ∈ A belong to the same maximal

ideals of A and a ∈ I, then b ∈ I as well. On the other hand, an ideal J of A is a d-ideal if Ann2(a) ⊆ J

for every a ∈ J . It is known that the lattices Z(L) and D(L) of the ring RL of continuous real-valued
functions on a frame L, consisting of z-ideals and d-ideals of RL, respectively, are coherent frames.

In this paper we characterize, in terms of the frame-theoretic properties of L (and, in some cases, the

algebraic properties of the ring RL), those L for which Z(L) and D(L) satisfy the various regularity
conditions on algebraic frames introduced by Mart́ınez and Zenk [20]. Every frame homomorphism

h : L → M induces a coherent map Z(h) : Z(L) → Z(M). Conditions are given of when this map is

closed, or weakly closed in the sense Mart́ınez [19]. The case of openness of this map was discussed
in [11]. We also prove that, as in the case of the ring C(X), the sum of two z-ideals of RL is a z-ideal.

©2018
Mathematical Institute

Slovak Academy of Sciences

1. Introduction

In [20] and [22], Mart́ınez and Zenk show that, for any Tychonoff space X, the lattices Cz(X)
and Cd(X) of z-ideals and d-ideals, respectively, of the ring C(X) are coherent frames. In fact,
they are more than that; they are actually normal coherent Yosida frames. This they do by viewing
C(X) as a lattice-ordered group, and realizing the aforementioned lattices as some quotients of the
frame of convex `-ideals of C(X).

In proving similar results (in [10]) for the lattices Z(L) and D(L) of z-ideals and d-ideals of
the ring RL of continuous real-valued functions on a frame L, we took a slightly different route.
We worked with the frame Rad(RL) of radical ideals of RL, and realized Z(L) as a quotient of
Rad(RL), and then D(L) as a quotient of Z(L).

In their study of regularity of algebraic frames, Mart́ınez and Zenk [20] introduce four properties
that they designate as Reg(i), for i = 1, 2, 3, 4, which an algebraic frame can have. They show that
Reg(2) and Reg(3) are equivalent. One of our aims in this paper is to characterize, for each of
these properties, those L for which Z(L) and D(L) satisfy a given one. In fact, regarding Reg(1),
we showed in [10] that Z(L) satisfies Reg(1) precisely when L is a P -frame. Regarding Reg(2),
we showed in [9] that Z(L) satisfies Reg(2) precisely when L is basically disconnected, and D(L)
satisfies Reg(2) precisely when L is cozero complemented.

Thus, we need to investigate Reg(4) for Z(L), and Reg(1) and Reg(4) for D(L). This we do
in Section 3. We show that Z(L) satisfies Reg(4) if and only if L is an F -frame (Theorem 3.1).
Regarding D(L), it turns out that this algebraic frame satisfies Reg(1) if and only if it satisfies

2010 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n: Primary 06D22, 06D35; Secondary 54E17, 13A15, 18A40.

K e y w o r d s: frame, algebraic frame, z-ideal, d-ideal, closed map, F -space, F -frame.
This work was supported by the National Research Foundation of South Africa, Grant No. 93514.
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THEMBA DUBE — OGHENETEGA IGHEDO

Reg(2); that is, precisely when L is cozero complemented (Proposition 3.2). What about Reg(4)
for D(L)?

Call an f -ring A feebly complemented if whenever ab = 0 in A, there exist positive c, d ∈ A such
that ac = 0 = bd, and c + d is a non-divisor of zero. We say L is feebly cozero complemented in
case the f -ring RL is feebly complemented. There is a frame-theoretic equivalent condition (which
we shall, in fact, adopt as the definition) from which it will be apparent why the moniker we give
these frames is appropriate. We show in Theorem 3.3 that D(L) satisfies Reg(4) if and only if L is
feebly cozero complemented.

In his study of the saturation nucleus as a coreflection, Mart́ınez [19] introduces weakly closed
maps, which generalize (and in some cases coincide with) closed maps of frames. In Section 4 we
examine when the map Z(h) : Z(L)→ Z(M) is closed, and when it is weakly closed. If L is normal,
there is a characterization (Theorem 4.1) of when Z(h) is closed in terms of a “closed-like” property
of the map h.

Appended at the end of the paper is a proof that the sum of two z-ideals of RL is a z-ideal.
This, of course, extends the well-known C(X) result (see [14]), and answers a question that was
asked by the second-named author in her Ph.D. thesis [15].

2. Preliminaries

2.1. Frames and their homomorphisms

Our general references for frames are [17] and [24], and our notation is standard. As usual,
we denote by βL the Stone-Čech compactification of a completely regular frame L, and we write
jL : βL → L for the coreflection map from compact completely regular frames to L. The right
adjoint of jL is denoted by rL. Recall that, for any a ∈ L, rL(a) = {x ∈ L | x ≺≺ a}. We write
CozL for the set of cozero elements of L. For any c, d ∈ CozL, rL(c ∨ d) = rL(c) ∨ rL(d). If L is
normal, then rL(a ∨ b) = rL(a) ∨ rL(b) for all a, b ∈ L. If a ∨ b = 1 in a normal completely regular
frame L, then there exist c, d ∈ CozL such that c ≤ a, d ≤ b, and c ∨ d = 1 (see, for instance, [2:
Corollary 8.3.2]).

We denote by λL the Lindelöf coreflection of L, and we write λL : λL → L for the coreflection
map (see [18] for details). A frame homomorphism is coz-surjective if its restriction to cozero parts
is surjective, and it is coz-faithful if its restriction to cozero parts is one-one. By υL we mean the
realcompact coreflection of L (see [6] for details). For our purposes it suffices to know that there is
a coz-surjective and coz-faithful map `L : λL→ υL realizing λL as the Lindelöf coreflection of υL.
We shall write λh : λL→ λM for the image of h : L→M under the functor λ, and υh : υL→ υM
for its image under the functor υ. Recall that Coz(λL) = {[[c]] | c ∈ CozL}, where [[c]] denotes the
principal ideal in CozL generated by c.

By a point of a frame L we mean a meet-irreducible element. We denote by Pt(L) the set of
points of L. We shall view the spectrum, ΣL, of any frame L as the space of points of L, so that
the open sets of ΣL are the sets Σa = {p ∈ Pt(L) | a � p}, for a ∈ L.

2.2. The ring RL and some of its ideals

Our approach to the ring RL follows that of [2]. Thus, its elements are frame homomorphisms
OR→ L. We could have taken the approach in [3], in which case members of RL would be frame
homomorphisms L(R) → L, where L(R) denotes the frame of reals, but the former approach is
more convenient for our purposes, as will be apparent in Section 5.

In the abstract we recalled the algebraic definitions of z-ideal and d-ideal. In RL there are
purely frame-theoretic characterizations. Namely, an ideal Q of RL is a z-ideal if and only if, for
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ON z-IDEALS AND d-IDEALS OF RL

any α, β ∈ RL, cozα ≤ cozβ and β ∈ Q imply α ∈ Q. The inequality may be replaced with an
equality. On the other hand, Q is a d-ideal if and only if, for any α, β ∈ RL, cozα ≤ (cozβ)∗∗ and
β ∈ Q imply α ∈ Q. For any a ∈ L, the ideal Ma is defined by

Ma = {α ∈ RL | cozα ≤ a}.
Clearly, Ma is a z-ideal. Recall that L is a C∗-quotient of βL, which is to say for every bounded
h ∈ RL, there is a (necessarily unique) hβ ∈ R(βL) such that the triangle below commutes.

OR

hβ

~~

h

  
βL

jL // L

2.3. Algebraic frames

We will denote algebraic frames by A,B, . . . instead of L,M, . . . , which we will reserve for
completely regular frames. We write k(A) for the set of compact elements of A. If k(A) generates
L, in the sense that every element of A is the join of compact elements below it, then A is said
to be algebraic. An algebraic frame A is said to have the finite intersection property (FIP) if
a ∧ b ∈ k(A) for all a, b ∈ k(A). A compact algebraic frame with FIP is called coherent, as is a
frame homomorphism φ : A→ B between coherent frames that takes compact elements to compact
elements.

When we are dealing with coherent frames we shall denote the pseudocomplement of an element
a by a⊥, and refer to a⊥ as the polar of a. The d-nucleus (see [20]) on an algebraic frame A with
FIP is defined by

d(a) =
∨
{c⊥⊥ | c ∈ k(A), c ≤ a}.

We write dA for the frame Fix(d), and denote by dA : A→ dA the dense onto frame homomorphism
it induces. It is shown in [20] that dA(c) = c⊥⊥ for any c ∈ k(A), and that k(dA) = {c⊥⊥ | c ∈ k(A)}.
Also, x⊥ ∈ dA for any x ∈ A, an upshot of which is that the polar of any a ∈ dA, considered in
dA, is precisely the polar a⊥ of a as an element of A. Elements of dA are called d-elements of A.

2.4. Frames of d- and z-ideals

Throughout this subsection L and M stand for completely regular frames. We summarize some
results from [9], [10] and [11] that we shall need. The lattice of z-ideals of RL will be denoted by
Z(L), and the lattice of d-ideals of RL by D(L). Both these lattices are normal coherent frames
(and more). Their compact elements are given by

k(Z(L)) = {Mc | c ∈ CozL} and k(D(L)) = {Mc∗∗ | c ∈ CozL}.
It is shown in Proposition 4.1 of [9] that D(L) = d(Z(L)), where d denotes the d-nucleus on Z(L).
We shall frequently denote the bottom of Z(L) and D(L) by ⊥, and the top by >. A frame
homomorphism h : L→M induces a coherent map Z(h) : Z(L)→ Z(M) such that the square

Z(L)

σL

��

Z(h) // Z(M)

σM

��
L

h // M
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THEMBA DUBE — OGHENETEGA IGHEDO

commutes. Explicitly, for any Q ∈ Z(L), σL(Q) =
∨
{cozα | α ∈ Q}, and

Z(h)(Q) =
∨

Z(M)

{Mh(cozα) | α ∈ Q} =
⋃
{Mh(cozα) | α ∈ Q}.

In particular, for any c ∈ CozL, Z(h)(Mc) = Mh(c). For any b ∈M , Z(h)∗(b) = Mh∗(b). The map
σL is a dense onto frame homomorphism. In fact, for any a ∈ L, σL(Ma) = a. Finally, it is shown
in [10: Lemma 3.6] that if c, d ∈ CozL, then Mc ∨Md = Mc∨d.

3. Concerning the Reg-properties

Here are the regularity properties of Mart́ınez and Zenk [20] that an algebraic frame A can
have, listed from strongest to weakest. When we say an element a ∈ A is regular we mean that
a =

∨
{x ∈ A | x ≺ a}.

Reg(1) A is regular.

Reg(2) Each d-element of A is regular.

Reg(3) Each polar of A is regular.

Reg(4) Each c⊥, with c compact, is regular.

As already mentioned, Reg(2) and Reg(3) are equivalent. Also, Reg(4) is equivalent to the property
that if c, d ∈ k(A) are such that c ∧ d = 0, then c⊥ ∨ d⊥ = 1.

Recall that a completely regular frame L is called a P -frame if c ∨ c∗ = 1 for every c ∈ CozL.
If c∗ ∨ c∗∗ = 1 for every c ∈ CozL, then L is said to be basically disconnected. As mentioned in
the Introduction, we showed in [10: Proposition 3.10] that

Z(L) satisfies Reg(1) if and only if L is a P -frame,

and in [9: Proposition 5.4] we showed that

Z(L) satisfies Reg(2) if and only if L is basically disconnected.

We shall now characterize when Z(L) satisfies Reg(4).

Recall that L is an F -frame if the open quotient of each cozero element of L is a C∗-quotient. A
characterization we shall use (Proposition 8.4.10 in [2]) is that L is an F -frame if and only if for all
a, b ∈ CozL such that a ∧ b = 0, there exist c, d ∈ CozL such that c ∨ d = 1 and a ∧ c = 0 = b ∧ d.

Observe that, for any a, b ∈ CozL, a ∧ b = 0 if and only if Ma ∧Mb = ⊥ in Z(L). Also,
(Ma)⊥ = Ma∗ .

Theorem 3.1. For any completely regular frame L, Z(L) satisfies Reg(4) if and only if L is an
F -frame.

P r o o f. Assume Z(L) satisfies Reg(4). Let a∧b = 0 in CozL. Then Ma∧Mb = ⊥ in Z(L), so that,
by Reg(4), (Ma)⊥ ∨ (Mb)

⊥ = >, that is, Ma∗ ∨Mb∗ = >. Using the fact that Z(L) is an algebraic
frame whose compact elements are the ideals Mc, for c ∈ CozL, the equality Ma∗ ∨Mb∗ = >
implies ∨

{Ms | s ∈ CozL, s ≤ a∗} ∨
∨
{Mt | t ∈ CozL, t ≤ b∗} = >,

which, by compactness of the frame Z(L), implies that there exist c, d ∈ CozL such that c ≤ a∗,
d ≤ b∗, and Mc ∨Md = >. Applying the homomorphism σL : Z(L)→ L to this last equality gives
c ∨ d = 1. But now the comparisons c ≤ a∗ and d ≤ b∗ imply a ∧ c = 0 = b ∧ d. Therefore L is an
F -frame.
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ON z-IDEALS AND d-IDEALS OF RL

Conversely, assume L is an F -frame. Consider any a, b ∈ CozL with Ma ∧Mb = ⊥. Then
a ∧ b = 0, and so, in light of L being an F -frame, there exist c, d ∈ CozL such that c ∨ d = 1
and a ∧ c = 0 = b ∧ d. The latter implies c ≤ a∗ and d ≤ b∗, so that Mc ≤ (Ma)⊥ and
Md ≤ (Mb)

⊥. Since c and d are cozero elements, the equality c ∨ d = 1 implies Mc ∨Md = >,
whence (Ma)⊥ ∨ (Mb)

⊥ = >. Therefore Z(L) satisfies Reg(4). �

Corollary 3.1.1. Cz(X) satisfies Reg(4) if and only if X is an F -space.

We now turn to D(L). In Proposition 5.5 of [9] it is shown that D(L) satisfies Reg(2) if and only
if L is cozero complemented. Proposition 3.1 in [13] states that, for a completely regular frame L,
every prime d-ideal of RL is minimal prime if and only if L is cozero complemented. Applying
Proposition 5.2 in [20] we see that the frame D(L) is regular precisely when every prime d-ideal of
RL is minimal prime. Putting all these together we can then state the following result.

Proposition 3.2. The following conditions are equivalent for a completely regular frame L.

(1) D(L) satisfies Reg(1).

(2) D(L) satisfies Reg(2).

(3) D(L) satisfies Reg(3).

(4) L is cozero complemented.

We shall now give a necessary and sufficient condition for D(L) to satisfy Reg(4). We will call
frames with the property in question “feebly cozero complemented”. Before we define these frames
let us explain our choice of terminology. Recall that a ring R (throughout, by “ring” we mean a
commutative ring with identity) is called complemented if for every a ∈ R there exists b ∈ R such
that ab = 0 and a+ b is a non-divisor of zero. A Tychonoff space X is called cozero complemented
if for every cozero-set U of X there is a cozero-set V such that U ∩ V = ∅ and U ∪ V is dense.
Then X is cozero complemented precisely when C(X) is complemented.

In [16] the authors call a ring R weakly complemented if whenever ab = 0 in R there exist finitely
generated ideals I and J of R such that a ∈ I, b ∈ J , IJ = 0, and I + J contains a non-divisor
of zero. In [23] McGovern calls a Tychonoff space X weakly cozero complemented if for each pair
of disjoint cozero sets C1, C2 there exists a pair of disjoint cozero-sets T1, T2 such that Ci ⊆ Ti
for i = 1, 2, and T1 ∪ T2 is dense in X. As stated in Theorem 5.4 of [16], X is weakly cozero
complemented if and only if C(X) is weakly complemented.

In [8: Theorem 2.7], Bhattacharjee and McGovern prove that the total ring of quotients, q(A),
of a ring A is a PF-ring (which is to say every principal ideal of q(A) is a flat q(A)-module) if and
only if for every a, b ∈ A with ab = 0, there exists x, y ∈ A such that ay = 0 = bx while x + y
is a non-divisor of zero. We tweak this condition slightly to formulate the following definition in
f -rings. When we say an element a of an f -ring is positive, we mean that a ≥ 0.

Definition 3.1. An f -ring R is feebly complemented if whenever ab = 0 in R there exist positive
c, d ∈ R such that ac = 0 = bd and c+ d is a non-divisor of zero.

The frame property we seek will turn out to be such that, when applied to spaces, X has the
topological counterpart precisely when C(X) is feebly complemented. It is on the basis of this that
we formulate the following definition.

Definition 3.2. A completely regular frame L is feebly cozero complemented if for any a, b ∈ CozL
with a ∧ b = 0, there exist c, d ∈ CozL such that a ∧ c = 0 = b ∧ d and c ∨ d is dense. We use the
same term for Tychonoff spaces defined similarly.

Remark 1. The condition in this definition is a “cozero version” of the condition Bhattacharjee [7:
Theorem 4.9] uses to characterize when the inverse topology on the set of minimal prime elements
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THEMBA DUBE — OGHENETEGA IGHEDO

of an algebraic frame with the FIP is Hausdorff. It is also a formal weakening (extended to frames)
of condition (c) in Theorem 3.1 of [8]. We thank the referee for drawing our attention to this.

Recall that every cozero element in L is a cozero of some positive member of RL, and that any
h ∈ RL is a non-divisor of zero precisely when coz h is dense. For use in the upcoming proof we
write dL for the frame homomorphism Z(L) → D(L) induced by the d-nucleus on Z(L). Recall
that if s ∈ CozL, then dL(Ms) = (Ms)

⊥⊥ = Ms∗∗ . We write t for the join in D(L).

Theorem 3.3. The following conditions are equivalent for a completely regular frame L.

(1) D(L) satisfies Reg(4).

(2) L is feebly cozero complemented.

(3) RL is a feebly complemented f -ring.

P r o o f. (1) ⇒ (2): Let a ∧ b = 0 in CozL. Then Ma∗∗ and Mb∗∗ are compact elements of D(L)
with Ma∗∗ ∧Mb∗∗ = ⊥ since a ∧ b = 0 implies a∗∗ ∧ b∗∗ = 0. Since D(L) satisfies Reg(4),

(Ma∗∗)⊥ t (Mb∗∗)⊥ = Ma∗ tMb∗ = >,
so that, by compactness of the algebraic frame D(L), we can find c, d ∈ CozL such that Mc∗∗ ≤
Ma∗ , Md∗∗ ≤ Mb∗ , and Mc∗∗ tMd∗∗ = >. Now, as shown in [11: Lemma 3.2], Mc∗∗ tMd∗∗ =
M(c∨d)∗∗ . Consequently, M(c∨d)∗∗ = M1, which implies (c ∨ d)∗∗ = 1, that is, c ∨ d is dense. The
inequalities Mc∗∗ ≤Ma∗ and Md∗∗ ≤Mb∗ imply c∗∗ ≤ a∗ and d∗∗ ≤ b∗, whence we deduce that
a ∧ c = 0 = b ∧ d. Therefore L is feebly cozero complemented.

(2) ⇒ (1): Let S and T be disjoint compact elements of D(L). Pick a, b ∈ CozL such that
S = Ma∗∗ and T = Mb∗∗ . Then Ma∗∗∧Mb∗∗ = ⊥, which implies a∗∗∧b∗∗ = 0, and hence a∧b = 0.
Since L is feebly cozero complemented, there exist c, d ∈ CozL such that a ∧ c = 0 = b ∧ d and
c ∨ d is dense. The equalities a ∧ c = 0 = b ∧ d imply c ≤ a∗ and d ≤ b∗. Now

(Ma∗∗)⊥ t (Mb∗∗)⊥ = Ma∗ tMb∗ = dL
(
Ma∗ ∨Mb∗

)
≥ dL

(
Mc ∨Md

)
= dL

(
Mc∨d

)
since c, d ∈ CozL

= (Mc∨d)
⊥⊥ = M(c∨d)∗∗ = >,

the last step since (c ∨ d)∗∗ = 1. Therefore D(L) satisfies Reg(4).

(2)⇒ (3): Let g, h ∈ RL be such that gh = 0. Then coz g ∧ cozh = 0. Since L is feebly cozero
complemented, there exist positive k, l ∈ RL such that

coz g ∧ coz k = 0 = cozh ∧ coz l and coz k ∨ coz l is dense.

The latter implies coz(k + l) is dense, and hence k + l is a non-divisor of zero. Thus, RL is feebly
complemented because gk = 0 = hl.

(3)⇒ (2): This is proved similarly to the foregoing implication. �

Corollary 3.3.1. For any Tychonoff space X, Cd(X) satisfies Reg(4) if and only if X is feebly
cozero complemented if and only if C(X) is a feebly complemented f -ring.

Now that we have had to define feebly cozero complemented frames, we may as well indicate how
they are related to other frames of a similar kind. Adapting McGovern’s definition from spaces,
we say a frame L is weakly cozero complemented if it satisfies the following property:

(W-frm) For any a, b ∈ CozL with a ∧ b = 0, there exist c, d ∈ CozL such that a ≤ c, b ≤ d,
c ∧ d = 0, and c ∨ d is dense.

Notice that in this foregoing property a ∧ d = 0 = b ∧ d.

276

Brought to you by | University of South Africa
Authenticated

Download Date | 4/2/18 7:00 AM



ON z-IDEALS AND d-IDEALS OF RL

Observation 1. Any F -frame is feebly cozero complemented, and every weakly cozero comple-
mented frame is feebly cozero complemented. Note though that OR is a feebly cozero complemented
frame that is not an F -frame. In fact, any frame L in which a∗ ∈ CozL for every a ∈ L (these
are called Oz-frames) is feebly cozero complemented, however an Oz-frame is an F -frame precisely
when it is extremally disconnected (see [4: 4.1]).

In the proof of the upcoming result we will use the fact that a dense onto frame homomorphism
commutes with pseudocomplements, and hence it preserves and reflects the density of elements.

Proposition 3.4. The following conditions are equivalent for a completely regular frame L.

(1) L is feebly cozero complemented.

(2) βL is feebly cozero complemented.

(3) λL is feebly cozero complemented.

(4) υL is feebly cozero complemented.

P r o o f. To prove all equivalences it suffices to show that if h : L→M is a dense coz-onto homo-
morphism, then L is feebly cozero complemented if and only if M is feebly cozero complemented.
Assume L is feebly cozero complemented. Let u∧ v = 0 in CozM . Since h is coz-onto, there exist
a, b ∈ CozL such that h(a) = u and h(b) = v. Since h is dense, a ∧ b = 0. Since L is feebly cozero
complemented, there exist c, d ∈ CozL such that c ∨ d is dense, and a ∧ c = 0 = b ∧ d. Then h(c)
and h(d) are cozero elements of M such that h(c) ∨ h(d) is dense, and u ∧ h(c) = 0 = v ∧ h(d).
Therefore M is feebly cozero complemented. A similar argument shows the converse. �

4. When induced maps are closed

In [11] we showed that for certain types of morphisms h : L→M in CRFrm, the induced coherent
map Z(h) : Z(L)→ Z(M) is open if and only if h is open. Here we shall consider a similar situation
for closed maps and their weaker variants. Recall that a frame homomorphism h : L→M is closed
if for any a ∈ L and z ∈M ,

h∗(h(a) ∨ z) = a ∨ h∗(z).

Equivalently, h is closed in case, for any a, b ∈ L and z ∈M ,

h(a) ≤ h(b) ∨ z =⇒ a ≤ b ∨ h∗(z).

Closed frame maps generalize closed continuous functions. In [19], Mart́ınez weakens the concept
of closed frame maps by defining a homomorphism h : L→M to be weakly closed in case, for any
a ∈ L and z ∈M ,

h(a) ∨ z = 1 =⇒ a ∨ h∗(z) = 1.

We aim to examine which morphisms h : L→M in CRFrm induce closed or weakly closed coherent
maps Z(h) : Z(L) → Z(M). We start with lemmas which show that when dealing with coherent
frames, to test closedness or weak closedness it suffices to restrict to compact elements.

Lemma 4.1. Let φ : A→ B be a coherent map between algebraic frames.

(a) φ is closed if and only if for any c, d ∈ k(A) and u ∈ k(B),

φ(c) ≤ φ(d) ∨ u =⇒ c ≤ d ∨ φ∗(u).

(b) φ is weakly closed if and only if for any c ∈ k(A) and u ∈ k(B),

φ(c) ∨ u = 1 =⇒ c ∨ φ∗(u) = 1.
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P r o o f. (a) The condition is obviously necessary. To show that it is sufficient, consider any a, b ∈ A
and z ∈ B such that φ(a) ≤ φ(b) ∨ z. Let c be a compact element in A below a. Then

φ(c) ≤ φ(b) ∨ z =
∨
{φ(t) | t ∈ k(A), t ≤ b} ∨

∨
{v ∈ k(B) | v ≤ z}.

Since φ(c) is compact, there exist d ∈ k(A) and u ∈ k(B) such that d ≤ b, u ≤ z, and φ(c) ≤ φ(d)∨u.
Then, by the stated condition, c ≤ d ∨ φ∗(u), which implies c ≤ b ∨ φ∗(z). Since a is the join of
compact elements below it, it follows that a ≤ b ∨ φ∗(z). Therefore φ is closed.

(b) This is proved similarly, except that here use is made of the compactness of B. �

We know that if c, d ∈ CozL, then Mc∨d = Mc∨Md. In the lemma that follows, which we need
for use below, we remove the restriction that c and d be cozero elements, but with the penalty that
we must impose normality. Our proof piggybacks on C(X). Let us expatiate.

Let X be a Tychonoff space. With every closed set A ⊆ X is associated an ideal MA of C(X)
defined by

MA = {f ∈ C(X) | A ⊆ Z(f)}.

In [1: Lemma 2.8], the authors prove that if X is normal, then for any closed sets A,B ⊆ X,
MA∩B = MA + MB . We will use this result in our proof. Let us remind the reader that if L is a
normal frame, then rL(a ∨ b) = rL(a) ∨ rL(b) for every a, b ∈ L.

Lemma 4.2. If L is a normal frame, then Ma ∨Mb = Ma∨b, for all a, b ∈ L.

P r o o f. Consider any normal Tychonoff space X, and let φ : C(X)→ R(OX) be the ring isomor-
phism that sends f ∈ C(X) to the frame homomorphism Of . It is clear that for any U ∈ OX,
the image of the ideal MXrU of C(X) under φ is MU . Consequently, if K is any normal spatial
frame, and s, t ∈ K, then Ms∨t = Ms + Mt. But Ms + Mt is a z-ideal since RK is isomorphic
to some C(X) (see also the Appendix), so Ms + Mt is the join of the set {Ms,Mt} in the frame
Z(RK). That is,

Ms ∨Mt = Ms∨t. (†)

Now consider the map Z(jL) : Z(βL) → Z(L) induced by jL : βL → L. We claim that
Z(jL)(MrL(w)) = Mw, for any w ∈ L. Since jLrL(w) = w, it is immediate that Z(jL)(MrL(w)) ≤
Mw. Let c be a cozero element below w. Pick a bounded h ∈ RL such that cozh = w. Then, for
the function hβ ∈ R(βL) with jL · hβ = h, we have

cozh = coz(jL · hβ) = jL(cozhβ),

whence cozhβ ≤ rL(cozh). Now,

Mw =
∨
Z(L)

{Mcoz k | k ∈ R∗L and coz k ≤ w}

=
∨
Z(L)

{MjL(coz kβ) | k ∈ R
∗L and coz k ≤ w}

=
∨
Z(L)

{Z(jL)(Mcoz kβ ) | k ∈ R∗L and coz k ≤ w}

= Z(jL)
( ∨
Z(βL)

{Mcoz kβ | k ∈ R∗L and coz k ≤ w}
)

≤ Z(jL)(MrL(w)),
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the last step since coz kβ ≤ rL(coz k) ≤ rL(w) for each k involved in the previous join. This
establishes the claimed equality. Thus,

Ma ∨Mb = Z(jL)(MrL(a)) ∨ Z(jL)(MrL(b))

= Z(jL)
(
MrL(a) ∨MrL(b)

)
= Z(jL)

(
MrL(a)∨rL(b)

)
by (†) since βL is normal and spatial

= Z(jL)
(
MrL(a∨b)

)
since L is normal

= Ma∨b,

which completes the proof. �

Let us say a morphism h : L → M in CRFrm is coz-closed in case, for any c, d ∈ CozL and
u ∈ CozM , the inequality h(c) ≤ h(d)∨ u implies c ≤ d∨ h∗(u). This is of course the definition of
closedness restricted to cozero elements. In fact, if M is Lindelöf, then h : L→M is closed if and
only if it is coz-closed. To see the non-trivial implication, assume h is coz-closed, and consider any
a, b ∈ L and w ∈M such that h(a) ≤ h(b) ∨ w. Let c ≤ a be a cozero element in L. Then

h(c) ≤
∨
{h(d) | d ∈ CozL, d ≤ b} ∨

∨
{s ∈ CozM | s ≤ w}.

By [5: Corollary 4], h(c) is a Lindelöf element. So, in view of the fact that the join of countably
many cozero elements is a cozero element, there exist d ∈ CozL and s ∈ CozM such that d ≤ b,
s ≤ w, and h(c) ≤ h(d) ∨ s. By coz-closedness, c ≤ d ∨ h∗(s), which implies c ≤ b ∨ h∗(w), and
hence a ≤ b ∨ h∗(w) by complete regularity.

Lemma 4.3. Let h : L → M be a morphism in CRFrm. In Figure 1 below every quadrilateral
commutes.

Z(L)
Z(h) //

σL

��

Z(M)

σM

��

Z(λL)

Z(λL)

aa

Z(λh) //

σλL

��

Z(λM)

Z(λM )

<<

σλM

��
λL

λh //

λL

||

λM

λM

##
L

h // M

Figure 1.

P r o o f. The only quadrilateral whose commutativity is not already known is the upper trapezium
(or trapezoid, in American English). Since all the four objects and four morphisms making up the
trapezium are coherent, it suffices to chase the diagram, starting with a compact element M[[c]] in
Z(λL). Indeed, we have

Z(h)Z(λL)(M[[c]]) = Mh(c) = Z(λM )Z(λh)(M[[c]]),
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which proves the result. �

Theorem 4.1. Let h : L→M be a morphism in CRFrm. Consider the following statements:

(1) Z(h) is closed.

(2) Z(λh) is closed.

(3) Z(υh) is closed.

(4) λh is coz-closed.

(5) λh is closed.

(6) h is coz-closed.

We have the following implications: (1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4) ⇐⇒ (5) =⇒ (6). If L is
normal, then all the statements are equivalent.

P r o o f. We shall make reference to the diagram in Figure 1.

(1) ⇔ (2): It is shown in [11: Proposition 5.8] that, for any morphism g : K → N in CRFrm,
the map Z(g) : Z(K) → Z(N) is an isomorphism if and only if g is coz-faithful and coz-surjective.
Since, for any completely regular frame K, λK : λK → K is coz-faithful and coz-surjective, each of
the maps Z(λL) and Z(λM ) is an isomorphism. Now, composites of closed maps are closed maps,
and isomorphisms are closed maps, so the commutativity of the upper trapezium in Figure 1 shows
that Z(h) is closed if and only if Z(λh) is closed.

(2) ⇔ (3): This is proved similarly to the foregoing equivalence because there is commutative
square

Z(λL)

Z(`L)

��

Z(λh) // Z(λM)

Z(`M )

��
Z(υL)

Z(υh) // Z(υM)

where the downward morphisms are isomorphisms.

(2)⇒ (4): We show that, in general, for any morphism g : K → N in CRFrm, if Z(g) : Z(K)→
Z(N) is closed, then g is coz-closed. Consider any c, d ∈ CozK and u ∈ CozN such that g(c) ≤
g(d) ∨ u. Since c, d, g(c), and u are cozero elements, this implies

Z(g)(Mc) = Mg(c) ≤Mg(d)∨u = Mg(d) ∨Mu = Z(g)(Md) ∨Mu,

so that, in light of Z(g) being closed,

Mc ≤Md ∨ Z(g)∗
(
Mu

)
= Md ∨Mg∗(u).

On applying the frame homomorphism σL : Z(L)→ L, we obtain c ≤ d∨g(u), hence g is coz-closed.

(4)⇔ (5): We observed above that closedness and coz-closedness are equivalent for a morphism
in CRFrm whose codomain is Lindelöf.

(5) ⇒ (6): Let c, d be cozero elements in L, and u be a cozero element in M such that h(c) ≤
h(d) ∨ u. Then, in the lattice Coz(λM), we have

[[h(c)]] ≤ [[h(d) ∨ u]] = [[h(d)]] ∨ [[u]].

Recalling that, for any s ∈ CozL, and t ∈ CozM , (λh)([[s]]) = [[h(s)]], and (λh)∗([[t]]) = [[h∗(t)]]) –
for the latter see [12] – we have (λh)([[c]]) ≤ (λh)([[d]]) ∨ [[u]], which, by closedness of λh, implies

[[c]] ≤ [[d]] ∨ (λh)∗([[u]]) = [[d]] ∨ [[h∗(u)]].
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Applying the homomorphism λL, we obtain c ≤ d ∨ h∗(u), and therefore h is coz-closed. This
finishes the proof of the first assertion.

For the second part, it suffices to show that (6) implies (1) if L is normal. So assume that L is
normal and h is coz-closed. To show that Z(h) is closed, it is enough to test the defining condition
on compact elements (recall Lemma 4.1). Consider therefore c, d ∈ CozL and u ∈ CozM such
that Z(h)(Mc) ≤ Z(h)(Md)∨Mu. This implies Mh(c) ≤Mh(d) ∨Mu, so that h(c) ≤ h(d)∨u, and
hence c ≤ d ∨ h∗(u) by coz-closedness of h. Therefore, in view of Lemma 4.2,

Mc ≤Md∨h∗(u) = Md ∨Mh∗(u) = Md ∨ Z(h)∗(Mu),

which shows that Z(h) is closed. �

Conspicuous by its absence in the previous theorem is a statement about the closedness of the
map Z(βh) : Z(βL) → Z(βM). The reason is that this map is actually always closed, as we prove
next. Recall that any frame homomorphism with a regular domain and compact codomain is
closed.

Proposition 4.2. For any morphism h : L→M in CRFrm, Z(βh) : Z(βL)→ Z(βM) is closed.

P r o o f. Let I, J ∈ Coz(βL) and U ∈ Coz(βM) be such that

Z(βh)(MI) ≤ Z(βh)(MJ) ∨MU .

This implies M(βh)(I) ≤ M(βh)(J) ∨MU , so that (βh)(I) ≤ (βh)(J) ∨ U . Since βh is closed (as
it maps out of a regular frame into a compact one), I ≤ J ∨ (βh)∗(U). Consequently, in light of
Lemma 4.2 (which applies since βL is normal),

MI ≤MJ∨(βh)∗(U) = MJ ∨M(βh)∗(U) = MJ ∨ Z(βh)∗(MU ),

which shows that Z(βh) is closed. �

We close the section by remarking that Theorem 4.1 is valid with “closed” replaced with “weakly
closed”.

5. Appendix: Sums of z-ideals in RL

In any ring C(X), the sum of two z-ideals is a z-ideal. This is proved in [14] using properties
of the Stone-Čech compactification. In [25], Rudd proves this result without invoking the Stone-
Čech compactification. Our proof will piggyback on that of Gillman and Jerison [14]. We have
tried, without success, to find a purely frame-theoretic proof; hence our resorting to massaging the
point-sensitive one. We shall at times (for the sake of clarity) write j · k for the composite jk.

We first establish a lemma. Given a bounded function k ∈ RL, let kβ be the unique function
in R(βL) with k = jL · kβ (recall the diagram in Subsection 2.2). The map k 7→ kβ is a ring
isomorphism R∗L → R(βL). Recall from Subsection 2.1 how we regard the spectrum of a frame
M . In what follows the set-theoretic complement of Σa (for a ∈M) will be denoted by Σ′a, so that

Σ′a = {p ∈ Pt(M) | a ≤ p}.
Recall that Σkβ : ΣβL→ ΣOR is the continuous function defined by

Σkβ(I) = kβ∗ (I) = Rr {pI},

for some pI ∈ R uniquely determined by I. We now define a continuous map k̂ : ΣβL → R by

k̂(I) = pI . Write Z(k̂) for the zero-set of k̂.
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Lemma 5.1. Let k be a bounded function in RL. For any a ∈ L,

Z(k̂) ⊇ Σ′rL(a) =⇒ coz k ≤ a.

P r o o f. Let I ∈ Pt(βL) be such that rL(a) ≤ I. We aim to show that coz(kβ) ≤ I. By hypothesis,

the inequality rL(a) ≤ I implies k̂(I) = 0, which, in turn, implies kβ∗ (I) = Rr {0}. Thus,

coz(kβ) = kβ(Rr {0}) = kβ(kβ∗ (I)) ≤ I.
Since βL is spatial, so that rL(a) =

∧
{J ∈ Pt(βL) | rL(a) ≤ J}, it follows that coz(kβ) ≤ rL(a).

Consequently,

coz k = coz(jLk
β) = jL(coz(kβ)) =

∨
coz(kβ) ≤

∨
rL(a) = a,

which proves the claim. �

Proposition 5.1. The sum of two z-ideals in RL is a z-ideal.

P r o o f. Let Q1 and Q2 be z-ideals in RL. Let h ∈ RL be such that cozh ≤ coz(g1 + g2), with
gi ∈ Qi, for i = 1, 2. We must show that h ∈ Q1 + Q2. Since the function g = h

1+|h| is bounded

and coz g = cozh, we may assume, without loss of generality, that h is bounded. For brevity, write
ci = coz(gi). Since rL preserves binary joins of cozero elements, rL(cozh) ≤ rL(c1) ∨ rL(c2). Let

ĥ : ΣβL→ R be the map as described above. We define a map t : Σ′rL(c1) ∪Σ′rL(c2) → R as follows:

t(I) =

{
0 if I ∈ Σ′rL(c1),

ĥ(I) if I ∈ Σ′rL(c2).

In order that t is well defined, we need to check that if I ∈ Σ′rL(c1)∩Σ′rL(c2), then ĥ(I) = 0. Observe

that if I ∈ Σ′rL(c1) ∩ Σ′rL(c2) then rL(c1) ∨ rL(c2) ≤ I. Now,∨
hβ(Rr {0}) = jLh

β(Rr {0}) = h(Rr {0}) = cozh,

which implies

hβ(Rr {0}) ≤ rL(cozh) ≤ rL(c1) ∨ rL(c2) ≤ I,
so that R r {0} ≤ hβ∗ (I), and hence hβ∗ (I) = R r {0} since both R r {0} and hβ∗ (I) are points

in OR. Thus, Σhβ(I) = R r {0}, whence ĥ(I) = 0, as required. Therefore t is a continuous
function on the closed set Σ′rL(c1) ∪ Σ′rL(c2) of the normal space ΣβL. By Tietze’s extension

theorem, t has an extension to a continuous function t̄ : ΣβL→ R. The map t̄ is zero everywhere
where t is zero. Therefore Z(t̄) ⊇ Σ′rL(c1). Let τ : OR → βL be the frame homomorphism

τ = µ · Ot̄, where µ : OΣβL → βL is the isomorphism given by ΣJ 7→ J , for each J ∈ βL.
Since Z(t̄) ⊇ Σ′rL(c1), we have coz τ ≤ rL(c1), as a straightforward calculation shows, and so the

homomorphism jLτ : OR→ L has the property that

coz(jLτ) =
∨

coz τ ≤
∨
rL(c1) = c1 = coz(g1).

Since Q1 is a z-ideal in RL, it follows that jLτ ∈ Q1.

We now argue that h− jLτ ∈ Q2. Let us write g = jLτ . By Lemma 5.1, it suffices to show that

Σ′rL(c2) ⊆ Z
̂(h− g). We claim that if I ∈ Σ′rL(c2), then gβ∗ (I) = hβ∗ (I). Observe that

gβ∗ (I) = τ∗(I) = (Ot̄)∗µ∗(I) = (Ot̄)∗(ΣI) = (Ot̄)∗[ΣβLr {I}].
Since t̄(I) = pI , as I ∈ Σ′rL(c2), it follows that

t̄−1[Rr {pI}] = {J ∈ ΣβL | t̄(J) ∈ Rr {pI}} ⊆ ΣβLr {I},
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that is, Ot̄(hβ∗ (I)) ⊆ ΣβLr {I}, so that

hβ∗ (I) ≤ (Ot̄)∗(ΣβLr {I}) = τ∗(I) = gβ∗ (I),

and hence the claimed equality since these are both points in OR. Next, we show that (h−g)β∗ (I) =

R r {0}, which will prove that ̂(h− g)(I) = 0, as desired. Pick r ∈ R such that hβ∗ (I) = gβ∗ (I) =
Rr {r}. Then, by [2: Lemma 3.2.1],

coz(hβ − r) = hβ(Rr {r}) = hβhβ∗ (I) ≤ I.
Similarly, coz(r − kβ) ≤ I, and therefore

(h− g)β(Rr {0}) = coz((h− g)β) = coz(hβ − gβ)

= coz
(
(hβ − r) + (r − gβ)

)
≤ I ∨ I = I.

This implies R r {0} ≤ (h − g)β∗ (I), and hence equality as these are both points in OR. Thus,
̂(h− g)(I) = 0, and therefore Σ′rL(c2) ⊆ Z ̂(h− g), whence coz(h − g) ≤ c2, implying h − g ∈ Q2.

Consequently, h ∈ Q1 +Q2, which proves that Q1 +Q2 is a z-ideal. �
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