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Abstract In this paper, we study two extensions of the complex-valued Gaussian radial basis function (RBF)
kernel and discuss their connections with Fock spaces in two different settings. First, we introduce the quaternionic
Gaussian RBF kernel constructed using the theory of slice hyperholomorphic functions. Then, we consider the case
of Gaussian RBF kernels in several complex variables.

Keywords Reproducing kernel Hilbert spaces · Gaussian RBF kernel · RBF spaces quaternions · Fock space ·
Several complex variables · Segal–Bargmann transform

Mathematics Subject Classification 30G35 · 30H20 · 44A15 · 46E20

1 Introduction and preliminary results

Kernels and reproducing kernel Hilbert spaces (RKHSs) appear in different areas of mathematics such as complex
analysis, operator theory and Schur analysis. These two concepts are fundamental in machine learning (ML),
particularly in the context of kernel methods, such as support vector machines (SVMs) and principal component
analysis (PCA). In fact, kernels are used to measure the similarity between data points, allowing the construction
of nonlinear decision boundaries in SVMs and other kernel-based algorithms. For further discussions on kernels,
reproducing kernel Hilbert spaces, and their various applications in machine learning, we refer the reader to [19,
21,22] and the references therein. Some of the most popular kernels used in SVMs are the so-called Gaussian RBF
kernels which we plan to study further in this paper. In addition to that, it is important to note that kernels are used
to define coherent states in quantum mechanics, see [17]. In this section, we start by reviewing some basic notions
on kernels and RKHSs:

Definition 1.1 Let X be a non-empty set and K = R or C.
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A. De Martino, K. Diki

(i) A function k : X ×X −→ K is called a kernel onX if there exists aK-Hilbert spaceH and amap� : X −→ H
such that for every x, y ∈ X we have

k(x, y) = 〈�(y),�(x)〉H.

(ii) The Hilbert space H is called a feature space and the map � is called a feature map for the kernel k.

The feature map � and the feature space H are not unique, only the kernel k is unique. On the Euclidean space
R

d we can consider the Euclidean inner product and its associated metric, given by

〈x, y〉2,d =
d∑

�=1

x�y�, d(x, y) = ||x − y||2,d =
√√√√

d∑

�=1

|x� − y�|2,

for every x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d . Based on the above notations we give some examples of

well-known real-valued kernels:

Example 1.2 For x = (x1, . . . , xd); y = (y1, . . . , yd) ∈ R
d , we present the following kernels:

(1) Polynomial kernel: k(x, y) = (1 + 〈x, y〉2,d)m, m ≥ 1.
(2) Exponential kernel: k(x, y) = exp(〈x, y〉2,d).
(3) Radial basis function kernels: k(x, y) = ϕ(||x − y||).
(4) Gaussian RBF kernels: we will discuss this example in details in the next sections.

To each kernel function k we associate a Hilbert space which is generally called “reproducing kernel Hilbert
space”. This space can be defined as follows:

Definition 1.3 AHilbert spaceH of functions defined on an open set� is called a reproducing kernel Hilbert space
(RKHS) if the point evaluations

�w : f �−→ f (w), w ∈ �

are bounded.

Remark 1.4 LetH be an RKHS. Then, by Riesz representation theorem, there exists a uniquely determined function
K (z, w) defined on � × � satisfying:

(i) For every w ∈ �, the function

Kw : z �−→ K (z, w)

belongs toH.
(ii) Reproducing kernel property: for every f ∈ H and w ∈ �, we have

〈 f, Kw〉H = f (w).

The function K (z, w) is positive definite and is called the reproducing kernel of H.

Conversely, we have the following fundamental result:

Theorem 1.5 (Moore–Aronszajn theorem) Associated with a function K (z, w) positive definite on a set � is
uniquely determined a Hilbert space H(K ), whose elements are functions on �, and with reproducing kernel
K (z, w).

Remark 1.6 The main takeaway message from the previous discussion is the following:

Positive definite functions ←→ Kernels ←→ Reproducing kernel Hilbert spaces.

In this paper, we focus on extending the complex Gaussian RBF kernel and relate it to the Fock spaces in the
quaternionic and several complex variables settings. To this end, let us review the RBF kernel in one complex
variable which was introduced in [20] (see also [21]) as follows:
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Definition 1.7 Let γ > 0, the complex-valued Gaussian RBF kernel (in one dimension) is denoted by Kγ :
C × C −→ C and can be expressed as follows:

Kγ (z, w) = exp

(
− (z − w)2

γ 2

)
, ∀z, w ∈ C.

The associated complex Gaussian RBF space was also introduced in [20] (see also [21]) and it is given by

Definition 1.8 Let γ > 0, an entire function f : C −→ C belongs to the RBF space, denoted by HRBF
γ (C) (or

simplyHγ ) if we have

|| f ||2Hγ
:=
(

2

πγ 2

)∫

C

| f (z)|2 exp
(

(z − z)2

γ 2

)
dA(z) < ∞,

where dA(z) = dxdy is the Lebesgue measure with respect to the variable z = x + iy.

The authors of [1] developed a new approach allowing to study the complex Gaussian RBF kernel via the theory
of Fock spaces. In this paper, we present two extensions of this approach. In Sect. 2, we introduce a quaternionic
Gaussian RBF kernel and discuss its connection with the slice hyperholomorphic Fock space and quaternionic
Segal–Bargmann transform. Then, in Sect. 3, we treat the case of the Gaussian RBF kernel in several complex
variables and use the theory of Fock spaces to present a reproducing kernel property for the RBF kernel. Finally, in
Sect. 4, we summarize and present a scheme showing different possible extensions of the Gaussian RBF kernel to
various settings.

2 Gaussian RBF kernels via Fock spaces: quaternionic slice hypercomplex case

In this section,we extend some results obtained in [1] to the case of slice hyperholomorphic functions on quaternions.
In hypercomplex analysis, two theories of functions are prominent: the slice hyperholomorphic and themonogenic

one. The main difference between these two theories is that polynomials and power series with quaternionic
coefficients to the right (or to the left) are slice hyperholomorphic but they are not monogenic (or Fueter regular
in the quaternionic case). The theory of monogenic functions is defined by means of an extension of the Cauchy–
Riemann operator in R

4, see [5]. The match between the two function theories is given by the so-called Fueter
theorem, see [12,16].

Nowadays, the theory of slice hyperholomorphic functions has several applications: the quaternionic spectral
theory on the S-spectrum [7,8,10], characteristic operator functions and applications to linear system theory [3],
Schur analysis [2], new classes of fractional diffusion problems based on fractional powers of quaternionic linear
operators [6,7,9], and peculiar integral transforms [13,14].

In this paper, we will use the theory of slice hyperholomorphic functions to get our results. In the following
subsection, we review the main notions of this function theory.

2.1 Preliminaries

To make the paper self-contained, we recall the algebra of quaternions that is defined as follows:

H := {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R},
where the imaginary units satisfy the following relations:

i2 = j2 = k2 = −1 i j = − j i = k, jk = −k j = i, ki = −ik = j.

The quaternionic conjugate is defined as q̄ = q0 − iq1 − jq2 − kq3, and it satisfies the following property:

pq = q̄ p̄,
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for p, q ∈ H. The modulus of a quaternion is defined as |q| =
√

q2
0 + q2

1 + q2
2 + q2

3 . The unit sphere of imaginary
units in H is defined as

S := {q ∈ H | q2 = −1}.
We observe that for some real numbers x , y > 0 and imaginary unit I ∈ S, any quaternion q ∈ H\R can be written
as q = x + I y. For any I ∈ S we define CI = R + IR. This is isomorphic to the complex plane C. We observe
that their union give the whole quaternions:

H =
⋃

I∈S
CI .

In this section, we use the following type of functions.

Definition 2.1 A function f : H → H of the form

f (q) = f (x + I y) = α(x, y) + Iβ(x, y) (resp. f (q) = f (x + I y) = α(x, y) + β(x, y)I )

is left (resp. right) slice hyperholomorphic if α and β are quaternionic-valued functions and satisfy the so-called
“even–odd” conditions, i.e.,

α(x, y) = α(x,−y), β(x, y) = −β(x, y) for all (x, y) ∈ R
2.

Moreover, the functions α and β have to satisfy the Cauchy–Riemann system:

∂xα(x, y) − ∂yβ(x, y) = 0, and ∂yα(x, y) + ∂xβ(x, y) = 0.

The set of left (resp. right) slice hyperholomorphic functions onH is denoted by SHL(H) (resp. SHR(H)). If the
functions α and β are real-valued functions, then we are dealing with the subset of intrinsic slice hyperholomorphic
functions, denoted by N (H).

In [10,11,18], it has been proved that slice hyperholomorphic functions have an expansion in series.

Theorem 2.2 Let f be a (left) slice hyperholomorphic function. Then for any real point p0 in H, the function f
can be represented by power series

f (q) =
+∞∑

m=0

(q − p0)
mam

on the ball B(p0, R) = {q ∈ H; |q − p0| < R}.
The pointwise product of two different slice hyperholomorphic functions is not slice hyperholomorphic. However
the product of an intrinsic slice hyperholomorphic function and a slice hyperholomorphic function preserves the
slice structure and the slice hyperholomorphicity, see [8, Thm. 2.1.4].

Theorem 2.3 If f ∈ N (H) and g ∈ SHL(H), then f g ∈ SHL(H). Similarly, if f ∈ SHR(H) and g ∈ N (H),

then f g ∈ SHR(H).

2.2 Slice hyperholomorphic Fock space

Now, we recall some basic notion of the slice hyperholomorphic Fock space, firstly introduced in [4] and further
investigated in [15].

Definition 2.4 Let ν > 0 be a real parameter. For a given I ∈ S, we define the slice hyperholomorphic Fock space
as

Fν
Slice(H) :=

{
f ∈ SHL(H) :

( ν

π

) ∫

CI

| f I (q)|e−ν|q|2dλI (q) < ∞
}

,
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where f I = f|CI and dλI (q) = dxdy is the Lebesgue measure with respect to the variable q = x + I y. The right
quaternionic space Fν

Slice(H) is endowed with the inner product

〈 f, g〉Fν
Slice(H) =

( ν

π

) ∫

CI

gI (q) f I (q)e−ν|q|2dλI (q),

for f , g ∈ Fν
Slice(H). The associated norm is defined as

‖ f ‖2Fν
Slice(H) =

( ν

π

) ∫

CI

| f I (q)|2e−ν|q|2dλI (q).

The space Fν
Slice(H) does not depend on the choice of I ∈ S. In [4], the authors showed that the monomials qn

form an orthogonal basis of Fν
Slice(H) with

〈qm, qn〉Fν
Slice(H) = m!

νm
δn,m . (2.1)

The space Fν
Slice(H) is a (right) quaternionic Hilbert space with reproducing kernel given by

K (p, q) = eν∗(q p̄) =
∞∑

n=0

νnqn p̄n

n! ,

see [4, Thm3.10]. The reproducing kernel property can be expressed in terms of the following integral representation

f (p) = 〈 f, K (p, .)〉Fν
Slice(H) =

( ν

π

) ∫

CI

eν∗(q p̄) f I (q)e−ν|q|2dλI (q). (2.2)

The slice hyperholomorphic Fock space satisfies the following sequential characterization:

Fν
Slice(H) =

{
f (p) =

∞∑

n=0

pnan, {an}n≥0 ⊂ H |
∞∑

n=0

k!
νk

|an|2 < ∞
}

, (2.3)

see [4, Prop. 3.11].

2.3 Slice hyperholomorphic RBF space

Inspired from the complex case, see [20,21], we give the following:

Definition 2.5 Let γ > 0, then the slice hyperholomorphic RBF space is defined as

HI
γ (H) :=

{
f ∈ SHL(H) :

(
2

πγ 2

)∫

CI

| f I (q)|e
(q−q̄)2

γ 2 dλI (q) < ∞
}

, ∀I ∈ S.

The right H-vector space HI
γ (H) is endowed with the inner product:

〈 f, g〉HI
γ (H) =

(
2

πγ 2

)∫

CI

gI (q) f I (q)e
(q−q̄)2

γ 2 dλI (q),

for f , g ∈ HI
γ (H). The associated norm is given by

‖ f ‖2HI
γ (H)

=
(

2

πγ 2

)∫

CI

| f I (q)|2e
(q−q̄)2

γ 2 dλI (q).

By following similar arguments performed in [15, Thm. 3.1], we can show that the slice hyperholomorphic RBF
kernel does not depend on the choice of the imaginary unit I ∈ S. Therefore, from now on we will denote the space
HI

γ (H) simply by Hγ,S(H).
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Theorem 2.6 An orthonormal basis of the slice hyperholomorphic RBF space is given by

eγ
n (q) =

√
2n

γ 2nn!q
ne

− q2

γ 2 , γ > 0. (2.4)

Proof First of all, we compute the following integral:

〈en, em〉Hγ,S =
(

2

πγ 2

)∫

CI

em(q)en(q)e
(q−q̄)2

γ 2 dλI (q). (2.5)

By formula (2.1), we get

〈en, em〉Hγ,S = 2n+1

γ 2n+2πn!
∫

CI

q̄mqne
− q̄2

γ 2 e
− q2

γ 2 e
(q−q̄)2

γ 2 dλI (q)

= 2n

γ 2nn! 〈q
m, qn〉

F
2

γ 2
Slice

= δn,m .

This implies that eγ
n belongs to the slice hyperholomorphic RBF space and that two of them are orthogonal.

Now, we show that eγ
n (q) forms a basis. Let f ∈ Hγ,S(H), then the function q �→ e

q2

γ 2 f (q) is slice hyperholo-
morphic, since it is a product of a slice hyperholomorphic function and an intrinsic function, see Theorem 2.3. This
implies that for {an}n≥0 ⊂ H, we have the following expansion in series:

f (q) =
∞∑

n=0

qne
− q2

γ 2 an =
∞∑

n=0

√
γ 2nn!
2n

eγ
n (q)an . (2.6)

This means that eγ
n (q) are generators. Now, we show that eγ

n (q) are independent. By using formula (2.6) and the
expression (2.5), we get

〈 f, eγ
n (p)〉Hγ,S(H) =

(
2

πγ 2

)∫

CI

eγ
n (q) f I (q)e

(q−q̄)2

γ 2 dλI (q)

=
(

2

πγ 2

)∫

CI

eγ
n (q)

⎛

⎝
∞∑

m=0

√
γ 2mm!
2m

eγ
m(q)am

⎞

⎠ e
(q−q̄)2

γ 2 dλI (q)

=
∞∑

m=0

√
γ 2mm!
2m

[(
2

πγ 2

)∫

CI

eγ
n (q)eγ

m(q)e
(q−q̄)2

γ 2 λI (q)

]
am

=
√

γ 2nn!
2n

an .

We can exchange the series with the integral because the series expansion converges uniformly on |q| ≤ r .
Therefore, 〈 f, eγ

n (p)〉Hγ,S(H) = 0 if and only if for all n ∈ N we have an = 0, i.e., f = 0. ��
Now, we show a relation between the spaces Hγ,S(H) and Fν

Slice(H), where ν = 2
γ 2 .

Theorem 2.7 Let γ > 0, a left slice hyperholomorphic function f : H → H belongs to the slice hyperholomorphic

RBF spaceHγ,S(H) if and only if there exists a unique function g in the slice hyperholomorphic Fock spaceF
2

γ 2

Slice(H)

such that

f (q) = e
− q2

γ 2 g(q), ∀q ∈ H.
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Furthermore, an isometric isomorphism between the spaces Hγ,S(H) and F
2

γ 2

Slice(H) is given by

Mγ 2 [ f ](q) = e
q2

γ 2 f (q), ∀ f ∈ Hγ,S(H), q ∈ H.

Proof By hypothesis, we know that g(q) = e
q2

γ 2 f (q). This function is slice hyperholomorphic for every q ∈ H,
since it is a product between a slice hyperholomorphic function and an intrinsic slice hyperholomorphic function

e
q2

γ 2 , see Theorem 2.3. Now, we show that g ∈ F
2

γ 2

Slice(H). Since f ∈ Hγ,S(H), we have

‖g‖2
F

2
γ 2
Slice(H)

=
(

2

γ 2π

)∫

CI

|gI (q)|2e
− 2

γ 2
|q|2

dλI (q)

=
(

2

γ 2π

)∫

CI

| f I (q)|2e
q̄2

γ 2
+ q2

γ 2
− 2

γ 2
|q|2

dλI (q)

=
(

2

γ 2π

)∫

CI

| f I (q)|2e
(q−q̄)2

γ 2 dλI (q)

= ‖ f ‖2Hγ,S(H) < ∞. (2.7)

The previous computations imply that

‖Mγ 2 [ f ]‖
F

2
γ 2
Slice(H)

= ‖ f ‖Hγ,S(H) ∀ f ∈ Hγ,S(H).

This is an isometry property for the operator Mγ 2
. Moreover, we have

Mγ 2 (
eγ

n (q)
) =
√

2n

γ 2nn!q
n, ∀q ∈ H.

This means that the operatorMγ 2
maps orthonormal basis of the spaceHγ,S(H) onto an orthonormal basis of the

space F
2

γ 2

Slice(H). Hence, the operator Mγ 2
is a surjective operator. ��

As a corollary of the previous theorem, we have the following result.

Corollary 2.8 Let γ > 0, the inverse operator of Mγ 2
is its adjoint and it is given by

(
Mγ 2
)−1 : F

2
γ 2

Slice(H) → Hγ,S(H).

This can be computed in the following way:
(
Mγ 2
)−1 =

(
Mγ 2
)∗ = M−γ 2

.

Now, we compute an explicit expression of the reproducing kernel of the space Hγ,S(H).

Theorem 2.9 Let γ > 0. The slice hyperholomorphic RBF space Hγ,S(H) is a reproducing kernel Hilbert space
whose kernel is given by

Kγ,S(q, p) = e
− q2

γ 2 e
2

γ 2∗ (q p̄)e
− p̄2

γ 2 .

The reproducing kernel property is given by the following integral representation:

f (p) =
(

2

πγ 2

)∫

CI

Kγ,S(q, p) f I (q)e
(q−q̄)2

γ 2 dλI (q), q ∈ H, ∀ f ∈ Hγ,S(H).
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Proof We start observing that since the function e
(q−q̄)2

γ 2 is real valued, then it can commute with f I (q), so we have:
(

2

πγ 2

)∫

CI

Kγ,S(q, p)e
(q−q̄)2

γ 2 f I (q)dλI (q) =
(

2

πγ 2

)∫

CI

e
− p2

γ 2 e2/γ
2

∗ (q p̄)e
− q̄2

γ 2 e
(q−q̄)2

γ 2 f I (q)dλI (q)

=
(

2

πγ 2

)
e
− p2

γ 2

∫

CI

e2/γ
2

∗ (q p̄)e
q2

γ 2 f I (q)e
− 2|q|2

γ 2 dλI (q)

=
(

2

πγ 2

)
e
− p2

γ 2

∫

CI

e2/γ
2

∗ (q p̄)Mγ 2 [ f I ](q)e
− 2|q|2

γ 2 dλI (q).

By Theorem 2.7, we know that Mγ 2 [ f ](q) ∈ F
2

γ 2

Slice(H). Then using the reproducing kernel property of the slice
hyperholomorphic Fock space, see (2.2), we get
(

2

πγ 2

)
e
− p2

γ 2

∫

CI

e2/γ
2

∗ (q p̄)Mγ 2 [ f I ](q)e
− 2|q|2

γ 2 dλI (q) = e
− p2

γ 2 Mγ 2 [ f ](p).

= f (p)

This concludes the proof. ��
Proposition 2.10 The kernel Kγ,S(q, p) is slice hyperholomorphic in the variable q and anti-slice hyperholomor-
phic in variable p.

Proof The kernel Kγ,S(q, p) is a pointwise product of an intrinsic slice hyperholomorphic function e
− q2

γ 2 and a

slice hyperholomorphic function e
2

γ 2∗ (q p̄). This implies that the kernel Kγ,S(q, p) is slice hyperholomorphic in the
variable q, see Theorem 2.3. By similar arguments, it is anti-slice hyperholomorphic in variable p. ��
Definition 2.11 Let γ > 0. The function

Kγ,S(q, p) = e
− q2

γ 2 e
2

γ 2∗ (q p̄)e
− p̄2

γ 2

is called the slice hyperholomorphic RBF kernel.

Proposition 2.12 Let γ > 0. For a fixed p ∈ H, we set by K p
γ the function defined as follows:

K p
γ,S(q) = Kγ,S(q, p).

Then it holds that

(1) Kγ,S(q, p) =∑∞
n=0 eγ

n (q)eγ
n ( p̄),

(2) 〈K q
γ,S, K p

γ,S〉Hγ,S(H) = Kγ,S(p, q).

Proof We start by proving the first point.

(1) Since the functions qn and e
− q2

γ 2 are intrinsic slice hyperholomorphic functions, they can commute with each
other and so by Definition 2.11 we have
∞∑

n=0

eγ
n (q)eγ

n ( p̄) =
∞∑

n=0

2n

γ 2nn!e
− q2

γ 2 qn p̄ne
− p̄2

γ 2

= e
− q2

γ 2 e2/γ
2

∗ (q p̄)e
− p̄2

γ 2

= Kγ,S(q, p).
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(2) For fixed q, p ∈ H, we have that K p
γ (q) belongs to the space Hγ,S(H). By the reproducing kernel property

proved in Theorem 2.9, we have

〈K q
γ,S, K p

γ,S〉Hγ,S(H) = K q
γ,S(p) = Kγ,S(q, p).

��
For functions in the space Hγ,S(H), we have the following estimate.

Proposition 2.13 Let γ > 0 and I ∈ S. Then for f ∈ Hγ,S(H), we have

| f (q)| ≤ e
2

γ 2
y2‖ f ‖Hγ,S(H), ∀q = x + I y ∈ CI .

Proof By Theorem 2.9, we know that

f (q) = 〈 f, K q
γ,S〉Hγ,S(H).

By the Cauchy–Schwartz inequality, we have

| f (q)| ≤ ‖K q
γ ‖Hγ,S(H)‖ f ‖Hγ,S(H). (2.8)

By Proposition 2.12, we get

‖K q
γ,S‖2Hγ,S(H) = 〈K q

γ,S, K q
γ,S〉Hγ,S(H)

= Kγ,S(q, q)

= e
− q2

γ 2 e2/γ
2

∗ (|q|2)e− q̄2

γ 2

= e
− (q−q̄)2

γ 2

= e
4

γ 2
y2

. (2.9)

By inserting (2.9) in (2.8), we get the thesis. ��
A sequential characterization for the slice hyperholomorphic RBF space is also valid. The proof follows similar
arguments of [1, Thm. 3.10].

Theorem 2.14 A slice hyperholomorphic function, f (q) = ∑∞
n=0 qnan, with {an}n≥0 ⊂ H, belongs to the space

Hγ,S(H), if and only if, it holds that

∞∑

k=0

k!γ 2k

2k

∣∣∣∣∣∣∣∣

[
k
2

]

∑

j=0

ak−2 j

γ 2 j j !

∣∣∣∣∣∣∣∣

2

< ∞.

Proof By Theorem 2.7, we know that a function f belongs toHγ,S(H) if and only if there exists a unique function

g ∈ F
2

γ 2

Slice(H) such that

f (q) = e
− q2

γ 2 g(q), ∀q ∈ H.

By (2.3), we know that a function g(q) = ∑∞
k=0 qkbk , with {bk}k≥0 ⊆ H, belongs to F

2
γ 2

Slice(H) if we have the
following condition:

∞∑

k=0

k!γ 2k

2k
|bk |2 < ∞. (2.10)
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By using the Cauchy product of series, we have

g(q) = e
q2

γ 2 f (q)

=
( ∞∑

n=0

q2n

γ 2nn!

)( ∞∑

n=0

qnan

)

=
∞∑

k=0

qkβk, (2.11)

where we set βk =∑k
j=0 s j ak− j with s j = 0 if j is odd, and s j = 1

γ 2m m! if j is even. Then, for any k ≥ 0, we get

βk =
k∑

j=0

s j ak− j =

[
k
2

]

∑

j=0

ak−2 j

γ 2 j j ! .

By formula (2.11), we have

g(q) =
∞∑

k=0

qkbk =
∞∑

k=0

qkβk .

By identifying the coefficients of the previous equality, we get

bk = βk =

[
k
2

]

∑

j=0

ak−2 j

γ 2 j j ! , ∀k ≥ 0. (2.12)

Finally, by plugging (2.12) into (2.10), we get

∞∑

k=0

k!γ 2k

2k

∣∣∣∣∣∣∣

[ k
2 ]∑

j=0

ak−2 j

γ 2 j j !

∣∣∣∣∣∣∣

2

< ∞.

��

2.4 The slice hyperholomorphic RBF-Segal–Bargmann transform

In this subsection, we consider an integral transform that has as a range the slice hyperholomorphic RBF space. This
can be connected with the slice hyperholomorphic Bargmann transform. This integral transform was introduced
in [15] and further studied in [13]. Now, we recall the main notions of this integral transform. The Hilbert space
L2(R, dx) = L2

H
(R), which is the domain of the Segal–Bargmann transform, consists of all the square integrable

quaternionic-valued functions with respect to

〈ϕ,ψ〉L2(R,dx) =
∫

R

ψ(x)ϕ(x)dx .

The kernel of the slice hyperholomorphic Segal–Bargmann transform is given by

Aν
SB(q; x) :=

( ν

π

) 3
4

e− ν
2 (q2+x2)+ν

√
2qx ; (q, x) ∈ H × R, (2.13)

see [15]. This kernel can be seen as the generating function of the real weighted Hermite functions given by

hν
n(x) := (−1)ne

ν2
2 x2 d

dx

(
e−νx2
)
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that form an orthogonal basis for the space L2(R, dx), with the norm given by

‖hν
n(x)‖L2(R,dx) = 2nνnn!

(π
ν

) 1
2
.

Namely, we have

Aν
SB(q, x) =

∞∑

n=0

√
νnqnψν

n (x)√
n! , (2.14)

where ψν
n (x) are the normalized weighted Hermite functions.

The quaternionic Segal–Bargmann transform Bν : L2
H
(R) → Fν

Slice(H) is defined as

Bν[ψ](q) =
∫

R

Aν
SB(q, x)ψ(x)dx, ∀ψ ∈ L2

H
(R).

The action of the quaternionic Segal–Bargmann transform on the normalized weighted Hermite functions is given
by

Bν[ψν
n ](q) =

( ν

π

) 1
2 ν

n
2 qn

√
n! , (2.15)

see [15, Lemma 4.4]. We can define the kernel of the slice hyperholomorphic RBF-Segal–Bargmann transform as

Aγ
RBF(q, x) =

∞∑

n=0

eγ
n (q)ψ

2
γ 2

n (x), (q, x) ∈ H × R.

Definition 2.15 The slice hyperholomorphic RBF-Segal–Bargmann transform is defined as

Bγ
RBF[ψ](q) =

∫

R

Aγ
RBF(q, x)ψ(x)dx,

for any ψ ∈ L2
H
(R) and q ∈ H.

Now, we show the following match between the kernels of the slice hyperholomorphic Segal–Bargmann and the
slice hyperholomorphic RBF-Segal–Bargmann transforms.

Proposition 2.16 Let γ > 0. Then we have

Aγ
RBF(q, x) = e

− q2

γ 2 A
2

γ 2

SB(q, x), ∀(q, x) ∈ H × R.

Proof By the kernel defined in (2.14) and the definition of the basis eγ
n (q) (see (2.4)), we get

Aγ
RBF(q, x) = e

− q2

γ 2

∞∑

n=0

√
2n

n!γ 2n
qnψ

2
γ 2

n (x) = e
− q2

γ 2 A
2

γ 2

SB(q, x).

��
A relation between the slice hyperholomorphic Segal–Bargmann transform and the RBF one is possible.

Corollary 2.17 Let γ > 0 and ψ ∈ L2
H
(R). Then we have

Bγ
RBF[ψ](q) = M−γ 2B 2

γ 2
[ψ](q), ∀q ∈ H.

Proof The result follows by the definition of the slice hyperholomorphic RBF-Segal–Bargmann transform and
Proposition 2.16. ��
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Proposition 2.18 The explicit expression of the slice hyperholomorphic RBF kernel is given by

Aγ
RBF(q, x) =

(
2

πγ 2

) 3
4

e
− (x−√

2q)2

γ 2 ∀(q, x) ∈ H × R.

Proof By Proposition 2.16, we have

Aγ
RBF(q, x) = e

− q2

γ 2 A
2

γ 2

SB(q, x)

=
(

2

πγ 2

) 3
4

e
− 2q2

γ 2
− x2

γ 2
+ 2

√
2qx

γ 2

=
(

2

πγ 2

) 3
4

e
− (x−√

2q)2

γ 2 .

��
Proposition 2.19 Let γ > 0 and n ∈ N. Then we have

Bγ
RBF[ψ

2
γ 2

n ](q) =
√

2

γ 2π
eγ

n (q).

Moreover, we have also

‖Bγ
RBF[ψ

2
γ 2

n ]‖Hγ,S(H) = ‖ψ
2

γ 2
n ‖L2

H
(R) = 1.

Proof By Corollary 2.17 and by formula (2.15) with ν = 2
γ 2 , we get

Bγ
RBF[ψ

2
γ 2

n ](q) = M−γ 2B 2
γ 2

[ψ
2

γ 2
n ](q)

= e
− q2

γ 2 B 2
γ 2

[ψ
2

γ 2
n ](q)

=
(

2

γ 2π

) 1
2

√
2n

γ 2nn!q
ne

− q2

γ 2

=
√

2

γ 2π
eγ

n (q).

��
Theorem 2.20 For γ > 0, the slice hyperholomorphic RBF Bargmann transform is an isometric isomorphism
mapping L2

H
(R) onto Hγ,S(H).

Proof By Corollary 2.17, Theorem 2.2 and [15, Thm. 4.6], we get

‖Bγ
RBF[ψ]‖Hγ,S(H) = ‖M−γ 2B 2

γ 2
[ψ]‖Hγ,S(H)

= ‖B 2
γ 2

[ψ]‖
F

2
γ 2
Slice

= ‖ψ‖L2
H

(R),

for any ψ ∈ L2
H
(R). ��
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3 Gaussian RBF kernels via Fock spaces: several complex variables case

In this section, we extend some results obtained in [1] to the case of several complex variables. We present some of
the results without proofs, since they follow similar arguments of the one complex variable. To this end, let us first
introduce some standard notations that are used in the case of several complex variables with dimension d ≥ 1. On
the space Cd , we can consider the inner product and the associated metric given by

〈z, w〉2,d =
d∑

�=1

z�w�, d(z, w) = ||z − w||2,d =
√√√√

d∑

�=1

|z� − w�|2, (3.1)

for every z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d . We use also the following notations for the conjugate and

product

z = (z1, . . . , zd), z · w =
d∑

�=1

z�w�, and z · z = z2 =
d∑

�=1

z2�. (3.2)

Given n = (n1, . . . , nd) ∈ N
d and z = (z1, . . . , zd) ∈ C

d , we use the multi-index notation:

zn = zn1
1 zn2

2 . . . znd
d , n! = (n1!)(n2!) . . . (nd !), |n| =

d∑

�=1

n�.

Let α > 0. We briefly recall the Fock space on Cd which is a subspace of entire functions Hol(Cd) defined by

Fα(Cd) =
{

f ∈ Hol(Cd),
(α
π

)d ∫

Cd
| f (z)|2e−α|z|2dA(z) < ∞

}
,

where dA(z) denotes the Lebesgue measure on C
d with z = (z1, . . . , zd) ∈ C

d . The reproducing kernel of the
space Fα(Cd) is given by

Fα(z, w) = eαz·w, ∀z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d . (3.3)

The authors of [20] (see also the book [21]) introduced the complex Gaussian RBF kernel in several complex
variables as follows:

Definition 3.1 Let d ≥ 1 and γ > 0. The d-dimensional complex valued Gaussian RBF kernel on C
d is denoted

by Kγ,d : Cd × C
d −→ C and can be expressed as follows:

Kγ,d(z, w) = exp

(
− (z − w)2

γ 2

)
,

for every z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d .

Remark 3.2 If we restrict the complex variables z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d to the real variables

x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R
d , we re-obtain the classical real valued Gaussian RBF kernel

Kγ,d(x, y) = exp

(
−||x − y||22,d

γ 2

)
.

We make the following observation:

Proposition 3.3 Let d ≥ 1 and γ > 0. The Gaussian RBF kernel of dimension d can be expressed as a product of
Gaussian RBF kernels of dimension one. More precisely, we have

Kγ,d(z, w) =
d∏

�=1

Kγ (z�, w�), (3.4)

for every z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d .
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Proof Let d ≥ 1 and γ > 0. For z = (z1, . . . , zd) and w = (w1, . . . , wd) in Cd we have

d∏

�=1

Kγ (z�, w�) =
d∏

�=1

exp

(
− (z� − w�)

2

γ 2

)

= exp

(
− 1

γ 2

d∑

�=1

(z� − w�)
2

)

= exp

(
− (z − w)2

γ 2

)

= Kγ,d(z, w).

��
Remark 3.4 The function Kγ,d(z, w) (see (3.4)) is a kernel as a product of one dimensional RBF kernels, see [21,
Lemma 4.6]. Moreover, using the tensor product symbol ⊗, we observe the following:

Kγ,d(z, w) = exp

(
− (z − w)2

γ 2

)
= K ⊗d

γ (z, w),

for every z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d .

Proposition 3.5 The complex Gaussian RBF kernel Kγ can be expressed in terms of the reproducing kernel of the
Fock space F 2

γ 2
(Cd). More precisely, we have

Kγ,d(z, w) = exp

(
− 1

γ 2 (z2 + w2)

)
F 2

γ 2
(z, w),

for every z = (z1, . . . , zd) and w = (w1, . . . , wd) in C
d .

Proof We know by Proposition 3.3 that the Gaussian RBF kernel of dimension d can be expressed as a product of
Gaussian RBF kernels of dimension 1. Then, by [1, Proposition 3.1], we get

Kγ,d(z, w) =
d∏

�=1

Kγ (z�, w�)

=
d∏

�=1

exp

(
− (z2� + w�

2)

γ 2

)
F 2

γ 2
(z�, w�)

= exp

(
−
∑d

�=1(z
2
� + w�

2)

γ 2

)
F 2

γ 2
(z, w)

= exp

(
− 1

γ 2 (z2 + w2)

)
F 2

γ 2
(z, w).

��
The complex reproducing kernel Hilbert space associated with the Gaussian RBF kernel in the case of several

complex variables can be introduced as follows (see [20,21]):

Definition 3.6 Let γ > 0, an entire function f : Cd −→ C belongs to the RBF space, denoted by Hγ (Cd) (or
simplyHγ,d) if we have

|| f ||2Hγ,d
:=
(

2

πγ 2

)d ∫

Cd
| f (z)|2 exp

(
(z − z)2

γ 2

)
dA(z) < ∞,

where dA(z) =∏d
�=1 dx�dy� is the Lebesgue measure with respect to the variable z = x + iy ∈ C

d .
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We can apply similar arguments used in [1] in the case of one complex variable to prove the following result for
RBF spaces on C

d :

Theorem 3.7 Let γ > 0, the RBF Hilbert space Hγ,d is a reproducing kernel Hilbert space whose reproducing
kernel is given by the RBF kernel Kγ,d(z, w). Moreover, we have the reproducing kernel property which is given
by the following integral representation:

f (w) =
(

2

πγ 2

)d ∫

Cd
f (z)Kγ,d(z, w) exp

(
(z − z)2

γ 2

)
dA(z),

for any f ∈ Hγ,d , w = (w1, . . . , wd) ∈ C
d .

Remark 3.8 In other terms, we can reproduce any function f belonging to the complex d-dimensional RBF space
Hγ,d using the following reproducing kernel property:

f (w) = 〈 f, K w
γ,d〉Hγ,d , f ∈ Hγ,d , w = (w1, . . . , wd) ∈ C

d .

It is important to note that an orthonormal basis of the Gaussian RBF space Hγ,d is given by the family of
functions defined for every n = (n1, . . . , nd) ∈ N

d by the following expression (see [20,21]):

eγ
n (z) =

√
2|n|

γ 2|n|n! zne
− z2

γ 2 , ∀z = (z1, . . . , zd) ∈ C
d . (3.5)

We can prove the following expression of the Gaussian RBF kernel:

Proposition 3.9 For every z = (z1, . . . , zd), w = (w1, . . . , wd) ∈ C
d , we have

∑

n=(n1,...,nd )∈Nd

eγ
n (z)eγ

n (w) = Kγ,d(z, w).

Proof We apply the one-dimensional case (see [1, Proposition 3.5]) and get

∑

n=(n1,...,nd )∈Nd

eγ
n (z)eγ

n (w) =
d∏

�=1

⎛

⎝
∞∑

n�=0

eγ
n�

(z�)e
γ
n�

(w�)

⎞

⎠

=
d∏

�=1

Kγ (z�, w�)

= Kγ,d(z, w).

��
Inspired from Theorem 3.2 of [1], we note that the Gaussian RBF space of several complex variables Hγ,d is
isomorphic to the Fock space on C

d with parameter 2
γ 2 . More precisely, we have the following result;

Theorem 3.10 (RBF-Fock isomorphism) Let γ > 0, an entire function f : Cd −→ C belongs to the RBF space
Hγ,d if and only if there exists a unique function g in the Fock space F 2

γ 2
(Cd)such that

f (z) = exp(− z2

γ 2 )g(z), for any z = (z1, . . . , zd) ∈ C
d .

Moreover, there exists an isometric isomorphism between the RBF and Fock spaces given by the multiplication

operator Mγ 2

RBF : Hγ,d −→ F 2
γ 2

(Cd) defined by

Mγ 2

RBF[ f ](z) := M
exp ( z2

γ 2
)
[ f ](z) = exp(

z2

γ 2 ) f (z), for any f ∈ Hγ,d , z ∈ C
d .
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Finally, the counterpart of the RBF-Segal–Bargmann transform for several complex variables can be introduced for
any ϕ ∈ L2(Rd) and z = (z1, . . . , zd) ∈ C

d as follows:

Bγ,d [ϕ](z1, . . . , zd) =
∫

Rd
A

γ,d
RBF((z1, . . . , zd), (x1, . . . , xd))ϕ(x1, . . . , xd)dx1 . . . dxd ,

where the RBF-Bargmann kernel here is obtained by taking the generating function associated with the normalized
Hermite functions ψn(x1, . . . , xd) = ψn1(x1) . . . ψnd (xd) and the orthonormal basis eγ

n (z1, . . . , zd) with n =
(n1, . . . , nd) so that:

A
γ,d
RBF((z1, . . . , zd), (x1, . . . , xd)) =

∑

n∈Nd

ψn(x1, . . . , zd)en(z1, . . . , zd).

By following a similar approach used in Proposition 2.16 we have

∑

n∈Nd

ψn(x1, . . . , zd)en(z1, . . . , zd) =
(

2

πγ 2

) d
4

exp

(
−
∑d

�=1(
√
2z� − x�)

2

γ 2

)
.

As a consequence, it is possible to express the RBF-Segal–Bargmann transform as follows:

Bγ,d [ϕ](z1, . . . , zd) =
(

2

πγ 2

) d
4
∫

Rd
exp

(
−
∑d

�=1(
√
2z� − x�)

2

γ 2

)
ϕ(x1, . . . , xd)dx1 . . . dxd . (3.6)

We observe that using the standard notations in (3.2), we can rewrite the previous expression in the following way;

Bγ,d [ϕ](z) =
(

2

πγ 2

) d
4
∫

Rd
exp

(
− (

√
2z − x)2

γ 2

)
ϕ(x)dx .

The following result holds true:

Theorem 3.11 The RBF-Segal–Bargmann transform defined by the expression (3.6) is an isometric isomorphism
mapping the standard Hilbert space L2(Rd) onto the RBF space Hγ,d .

4 Concluding remarks

In this paper, we have investigated Gaussian RBF kernels and their connections to the theory of Fock spaces in
two settings: quaternionic slice hyperholomorphic and several complex variables. In a forthcoming paper, we aim
to study a generalization of this topic in the case of quaternionic monogenic functions using the Fueter mapping
theorem, which allows to construct monogenic functions starting from slice hyperholomorphic ones. The various
extensions of RBF kernel are summarized in the following scheme:

One complex− valued RBF kernel

Hypercomplex RBF kernel Several complex variables RBF kernel

Slice hyperholomorphic
RBF kernel

Monogenic RBF kernel

Real − valued RBF kernel
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