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Abstract We show how the classical polylogarithm function Lis(z) and its relatives, the Hurwitz zeta function
and the Lerch function are all of a spectral nature, and can explain many properties of the complex powers of the
Laplacian on the circle and of the distribution (x + i0)s . We also make a relation with a result of Keiper [Fractional
Calculus and its relationship to Riemann’s zeta function, Master of Science, Ohio State University, Mathematics
(1975)].

Keywords Hurwitz zeta function · Polylogarithm function · Bernoulli numbers · Complex powers of operators

Mathematics Subject Classification 11M35 · 11M06 · 11B68 · 32W25

1 Introduction, notations

In his paper [26], Mazur, rightly, comments that Bernoulli polynomials are a sign of the unity of Mathematics, as
they intervene in many areas: Number Theory, Stable Homotopy Theory, Differential Topology, Theory of Modular
Forms, etc. The essential goal of this work is to add another example, if necessary, of spectral theoretical nature by
considering certain pseudodifferential operators on the circle. We combine ideas of Morava and Epstein [28], [10]
and Mikolás [25] to study the spectral zeta functions and the traces of these operators.

The salient remark, in this work, is that certain properties of the pseudodifferential operators on the circle (or
more exactly of their kernels) result from certain analogies between the Riemann zeta function and the Bernoulli
polynomials. In fact we have
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R. Gay, A. Sebbar

for | z |< 2π

z

ez − 1
= 1 − z

2
− 2

∞∑

n=0

(−1)n
ζ(2n + 2)

(2π)2n+2 z
2n+2,

z

ez − 1
=

∞∑

n=0

Bn

n! z
n .

Our notations differ from those of [10]. For a related discussion see [22]. From these relations the following
fundamental relations hold

ζ(2n) = π2n22n−1 (−1)n+1

(2n)! B2n, n = 0, 1, 2 . . .

ζ(−2n + 1) = − B2n

2n
, n = 1, 2, 3 . . .

We recall that the generating function of the Bernoulli polynomials [11], p.36

zezx

ez − 1
=

∞∑

n=0

Bn(x)
zn

n! .

Almost everything in what follows is based on the functions li0(−z) = 1

ez − 1
,

z

ez − 1
, through convolution

products. Hence the title of the present paper.
We start by very formal considerations on the Laplacian onR

n . Consider a planewave such as f (x) = e2iπx ·ξ , x ·
ξ = x1ξ1 + · · · + xnξn , then

�e2iπx ·ξ = −4π2 | ξ |2 e2iπx ·ξ , � = ∂2

∂x21
+ · · · + ∂2

∂x2n
.

By Fourier inversion we obtain, formally,

� f (x) = �

∫

Rn
f̂ (ξ)e2iπx ·ξ dξ

=
∫

Rn
f̂ (ξ)�e2iπx ·ξ dξ

=
∫

Rn

(
−4π2 | ξ |2

)
f̂ (ξ)e2iπx ·ξ dξ.

We may then define, again by Fourier inversion

�̂ f (ξ) =
(
−4π2 | ξ |2

)
f̂ (ξ),

and by iterating, we have for positive integer n

�̂n f (ξ) =
(
−4π2 | ξ |2

)n
f̂ (ξ).

This suggests a way to develop more general powers of the Laplacian, for instance a square root
√̂−� f (ξ) =

√
4π2 | ξ | f̂ (ξ).

An important observation concerning the Dirichlet-to-Neumann map can be made using the square root of the
Laplacian

√−� [3]. Let f : R
n → R be is a smooth and bounded function. We solve the extension problem in a

half-space
{

�u(x, y) = 0, x ∈ R
n, y > 0

u(x, 0) = f (x), x ∈ R
n
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Pseudo-differential operators on the circle, Bernoulli polynomials

to obtain a smooth bounded solution u, then

−uy(x, 0) = √−� f (x).

Hence
√−� can be realized as the operator

T : f −→ −uy(x, 0)

associating the Dirichlet and Neumann conditions. In [3] and [34] an extension to a general complex power of the
Laplacian is given as follows

Theorem 1 (Caffarelli-Stinga) If U = U (x, y) is the solution of the initial value problem
{

�xU + a
y ∂yU + ∂yyU = 0, x ∈ R

n, y > 0

U (x, 0) = f (x), x ∈ R
n,

then

�(1 − s)

4s−1/2�(s)
(−�)s f (x) = lim

y→0+ −yaUy(x, y)

for s = 1−a
2 and some constant C depending on n and s. Moreover, the solution U (x, y) is given explicitly as

U (x, y) = y2s

4s�(s)

∫ ∞

0
e−y2/4t et� f (x)

dt

t1+s

= �(n/2 + s)

πn/2�(s)

∫

Rn

y2s

(|x − y|2 + y2
) n+2s

2

f (y) dy.

One of the goals of this paper is to understand (eventually to elaborate on) a result given in [10] (proposition 3, p.9)

Proposition 1 The function lis(x) =
∑

n≥1

enx

ns
defined for Res ≥ 0, Rex < 0, and taking values in smooth

functions on the negative real line when Res ≥ 0, extends to an entire function of s, taking values in tempered
distributions on the whole real line, satisfying the congruence

lis(x) ≡ −�(1 − s)

2

[
e−iπs(x + i0)s + eiπs(x + i0)s

]
,

modulo meromorphic functions with smooth coefficients.

Remark 1 We take the domain of �R, on the real line, as

D(�) =
{
u ∈ L2, 4π2 | ξ |2 û(ξ) ∈ L2(R)

}
.

It is known that the spectrum σ(�) of� coincide with [0, ∞). Although we will not develop this question in detail,
it is worth pointing out that the methods developed here can define - for example - the Hermite polynomials Hn(x)
for complex values of n. Using Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
e−x2 = (−1)nex

2 n!
2π i

∮

γ

e−z2

(z − x)n+1 dz

we may define for complex s

Hs(x) = eiπ
s
2 ex

2
(

− d2

dx2

) s
2

e−x2 = eiπsex
2 �(s + 1)

2π i

∮

γ

e−z2

(z − x)s+1 dz.
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R. Gay, A. Sebbar

In all this paper the Lerch transcendent [20] whose classical definition is


(z, s, a) =
∞∑

n=0

zn

(n + a)s
(1)

plays an important role, in addition to its particular value

Lis(z) = 
(z, s, 1) =
∞∑

n=1

zn

ns
,

as well as

Ls(z) =
∞∑

n=1

e2iπnz

ns
= Lis(e

2iπ z). (2)

2 Pseudodifferential operators, complex powers

2.1 Complex powers

We follow Komatsu [19], [32] for the definition of fractional powers. Consider first a bounded linear operator A
such that the resolvent set ρ(A) contains the negative real axis (−∞, 0]. The most natural definition of the complex
power As is given by the Dunford integral

As = 1

2iπ

∫

�

ζ s(ζ − A)−1dζ, (3)

where the path � encircles the spectrum ρ(A), counterclockwise, avoiding the negative real axis, and ζ s takes the
principal branch.

There is an another way to define the powers of the Laplacian on R
n using Riesz potentials [33] p. 117. For a

function u : R
n → R, n ≥ 1, the fractional Laplacian (−�)su, with 0 < s < 1, is naturally defined using the

Fourier transform as

̂(−�)su(ξ) = (2π |ξ |)2s û(ξ), ξ ∈ R
n .

Hence, in terms of the Riesz potential,

(−�)su = I2s(u), 0 < s <
n

2
,

with

Iαu(x) = �
( n
2 − α

2

)

π
n
2 2α�(α

2 )

∫

Rn
|x − y|−n+αu(y) dy.

And in terms of the heat semigroup on R
n we have, in terms of principal values PV

(−�)su(x) = 4s�
( n
2 + s

)

π
n
2

PV
∫

Rn

u(x) − u(y)

|x − y|n+2s dy, y ∈ R
n .

The following result contains the essential of spectral properties [32], p.93.

Theorem 2 Let A be an elliptic differential operator of order m on a closed n-dimensional manifold M. Let

f ∈ D′
(M) and let f (x) =

∞∑

j=1

λnϕn(x) be the Fourier series expansion of f in the eigenfunctions of the operator

A. Then

As f (x) =
∞∑

j=1

λsnϕn(x).

In particular, ϕn(x) are also the eigenfunctions of the operator As with eigenvalues λsn.
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Pseudo-differential operators on the circle, Bernoulli polynomials

Since infinite separable Hilbert spaces are isometric, if S
1 = R/Z is the unit circle and �2 the space of infinite

sequences (ξk)k≥0 of complex numbers that are square summable,
∞∑

k=0

| ξk |2< ∞, with a norm and dot product

given by

‖ξ‖ =
( ∞∑

k=0

|ξk |2
) 1

2

, ξ · η =
∞∑

k=0

ξi η̄i ,

the functions ξ 
→ ξ k form an orthonormal basis of L2(S1), with an isometry

I :L2(S1) −→ �2(Z)

f −→ (ξk), ξk = f · ξ k =
∫

f (ξ)ξ−k dμ(ξ),

where∫
f (ξ) dμ(ξ) = 1

2π

∫ π

−π

f (eit ) dt.

Remark 2 On the Hilbert space of square integrable functions on a circle H = L2
(

S
1,

dθ

2π

)
an orthonormal basis

is given by ϕn(θ) = einθ , with n ∈ Z. One can introduce two sets of unitary operators on H

P : Z −→ U (H), P(m)(ϕn) = ϕn+m

Q : R −→ U (H), Q(k)(ϕn) = einkϕn .

satisfying a sort of canonical commutation rules:

P(m) Q(k) = eimk Q(k) P(m).

Up to homeomorphisms, the circle S
1 is the only compact connected 1-dimensional manifold. We identify S

1 with
the interval [0, 2π ] (resp. [0, 1]), with periodic conditions, and then, as 1-dimensional manifold it is the quotient
of the real line R by the subgroup of integers 2πZ (resp. Z). From this point of view, S1 can be thought of as being
an abelian group, isomorphic to SO(2, R), or to the 1-dimensional torus. The circle can also be considered as the
real projective line RP

1, consisting of lines in R
2 going through the origin (identified with R ∪ {∞} by taking the

slope of a line).

The spectrum of the Laplacian � = − d2

dx2
on the circle S

1 is given by

λ0 = 0, λ2k−1 = λ2k = k2, k ≥ 1,

corresponding to the eigenfuctions

f2k−1(x) = sin(kx), f2k(x) = cos(kx), k ≥ 1.

We now introduce the heat flow on S
1 and R. Given a initial heat distribution f (t, θ) on S

1, the heat distribution
f (t, θ) at the time t is the solution of the initial value problem

(∂t + �) f (t, θ) = 0.

So, by separation of variables,

f (t, θ) =
∑

n∈Z
ane

−n2t einθ ,

where an is the n-th Fourier coefficient of f (t, θ). In particular

f (t, θ) = 1

2π

∫

S1

∑

n∈Z
e−n2t einθ einψdψ.
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R. Gay, A. Sebbar

We will call

eS1(θ, ψ) =
∑

n∈Z
e−n2t einθ einψ =

∑

n∈Z
e−n2t ein(θ−ψ) (4)

the heat flow on S
1. It is a smooth function on (0,∞) × S × S

1. The integral kernel for the heat flow on the real
line R is

eR(t, x, y) = 1

(4π t)
1
2

e− (x−y)2

4t , t > 0.

Naturally we have the periodization relation

et,S1(θ, ψ) =
∑

n∈Z
eR(t, θ, ψ + 2πn).

We denote by e−t� the operator

e−t� : L2 −→ L2,

taking the heat distribution at time t = 0 to the heat distribution f (t, θ) at time t . The notation is suggested by the

observation that e−t� acts by multiplication by e−tn2 on the n2-eigenspace of �. The heat operator for the circle
S
1 is defined as

Ht = e−t�, t > 0,

and the spectral zeta function is

ζ�(s) = Tr
(
�−s) ,

which is related to the heat operator by the Mellin transform

Tr
(
�−s) = 1

�(s)

∫ ∞

0
t s−1Tr

(
e−t�) dt.

More explicitly,

Tr
(
e−t�) =

∑

n∈Z
e−n2t =

∫

S1
eS1(t, θ, θ) dθ.

For short time, the trace of the heat kernel for the circle looks like the trace of the heat kernel for the line, in the
sense that
∑

n∈Z
e−n2t =

∫

S1
eS1(t, θ, θ) dθ =

∫ π

−π

eR(t, x, x)ds + R(t),

where R(t), the remainder term, behaves near the origin t = 0 like e− α
t , α > 0. For long time we may use the

Poisson summation formula
√
t
∑

n∈Z
e−πn2t =

∑

n∈Z
e− πn2

t , t > 0

to obtain
√
t Tr

(
e−t�) = √

π Tr

(
e− π2

t �

)
.

If we identify functions on S
1 = R/Z with periodic functions on the interval [0, 1], we see that

−�S1

(
e2iπkx

)
= (2πk)2e2iπkx , �S1 = d2

dx2
.
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Pseudo-differential operators on the circle, Bernoulli polynomials

If

u(t) =
∑

k∈Z
(2π |k|)−2sck(u)e2iπkx

with
∫

S1
u(t)dt = 0 and Res > 0, we get by Theorem (2)

(−�S1
)s
u(x) =

∑

k∈Z\{0}
(2π |k|)−2sck(u)e2iπkx

=
∑

k∈Z\{0}
(2π |k|)−2s

∫ 1

0
u(y)e2iπk(x−y) dy

=
∫ 1

0
K−2s(x − y)u(y) dy,

where the kernel is given by a polylogarithm

K−2s(x) =
∑

k∈Z\{0}

e2iπkx

(2π |k|)2s . (5)

Remark 3 In the Physics literature the Fermi-Dirac and Bose-Einstein integrals are defined, respectively, by the
Mellin transform

Fs(x) = 1

�(s + 1)

∫ +∞

0

t s

et−x + 1
dt, Gs(x) = 1

�(s + 1)

∫ +∞

0

t s

et−x − 1
dt.

They are related to the polylogarithm function Lis(z) = 
(z, s, 1) (1), written as Mellin transform

Lis(z) = z

�(s)

∫ ∞

0

t s−1

et − z
dt,

by

Fs(x) = −Lis+1(−ex ), Gs(x) = Lis+1(e
x ).

2.2 Determinants

This section uses the relation between finite dimensional trace and determinant. Consider the Laplace operator �

on a closed manifold M . It has a discrete spectrum consisting of eigenvalues

0 ≤ λ1 ≤ λ2 · · · ,

repeated with multiplicity. We omit the zero eigenvalue and assume λ1 > 0. Formally, the determinant of � is, in
principle

det� =
∞∏

n=1

λn .

This infinite product diverges. For example, if M = S
1 and � is the usual scalar Laplace operator, then up to a

constant the infinite product is

∞∏

n=1

n2
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R. Gay, A. Sebbar

after omitting the zero eigenvalue, and this is divergent. We attribute a value to these divergent infinite products by
a regularization method, due to Ray and Singer [30]. We assume that the zeta function of � converges for large
Res, so that in some right half plane

−ζ ′
�(s) =

∞∑

n=1

λ−s
n log λn,

and then use the regularity of the analytic continuation of ζ� at s = 0 to define

det� = e−ζ ′
�(0).

Remark 4 The definition is motivated by the fact that for a finite dimensional case, if a matrix A admits the
eigenvalues λn, 1 ≤ n ≤ N ,

det A =
N∏

n=1

λn = exp

(
− d

ds

∣∣∣∣
s=0

N∑

n=1

1

λsn

)
.

For the case of the circle S
1, we have, ζ being the Riemann zeta function,

ζ�(s) = 2ζ(2s), ζ ′
�(0) = 4ζ ′(0) = −2 log(2π), det� = (2π)2.

2.3 Symbols

According to Seeley [31], if A is an elliptic invertible pseudo-differential operator of order m, and has a ray of
minimal growth, then along this ray, the L2 operator norm of the resolvent verifies

||(A − λ)−1|| = O

(
1

|λ|
)

.

We can define, for Res < 0

As = i

2π

∫

�

λs(A − λ)−1dλ,

where � is a curve, disjoint from the spectrum of A, beginning at ∞, passing along the ray of minimal growth to a
small circle about the origin, then clockwise about the circle, and back to ∞ along the ray.

If am is the top term of the symbol of A, then the symbol of A is

σ(A) =
∞∑

j=0

am− j .

With B(λ) = (A − λ)−1 we have

σ(B)σ (A − λ) = 1.

In particular

b−m(am − λ) = 1

b−m−l(am − λ) +
∑

(∂/∂ξ)αb−m− j D
α
x am−k/α! = 0, l > 0,

where the sum is taken for j < l, j + k + |α| = l. According to Seeley [31], p. 290, the symbol of the s-power As

is then

σ(As) =
∞∑

j=0

i

2π

∫

�

λsb−m− j dλ.
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Pseudo-differential operators on the circle, Bernoulli polynomials

3 The spectrum of positive elliptic operators and periodic bicharacteristics

There is a far reaching extension of the Poisson summation formula due to Duistermaat-Guillemin [8], Chazarain
[4] and Colin de Verdière [5]. Consider a compact n-dimensional manifold X and a scalar elliptic pseudodifferential
operator P of order 1 on X which is positive and selfadjoint. The spectrum of this operator is a discrete set

0 ≤ λ0 ≤ λ1 ≤ · · · ≤ λ j ≤ · · · −→ +∞.

This defines a distribution

σP =
∞∑

j=0

δλ j

The principal symbol p of P defines a Hamiltonian vector field Hp on T ∗X \ X , the cotangent bundle with the zero
section removed. The Laplacian � is defined with respect to a Riemannian metric on X . A standard example is to
consider, for a suitable constant c, the operator c − �, which is positive and selfadjoint. In this situation we can
evoke the spectral theorem to define a positive square root P = √

c − �, which is pseudodifferential operator of
order 1 and whose principal symbol is given by p(x, ξ) = ‖ξ‖ for x ∈ X and ξ ∈ Tx X . The Hamiltonian flow of
p is the geodesic spray of X (at least on the unit sphere bundle). The Fourier transform of the spectral distribution
σP is

σ̂P (t) = FσP =
∞∑

j=0

e−iλ j t . (6)

This can be seen as the distributional trace of the unitary operator e−i t P , which is a Fourier integral operator.
A preliminary result says that σ̂P is a tempered distribution, and therefore so is σP . In particular the eigenvalue
counting function satisfies Weyl’s law

NP (λ) = �
{
j, λ j ≤ λ

} ∼ ωn

(2π)n
Vol(M)λ

n
2 , λ → ∞,

where ωn denotes the volume of the n-dimensional unit ball. The celebrated antecedent of results of this type is
due to H. Weyl who showed (for D a plane domain and the Dirichlet problem) that the spectrum of the Laplacian
determines the volume. A clear confirmation of Weyl’s law can be provided by the unit circle. If n = 1, the unit
ball is [−1, 1] of volume 2, and Vol

(
S
1
) = 2π , so

ωn

(2π)n
Vol(M)λ

n
2 = 2λ

1
2 .

On the other hand, for λ large

N (λ) = 2�λ n
2 � − 1 ∼ 2λ

1
2 .

The fundamental result is the connection between periods and eigenvalues

Theorem 3 The distribution σ̂P is C∞ outside the set of periods of periodic trajectories of the hamiltonian HP

The classical Poisson summation formula∑

k∈Z
eikt = 2π

∑

k∈Z
δ2πk

is a particular case of this theorem. On the flat torus R/Z = S
1 we have on the one hand the spectrum λk = k2, k =

0, 1, 2, · · · of the laplacian − d2

dx2
, and on the other hand the lengths 2kπ, k = 0, 1, 2, · · · of the closed periodic

geodesics. This corresponds to the pairwise orthogonal subspaces decomposition

L2(S1) =
∞⊕

k=0

Hk(S
1),

where H0(S
1) = R is the set of constant functions, and Hk(S

1) is the two-dimensional space spanned by the
functions cos kθ and sin kθ, k ≥ 1.
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Remark 5 For M = R
n/L a n-torus, L is a lattice of R

n , the eigenfunctions of the Laplacian are e2iπx ·l ′ , l ′ ∈ L ′,
the dual lattice of all vectors x ∈ span(L) such that 〈x, y〉 is an integer for all y ∈ L . The eigenvalues are 4π2‖l ′‖2
and the trace is given by

Tr
(
e−t�) =

∑

ω∈L ′
e−4π2t‖ω‖2 = Vol(M)

(4π t)
n
2

∑

ω∈L
e− ‖l‖2

4t .

The last equality is obtained by the Poisson summation formula. The closed geodesics on M lift to the line segments
from 0 to l ∈ L , on R

n . So the length spectrum, i.e., the lengths of closed geodesies, is the set {‖l‖, l ∈ L}.
From this point of view, an extension of the polylogarithm function, is the Epstein zeta function (in its simplest
form) given by the Dirichlet series

F(x1, · · · , xn) =
∑

N∈L

′ eN ·x

‖N‖2s , x = (x1, · · · , xn), (7)

where

L = Za1 + · · · + Zan, ai = (0, · · · , 2π, 0, · · · , 0), ‖N‖2s = (n21 + n22 + · · · + n2n)
s .

The exponential function eN ·x is an eigenfunction of the initial value problem

n∑

i=1

∂2u

∂x2i
+ λu = 0

in the parallelotope D = {0 ≤ x1, · · · , xn ≤ 2π}, with Dirichlet conditions
u(x1, · · · xi−1, 0, xi+1, · · · , xn) = u(x1, · · · xi−1, 2π, xi+1, · · · , xn), 1 ≤ i ≤ n.

The associated eigenvalues are ‖N‖2. If we arrange the eigenfunctions into a sequence ωn(x), with λn as in [27],
the series (7) may be written as

∑

λn �=0

ωn(x)ω(y)

λsn
.

4 The spectral zeta function in quantum mechanics

The goal of this section is to point out that the polylogarithm function is a particular example of a large construction,
of a spectral nature. We define the quantum zeta function as a formal sum over the non-zero eigenvalues λ of a
Hamiltonian (with the boundary conditions, etc. taken into account), when it exists [6]

Z(s) =
∑

λ�=0

1

λs
. (8)

We also define the associated function, the parity zeta function

Y (s) =
∑

λ�=0

(−1)n

λs
. (9)

When the ordered energy eigenvalues λ are discrete, non-vanishing, and sufficiently divergent, we assume that these
Dirichlet series converge for sufficiently large Res.

Now we consider a real-valued, one-dimensional, potential V (x) and introduce

−1

2

∂2G

∂x2
+ V (x)G − λG = −δx0 .
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The standard Green function is expressed in terms of orthonormal eigenfunctions ψn as

G(x, x0, λ) =
∑

n

ψn(x)ψ∗
n (x0)

λ − λn
, (10)

which stands as a particular solution. Based on of the orthonormality of the wave functions the relation (10) gives

Z(1) = −
∫

G(x, x, 0) dx .

More generally

Z(n) = −
∫

G(n−1)(x, x, 0) dx,

where G(m) denotes the m-th partial derivative of G with respect to the energy argument. Another representation
for Z(n), n ∈ Z+ is [6], [17]

Z(n) = (−1)n
∫

G(x1, x2, 0)G(x2, x3, 0) · · ·G(xn, x1, 0)dx1dx2 · · · dxn . (11)

For symmetric potentials V the parity zeta function enjoys the formal relation

Y (1) = −
∫

G(x,−x, 0)dx .

The eigenstate representation of the propagator is

K (x, t; x0, 0) =
∑

n

ψn(x)ψ
∗
n (x0)e

−iλn t , (12)

which leads to a Mellin transform

Z(s) = i s

�(s)

∫ ∞

0
t s−1

∫
K (x, t; x, 0)dx dt.

This representation is often referred to as the heat-kernel form of the zeta function. It is of interest that the inverse
Mellin transform yields the quantum partition function

∑

n

e−λn t = 1

2iπ

∫ c+i∞

c−i∞
Z(s)�(s)t−s ds

4.1 Minakshisundaram-Pleijel zeta function

There are several possible extension of the polylogarithm function, since the latter is intimately linked to the circle.
For a compact Riemannian manifold M of dimension N with eigenvalues

λ1, λ2, . . .

of the Laplace-Beltrami operator �, the zeta function is given for Re(s) sufficiently large by

Z(s) = Tr(�−s) =
∞∑

n=1

|λn|−s,

(where if an eigenvalue is zero it is omitted in the sum). The manifold may have a boundary, in which case one has
to prescribe suitable boundary conditions, such as Dirichlet or Neumann boundary conditions. More generally one
can define

Z(P, Q, s) =
∞∑

n=1

fn(P) fn(Q)

λsn
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for P and Q on the manifold, where the fn are normalized eigenfunctions. This can be analytically continued to a
meromorphic function of complex values of s, and is holomorphic for P �= Q. The only possible poles are simples,
and are at

s = N

2
,
N

2
− 1,

N

2
− 2, . . . ,

1

2
, −1

2
, −1

2
, . . .

for N odd, while for even N at

s = N

2
,
N

2
− 1,

N

2
− 2, . . . , 2, 1, · · ·.

If N is odd then Z(P, P, s) vanishes at s = 0,−1,−2, . . .. If N is even, the residues at the poles can be explicitly
found in terms of the metric of M . The Wiener-Ikehara Tauberian theorem gives Carleman’s asymptotic formula
∑

λn<T

fn(P)2 ∼ T N/2

(2
√

π)N�(N/2 + 1)
.

If the manifold is a circle of dimension N = 1, then the eigenvalues of the Laplacian are n2 for integers n, and
the zeta function

Z(s) =
∑

n �=0

1

(n2)s
= 2ζ(2s),

where ζ is the Riemann zeta function.

4.2 Second emergence of the polylogarithm function

Let f (x) ∈ L1([0, 1]) be a real or complex function having the period 1.We start from the Fourier series, converging
almost everywhere

f (x) ∼ α0 + 2
∞∑

n=0

(αn cos 2nπx + βn sin 2nπx) (13)

and integrate (formally) p-times to obtain the series

Hp(x) +
∞∑

n=0

2

(2nπ)p

{
αn cos

(
2nπx − pπ

2

)
+ βn sin

(
2nπx − pπ

2

)}
, (14)

where Hp(x) is a polynomial of degree p such that

d p

dx p
Hp(x) = α0. (15)

The series (14) converges for every integer p ≥ 1 to a function Fp(x), with

d p

dx p
Fp(x) = f (x), a.e

Since Hp(x) is a polynomial, the relation (14) does not define a periodic function for p ≥ 1. We replace Hp(x) by
the suitable function H̃p(x) having the period 1, represented by the Fourier expansion over (0, 1) of Hp(x), that is
we consider H̃p(x) = Hp (x − �x�). If, moreover, we require that the constant term of this development to vanish
∫ 1

0
Hp(x)dx = 0, p ≥ 1,

then H̃p(x) is uniquely determined by the former conditions
⎧
⎪⎨

⎪⎩

H̃ ′
1(x) = α0

1
p+1 H̃ ′

p+1(x) = H̃p(x), 0 < x < 1.

.
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We then have H̃p(x) = α0Bb(x), where Bb(x) is the Bernoulli function. This shows that for every x and every
integer p ≥ 1

H̃p(x) = −α0

∞∑

n=1

2

(2nπ)p
cos

(
2nπx − pπ

2

)
. (16)

By inserting (16) in (14) we obtain

Fp(x) = α0

∞∑

n=1

2

(2nπ)p

[
(αn − α0) cos

(
2nπx − pπ

2

)
+ βn sin

(
2nπx − pπ

2

)]
. (17)

It is very natural to consider, more generally, the series

Fs(x) == α0

∞∑

n=1

2

(2nπ)s

[
(αn − α0) cos

(
2nπx − πs

2

)
+ βn sin

(
2nπx − πs

2

)]
. (18)

Since f ∈ L1(0, 1), αn and βn tend to 0 at infinity, so the series (18) converges absolutely and uniformly on any
compact subset of the right half-plane {Res > 1}. It also converges for s = 1 by partial summation.

Theorem 4 (Mikolas) We have

Fs(x) =
∫ 1

0
f (x − t) (ls(t) − ls(x)) dt,

where

ls(u) =
∞∑

n=1

2

(2nπ)s
cos

(
2nπu − πs

2

)
.

This function is actually related to a zeta function. The Hurwitz zeta function is defined, for Res > 1, by

ζ(s, a) =
∞∑

n=0

1

(n + a)s
, a ∈ C \

{
0,−1,−2, · · ·

}
.

We have ζ(s, 1) = ζ(s), the Riemann zeta function, and even for general values of a, ζ(s, a) and ζ(s) share many
properties. For instance we have the contour integral representation

2iπζ(s, a) = −�(1 − s)
∫ (0+)

∞
(−t)s−1e−at (1 − e−t )−1 dt, Rea > 0, | arg(−t) |≤ π. (19)

By classical methods of contours deformation we get Hurwitz’s formula [11]

ζ(s, a) = 2(2π)s−1�(1 − s)
∞∑

n=1

1

n1−s
sin

(
2πna + πs

2

)
. (20)

It verifies the difference-differential equation, similar to the one satisfied by Bernoulli polynomials Bp(u). In fact,
for s = p ≥ 1 integer, we have

lp(u) = 1

(p − 1)!ζ(1 − p, u) = −Bp(u).

Furthermore the F-equation holds

∂

∂a
ζ(s, a) = −sζ(s + 1, a). (21)

We refer to [21] for a exposition on the Bernoulli zeta function.
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The Hurwitz zeta function satisfies an identity which generalizes the functional equation of the Riemann zeta
function

ζ(1 − s, a) = �(s)

(2π)s

(
e−π is/2

∞∑

n=1

e2π ina

ns
+ eπ is/2

∞∑

n=1

e−2π ina

ns

)
,

valid forRe(s) > 1 and 0 < a ≤ 1. The Riemann zeta functional equation is a special case, corresponding to a = 1

ζ(1 − s) = 2�(s)

(2π)s
cos

(πs

2

)
ζ(s).

Hurwitz’s formula can also be expressed as

ζ(s, a) = 2�(1 − s)

(2π)1−s

(
sin

(πs

2

) ∞∑

n=1

cos(2πna)

n1−s
+ cos

(πs

2

) ∞∑

n=1

sin(2πna)

n1−s

)

The Lerch zeta function is defined by

L(t, x, s) =
∞∑

n=0

e2iπn t

(n + x)s
, Re(s) > 1, Re(x) > 0, Im(t) ≥ 0.

Remark 6 The function

pλ(u) =
∞∑

n=1

sin 2nπu

nλ
, λ ≥ 1

satisfies Franel type integral, which could suggest a role of non-trivial zeros of the Riemann zeta function [14]
∫ 1

0
pλ(at)pλ(bt) dt = ζ(2λ)

2

gcd(a, b)

aλbλ
.

In fact, if 2λ is a zero of ζ(s), then the left side vanishes for every a and b.
The previous formula for ζ(s, a) is analog to

1

n! Bn(x) = −
∞∑

k=−∞
k �=0

e2iπkx

(2iπk)n
= − 2

(2π)n

∞∑

k=1

cos
(
2πkx − nπ

2

)

kn
, (22)

valid for n = 1, 0 < x < 1 and for n > 1, 0 ≤ x ≤ 1. We deduce, from this expansion, by using the classical
integral
∫ ∞

0
tne−at dt = n!

an+1 , Rea > 0, n = 0, 1, · · · ,

that

Bn(x) = − −n

(−2iπ)n

{∫ ∞

0
tn−1 e−2iπx

et − e−2iπx
dt + (−1)n

∫ ∞

0
tn−1 e2iπx

et − e2iπx
dt

}
(23)

The relation (22) is the discrete version of (5). The Bernoulli polynomials verify also an F-equation, similar to (21)
and (29)

B ′
n(x) = nBn−1(x).

4.3 The polylogarithm function and tempered distributions

We define

lis(x) =
∞∑

n=1

enx

ns
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for which the following relation of Lindelöf [35] holds

lis(x) = �(1 − s)(−x)s−1 +
∞∑

k=0

ζ(s − k)
xk

k! . (24)

Another interesting relation, due to Wirtinger [35], is

lis(x) = �(1 − s)
∞∑

−∞
(−2iπx + 2inπ)s−1 . (25)

In particular for Res < 1

lim
x→0

(−2iπx)1−s lis(x) = �(1 − s). (26)

We define the distribution

γ s+(x) = xs−1+
�(s)

, x+ = max(x, 0),

where xc = ec log x for x > 0, c ∈ C. The function γ s+(x) is locally integrable on R if and only if Res > 0. It
defines a distribution on R in this case. Then [10]

lis(x) = (
γ s+(x) ∗ li0

)
(x), (27)

where li0 is defined by

li0(x) = 1

e−x − 1
= −1

x

∞∑

n=0

Bn
xn

n! , | x |< 2π.

Remark 7 We will need the following relation, which results from the partial fractions decomposition of the hyper-
bolic cotangent.

1

e−x − 1
= −1

x
− 1

2
− 2

∞∑

k=1

x

x2 + 4π2k2
, x /∈ 2iπZ. (28)

For complex value z

lis(z) = �(1 − s)(−z)s−1 +
∞∑

k=0

ζ(s − k)

k! zk,

with

lim
s→k+1

{
ζ(s − k)

k! zk + �(1 − s)(−z)s−1
}

= zk

k!

{
k∑

h=1

1

h
− ln(−z)

}
,

where the sum over h vanishes if k = 0. So, for positive integer orders and for | z |< 2π we have the series
expansion

lin(z) = zn−1

(n − 1)! {Hn−1 − ln(−z)} +
∞∑

k=0
k �=n−1

ζ(n − k)

k! zk,

where Hn denotes the n-th harmonic number

Hn =
n∑

k=1

1

k
, H0 = 0.
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5 The distributions (x + i0)s and (x − i0)s

5.1 The distribution tλ+ and summation formulas

We review some classical facts on distributions theory that we need to complete our analysis of the Proposition (1).
This concerns Hadamard regularization of a distribution T , also called Hadamard finite part, and denoted by Treg.
Our principal reference is [15] and [36]. The map (Mellin transform)

λ −→ 〈tλ−1+ , φ〉 =
∫ ∞

0
tλ−1φ(t) dt, φ ∈ S (R),

defined on the open half-plane {λ ∈ C, Reλ > 0}, defines a distribution on R, with support in [0, ∞). The map

λ −→ γ +
λ = 1

�(λ)
tλ−1+ ∈ S ′(R)

verifies

γ +
λ = γ +

λ+k
(k)

, k ∈ Z.

So it can be analytically extended to a holomorphic function on the punctured complex plane C\{−1,−2, . . .}.
Explicitly, choose k = 1, 2, . . . and the complex number λ with Reλ > −k and λ = −1,−2, · · · ,−k + 1, then

tλ+ =
k∑

r=1

(−1)r−1

(λ + r)(r − 1)!δ
(r−1) + (

tλ+
)
reg, k .

Here, for all test functions φ ∈ S (R), the regular part is defined by

〈(tλ+
)
reg, k, φ〉 =

∫ 1

0
tλ
(

φ(t) −
k−1∑

r=0

φ(r)(0)

r !

)
dt +

∫ ∞

1
tλφ(t) dt.

We say that the map λ −→ tλ+ is a meromorphic function on the complex plane C, with values in the space
S ′(R) of tempered distributions. This function has simple poles at the points λ = −1,−2, · · · , with the residues

Resλ=−k
(
tλ+
) = (−1)k−1

(k − 1)! δ
(k−1), k = 1, 2, · · ·

Parallel to t+ we can define t−

t− =
{
0 if t ≥ 0

| t | if t ≤ 0,

or

〈t−, φ〉 =
∫ ∞

−∞
t−φ(t) dt =

∫ 0

−∞
| t | φ(t) dt.

Similarly, let φ ∈ S (R), the function λ 
→ tλ−(φ), defined on the open half-plane {λ ∈ C, Reλ > 0} can be
analytically extended to a holomorphic function on the punctured complex plane C \ {−1,−2, · · · }. Explicitly,
choose k = 1, 2, · · · and the complex number λ with Reλ > −k and λ = −1,−2, · · · ,−k + 1, then

tλ− =
k∑

r=1

1

(λ + r)(r − 1)!δ
(r−1) + (

tλ−
)
reg, k .

Here, for all test functions φ ∈ S (R), the regular part is defined by

〈(tλ−
)
reg, k, φ〉 =

∫ 0

−1
| t |λ

(
φ(t) −

k−1∑

r=0

φ(r)(0)

r !

)
dt +

∫ −1

−∞
| t |λ φ(t) dt.
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We say that the map λ −→ tλ+ is a meromorphic function on the complex plane C, with values in the spaceS ′(R)

of tempered distributions. This function has simple poles at the points λ = −1,−2, · · · with the residues

Resλ=−k
(
tλ+
) = (−1)k−1

(k − 1)! δ
(k−1), k = 1, 2, · · ·

Remark 8 The tempered distribution T = 1

2
(t+ + t−) is a fundamental solution of the differential operator

d2

dx2
,

that is
d2

dx2
T = δ, since for the second derivatives we have

ẗ+ = δ0, ẗ− = δ0.

Furthermore, let D ′(R)+ be the space of distributions u ∈ D ′(R) such that there exists an l ∈ R with supp u ⊂
[l, ∞). For u, v ∈ D ′(R)+, the convolution product u ∗ v is well defined and defines an element of D ′(R)+. Each
u ∈ D ′(R)+ possesses a k-th order antiderivative in D ′(R)+ given by

v = u ∗ γ k+.

By analytic continuation we obtain

∂γ s+1+ = γ s+, xγ s+ = sγ s+1+ ,

and similarly to (21), the F-equation

x∂γ s+ = (s − 1)γ s+ (29)

holds.
The distributions (x + i0)λ and (x − i0)λ are well known [15], p.59, and are defined by

(x + i0)λ =
{
eiλπ | x |λ for x < 0

xλ for x > 0
; (x − i0)λ =

{
e−iλπ | x |λ for x < 0

xλ for x > 0

or, in a more concise form

(x + i0)λ = xλ+ + eiλπ xλ−, (x − i0)λ = xλ+ + e−iλπ xλ−.

The distributions (x + i0)λ, (x − i0)λ are entire functions of λ [15], p. 94. Moreover, as distributions we have

d

dx
(x + i0)λ = λ(x + i0)λ−1,

d

dx
(x − i0)λ = λ(x − i0)λ−1.

Remark 9 For each ε > 0, the function (x ± iε)λ defines a tempered distribution, and we have in S ′

(x ± i0)λ = lim
ε→0

(x ± iε)λ.

Let

H± = {z = x + iy ∈ C, x ∈ R,±y > 0}

The function f (z) = 1

z
, defined on H±, has a limit in D ′(R), when y tends to 0

lim
y→0, y>0

1

x ± iy
= 1

x ± i0
,

with

1

x + i0
− 1

x + i0
= −2iπδ,

1

x + i0
+ 1

x + i0
= 2VP

1

x
. (30)
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It is important to observe that the first relation implies the Poisson summation formula. In fact the two functions

f+(z) =
∞∑

n=0

e2iπnz, f−(z) =
−1∑

−∞
e2iπnz =

∞∑

1

e−2iπnz . (31)

are holomorphic in H+ and H− respectively, with

f+(z) = 1

1 − e2iπ z
, z ∈ H+; f−(z) = e−2iπ z

1 − e−2iπ z
= − 1

1 − e2iπ z
, z ∈ H−.

In a neighborhood U of the (−1, 1) we have

f+(z) = −1

z
+ h+(z), f−(z) = 1

z
+ h−(z),

with h+, h− holomorphic in (−1, 1). Hence, as a hyperfunction on (−1, 1)
∞∑

−∞
e2iπnx = 1

1 − e2iπ(x+i0)
− 1

1 − e2iπ(x−i0)

= − 1

2iπ

(
1

x + i0
− 1

x − i0

)
= δ0 =

∑

k∈Z
δn|(−1,1).

Since the left side is 1-periodic, we obtain the Poisson summation formula, as equality between two hyperfunctions.
∞∑

−∞
e2iπnx =

∞∑

−∞
δn .

But actually the summation formula is also valid in the sense of distributions. We need only to make explicit the
functions h+, h− on (−1, 1). We use (28) in the form

1

1 − e−z
= 1

z
+ 1

2
+ 2

∞∑

k=1

z

z2 + 4π2k2
, z /∈ 2iπZ,

which is a variant of the self-reciprocal relation

2
∫ ∞

0
sin xt

(
1

e2π t − 1
− 1

2π t

)
dt = 1

ex − 1
− 1

x
.

Hence, in D ′ (
S
1
)

∞∑

−∞
e2iπnx = 1

1 − e2iπ(x+i0)
− 1

1 − e2iπ(x−i0)
= − 1

2iπ

(
1

x + i0
− 1

x − i0

)
= δ0.

or, in D ′ (R)

∞∑

−∞
e2iπnx =

∞∑

−∞
δn .

5.2 The operator −i
d

dx
on the circle.

We would like to look at a variant of the antecedent ideas, which amounts to comparing the functions cot and coth.
It is to balance the role played by the two (partial fractions decompositions of the) functions

π cot πx = 1 + 2x
∞∑

n=1

1

x2 − n2
, x ∈ R \ Z,
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and

coth x = 1

x
+ 2x

∞∑

n=1

1

x2 + π2n2
, x ∈ R \ iπZ.

Given a trigonometric series

S =
∞∑

−∞
ane

inx ,

its conjugate is defined as

T = −i
∞∑

−∞
(sg n)ane

inx ,

where sg n = 1 if n > 0, sg n = −1 if n < 0 and sg 0 = 0. Formally we have

S + iT = a0 + 2
∞∑

n=1

ane
inx .

The space H = L2(S1, C) admits the decomposition

H = H+ ⊕ H−,

where

H+ =
{
f ∈ H, f (x) =

∞∑

n=0

ane
inx

}
, H− =

{
f ∈ H, f (x) =

∑

n<0

ane
inx

}
.

Every element of H is the boundary value of an holomorphic function in the open unit disk. A major result in
Fourier Analysis is that the conjugate function J ( f ) of f ∈ H+ is a singular integral. In other words, the operator
defining the decomposition H = H+ ⊕ H− is the singular operator integral [16], (Theorem 16, p.122) and [9]
(section 13.9)

f −→ J ( f )(x) = 1

2π
PV

∫ 2π

0
K (x, t) f (t) dt,

where, formally,

K (x, t) =
∞∑

n=0

ein(x−t) −
∑

n<0

ein(x−t) = 1 + i cot
1

2
(x − t).

The hyperfunction interpretation is as follows: We replace x − t in K (x, t) by x and we use the twin functions (31)
and the second relation (30) to obtain on (−π, π)

∞∑

n=0

einx −
∑

n<0

einx = −1

i

(
1

x + i0
+ 1

x − i0

)
= 2i PV

1

x
.

5.3 Formal considerations

It is maybe not so surprising that the functions cos and cosh play parallel roles. For a real k the cosine Fourier

transform of f (x) = e− 1
2 x

2
cos kx is Fc(x) = e− 1

2 (k2+x2) cosh kx , which amounts to the following extremely
elegant formula linking the two functions, valid for α > 0, β > 0, αβ = 2π

√
α

(
1

2
+

∞∑

n=1

e− 1
2 (α2+n2) cos kαn

)
= √

βe− 1
2 k

2

(
1

2
+

∞∑

n=1

e− 1
2β2n2 cosh kβn

)
,
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which is a direct application of the Poisson summation formula. A second formal consideration concerns the
calculations of the previous subsection, which can be linked by the classical limit relations

lim
t→∞ eitx PV

1

x
= δ0.

Finally a third formal consideration is that many of the formulas obtained could be explained by pullbacks and
pushforwards of distributions and some nonlinear transformations of the Dirca δ-function. Suppose that X and
Y are open subsets of R

n and 
 : X −→ Y a C∞ diffeomorphism. Then 
 is proper and the pushforward

∗ : D ′(X) −→ D ′(Y ) is a sequentially continuous linear mapping. The pullback 
∗ : D ′(Y ) −→ D ′(X) is a
continuous linear mapping. In particular


∗δ
(x) = 1

|det D
(x)|δx ,
where det D
(x) is the determinant of the Jacobian D
(x) of 
 at x . A formal extension, chiefly used in the
Physics literature [24] [Eq. (A.18)] is, in the one dimensional case and for simple zeros,

δ
(x) =
∑

m

1

|
′(xm)|δxm , 
(xm) = 0, 
′(xm) �= 0. (32)

With this formula, the Poisson summation formula takes the form
∞∑

−∞
δn =

∞∑

−∞
e2iπnx = πδtanπx .

6 On the Kieper theorem

We have seen the relations between the logarithmic derivatives of the �-function and the Hurwitz zeta function

ψ(n)(z) = dn+1

dzn+1 log�(z) = (−1)n+1n!ζ(n + 1, z).

The goal of this section is to give a similar relation for complex derivative of the digamma function ψ(z). The
Laurent series expansion can be used to define generalized Stieltjes constants that occur in the series

ζ(s, a) = 1

s − 1
+

∞∑

n=0

(−1)n

n! γn(a)(s − 1)n .

In particular, the constant term is given by

lim
s→1

[
ζ(s, a) − 1

s − 1

]
= −�′(a)

�(a)
= −ψ(a).

As a special case, γ0(1) = −ψ(1) = γ0 = γ , the classical Euler’s constant.
The Stieltjes constants γn are the Laurent coefficients in the expansion of the Riemann zeta function at s = 1

ζ(s) = 1

s − 1
+

∞∑

n=0

(−1)n

n! γn (s − 1)n .

The generalized Stieltjes constants, denoted as γn(q), are the coefficients of the Laurent expansion of the Hurwitz
zeta function at s = 1

ζ(s, a) = 1

s − 1
+

∞∑

n=0

(−1)n

n! γn(a) (s − 1)n .

Hence

lim
s→1

(ζ(s, a) − ζ(s)) = γ0(a) − γ0.
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According to Franel [13], Blagoushine [1]

γn = − 2π

n + 1

∫ ∞

−∞

{
log

( 1
2 + iu

)}n+1

(
eπu + e−πu

)2 du (33)

The Hurwitz zeta function also has the following integral representation

ζ(s, a) = 1

�(s)

∫ ∞

0

xs−1e−ax

1 − e−x
dx,

where Re(s) > 1 and 0 < a ≤ 1. According to [2] we have

γn(a) = lim
m→∞

(
m∑

k=0

logn(k + a)

k + a
− logn+1(m + a)

n + 1

)
,

γn(a) = − 2π

n + 1

∫ ∞

−∞

{
log

(
a − 1

2 + iu
)}n+1

(
eπu + e−πu

)2 du

which generalizes the classical formula

γn = lim
m→∞

(
m∑

k=1

logn k

k
− logn+1m

n + 1

)
,

and also (33)

log(�(s)) = −γ0(s − 1) +
∞∑

n=2

(−1)nζ(n)(s − 1)n .

We have the relation

Daψ(a) = 1

a2
+

∞∑

n=1

1

(a + n)2
= ζ(2, a), Da = d

da
.

The function ψ is related to zeta functions and the Euler’s constant γ by

lim
s→1

{
ζ(s) − ζ(s, a)

} = ψ(a) + γ.

In this section we define fractional integrals and derivatives by, respectively,

cT
α
t f (t) = 1

�(α)

∫ t

c
(t − u)α−1 f (u)du, cD

α
t f (t) = dn

dtn
(
cT

n−α
t f (t)

)
. (34)

We unify our notations by setting

cD
−α
t f (t) = c I

α
t f (t)

to get a function cD
α
t f (t) analytic in α ∈ C. Some classical examples are

0D
α
t t

β = �(β + 1)

�(β − α + 1)
tβ−α, ∞Dα

t (ekt ) = kαekt .

Theorem 5 (Kieper) For complex values of argument s, the Hurwitz zeta ζ(s, a) function and the digamma function
ψ(z) are related by

ζ(s, a) = (−1)s

�(s)
∞Ds−1

a ψ(a), Res > 1.

In particular

ζ(s) = (−1)s

�(s)
∞Ds−1

a ψ(a)|a=1 , Res > 1.
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The Lerch transcendent (1)


(z, s, a) =
∞∑

n=0

zn

(n + a)s

under the conditions

|z| ≤ 1, a /∈ {0,−1,−2, · · · }, Res > 1

verifies


(z, 0, a) = 1

1 − z
, 
(z, s − 1, a) =

(
a + z

∂

∂z

)

(z, s − 1, a).

The fundamental relation of Lerch is

(2π)s za

�(s)

(z, 1 − s, a) = e

iπs
2 


(
e−2iaπ , s,

log z

2iπ

)
+ e2iπa− iπs

2 


(
e2iaπ , s, 1 − log z

2iπ

)
.

Moreover


(z, s, a) = 1

�(s)

∫ ∞

0

t s−1e−at

1 − ze−t
dt.

Taking z = ex and defining the distribution

γa,+(x) = xs−1+ eax

�(s)
,

we obtain, as an extension of (27), the convolution relation


(ex , s, a) = γa,+ ∗ li0(x).

7 Other operators

Given a ∈ (0, 1), we introduce a new operator on the circle

�a = − d2

dθ2
+ 2ia

d

dθ
+ a2 =

(
i
d

dθ
+ a

)2

.

The eigenvalues are λn = (n − a)2, n = 0, 1, · · · . The spectral zeta function of �a , expressed in terms of the
Hurwitz zeta function, is

ζ�a (s) =
∑

n∈Z

1

(n − a)2s
= ζ(2s, 1 − a) + ζ(2s, a).

By using the Lerch identity

ζ ′(0, a) = log�(a) − 1

2
log(2π)

we obtain

ζ ′(0, a) = 2 log�(a)�(1 − a) − 2 log(2π).

By the complement formula of the �-function, the determinant of �a is

det�a = e−ζ ′
�a

(0) = (2π)2

(�(a)�(1 − a))2
= 4 sin2(πa).
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8 A strange formula

In this section we give the polylogarithm function a Lambert series expansion. Lambert series are sums of the form
∞∑

n=1

an
xn

1 − xn
, an ∈ R.

They were considered in connection with the convergence of power series. We refer to [29] (p.125) for the following

properties. If the series
∞∑

n=1

an converges, then the Lambert series converges for all real values of x except at x = ±1,

otherwise it converges for those values of x for which the series
∞∑

n=1

anx
n converges.

We will need some facts on the convolution of arithmetical sequences, or functions. Let f and g be arithmetic
functions with associated Dirichlet series F(s) and G(s)

F(s) =
∞∑

n=1

f (n)

ns
, G(s) =

∞∑

n=1

g(n)

ns
.

Let h = f ∗ g be the Dirichlet convolution of f and g

h(n) =
∑

d|n
f (d)g(

n

d
),

and let H(s) be the associated Dirichlet series. If F(s) and G(s) converge absolutely at some point s, then so does
H(s), and the equality H(s) = F(s)G(s) holds.

We have, from the definition, that if (an)n≥1 is a given sequence, and 1 is the constant sequence, 1(n) = 1, n ≥ 1

the general term of 1 ∗ a is An = (1 ∗ a)(n) =
∑

d|n
ad , and

∞∑

n=1

an
xn

1 − xn
=

∞∑

m=1

am(xm + x2m + +x3m + · · · ) =
∞∑

n=1

⎛

⎝
∑

d|n
ad

⎞

⎠ xn =
∞∑

n=1

Anx
n .

This is equivalent to

ϕ(s)ζ(s) = ψ(s), ϕ(s) =
∞∑

n=1

an
ns

, ψ(s) =
∞∑

m=1

An

ns
, (35)

where ζ(s) is the Riemann zeta function. From

ϕ(s) = 1

ζ(s)
ψ(s),

1

ζ(s)
=

∞∑

n=1

μ(n)

ns
,

where μ(n) is the Möbius arithmetical function, we have the inversion formula

an =
∑

k|n
μ(k)A n

k
, n ≥ 1. (36)

If k is a positive integer, the Jordan totient function Jk(n) is defined by the number of ordered k-tuples of integers
x1, x2, · · · , xk, 1 ≤ xi ≤ n, such that

gcd(x1, x2, · · · , xk, n) = 1.

It coincides with Euler’s totient function when k = 1, and satisfies the following properties
∑

d|n
Jk(d) = nk, (37)
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or, in terms of Dirichlet convolutions, as [23]

Jk(n) ∗ 1 = nk,

By Möbius inversion we obtain

Jk(n) = μ(n) � nk = nk
∑

d|n
μ(d)d−k .

It also can be given by

Jk(n) = nk
∏

p|n

(
1 − 1

pk

)
.

This last expression allows us to extend the definition to complex values of s

Js(n) = ns
∏

p|n

(
1 − 1

ps

)
, Js(n) = μ(n) � ns, s ∈ C.

This an entire function of s. Similarly (37) extends to
∑

d|n
Js(d) = ns, s ∈ C. (38)

As a consequence, the polylogarithm function admits a Lambert series expansion
∞∑

n=1

J−s(n)
zn

1 − zn
= Lis(z) =

∞∑

n=1

zn

ns
, |z| < 1, Res ≥ 1.

Taking into account (35), we see that the previous relation is just another form of the following equality
∑

n≥1

J−s(n)

nz
= ζ(z + s)

ζ(z)
, Rez > 1, s ∈ C.
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