
Chapman University Digital Chapman University Digital 

Commons Commons 

Mathematics, Physics, and Computer Science 
Faculty Articles and Research 

Science and Technology Faculty Articles and 
Research 

10-17-2023 

The General Theory of Superoscillations and Supershifts in The General Theory of Superoscillations and Supershifts in 

Several Variables Several Variables 

Fabrizio Colombo 
Politecnico di Milano, fabrizio.colombo@polimi.it 

Stefano Pinton 
Politecnico di Milano, stefano.pinton@polimi.it 

Irene Sabadini 
Politecnico di Milano, irene.sabadini@polimi.it 

Daniele C. Struppa 
Chapman University, struppa@chapman.edu 

Follow this and additional works at: https://digitalcommons.chapman.edu/scs_articles 

 Part of the Analysis Commons 

Recommended Citation Recommended Citation 
Colombo, F., Pinton, S., Sabadini, I. et al. The General Theory of Superoscillations and Supershifts in 
Several Variables. J Fourier Anal Appl 2929, 66 (2023). https://doi.org/10.1007/s00041-023-10048-w 

This Article is brought to you for free and open access by the Science and Technology Faculty Articles and 
Research at Chapman University Digital Commons. It has been accepted for inclusion in Mathematics, Physics, and 
Computer Science Faculty Articles and Research by an authorized administrator of Chapman University Digital 
Commons. For more information, please contact laughtin@chapman.edu. 

https://www.chapman.edu/
https://www.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/scs_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/science_articles
https://digitalcommons.chapman.edu/scs_articles?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/177?utm_source=digitalcommons.chapman.edu%2Fscs_articles%2F995&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s00041-023-10048-w
mailto:laughtin@chapman.edu


The General Theory of Superoscillations and Supershifts in Several Variables The General Theory of Superoscillations and Supershifts in Several Variables 

Comments Comments 
This article was originally published in Journal of Fourier Analysis and Applications, volume 29, in 2023. 
https://doi.org/10.1007/s00041-023-10048-w 

Creative Commons License Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 

This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/scs_articles/
995 

https://doi.org/10.1007/s00041-023-10048-w
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://digitalcommons.chapman.edu/scs_articles/995
https://digitalcommons.chapman.edu/scs_articles/995


Journal of Fourier Analysis and Applications (2023) 29:66
https://doi.org/10.1007/s00041-023-10048-w

The General Theory of Superoscillations and Supershifts in
Several Variables

F. Colombo1 · S. Pinton1 · I. Sabadini1 · D. C. Struppa2

Received: 2 October 2022 / Revised: 23 August 2023 / Accepted: 1 September 2023 /
Published online: 17 October 2023
© The Author(s) 2023

Abstract
In this paper we describe a general method to generate superoscillatory functions
of several variables starting from a superoscillating sequence of one variable. Our
results are based on the study of suitable infinite order differential operators acting
on holomorphic functions with growth conditions of exponential type. Additional
constraints are required when dealing with infinite order differential operators whose
symbol is a function that is holomorphic in some open set, but not necessarily entire.
The results proved for superoscillating sequences in several variables are extended to
sequences of supershifts in several variables.
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1 Introduction

Superoscillating functions are band-limited functions that can oscillate faster than
their fastest Fourier component. Physical phenomena associated with superoscillatory
functions have been known for a long time for example in antennas theory, see [33],
and in the context of weak values in quantum mechanics, see [1]. In more recent
years there has been a wide interest in the mathematical theory of superoscillating
functions and of supershifts. This notion, that generalizes the one of superoscillations,
was introduced in order to study the evolution of superoscillations as initial data of
the Schrödinger equation and of other field equations, like Dirac or Klein-Gordon
equations.

The literature on superoscillations is quite large, andwithout claiming completeness
we mention below some of the most relevant (and recent) results. Papers [2–7, 12, 15,
27, 30] and [31] deal with the issue of permanence of superoscillatory behavior when
evolved under a suitable Schrödinger equation; papers [19–21, 28, 29] and [32] are
mostly concerned with the physical nature of superoscillations, while papers [10, 11,
13, 14, 22–26] develop in depth the mathematical theory of superoscillations. Finally,
[7] is a good reference for the state of the art on the mathematics of superoscilla-
tions until 2017, and the Roadmap on Superoscillations [18] contains the most recent
advances in superoscillations theory, and their applications to technology explained
by the leading experts in this field.

We note that superoscillatory functions have been considered also in several vari-
ables. They have been rigorously defined and studied in [6] and in [9] where we have
initiated also the theory of supershifts in more then one variable. The aim of this
paper is to further improve the results in [6, 9] and to obtain a very general theory of
superoscillations and supershifts.

The results in this paper are directed to a general audience of mathematicians,
physicists and engineers, and our main tool is the theory of infinite order differential
operators acting on spaces of holomorphic functions.

More precisely, in this paper we consider analytic functions in one variable
G1, . . . ,Gd , d ≥ 2, whose Taylor series at zero has radius of convergence greater
than 1 and, possibly, less than ∞. This is a novelty with respect to [9] where it was
considered only the case in which G1, . . . , Gd are entire functions. Thus we define
general superoscillating functions of several variables as expressions of the form

Fn(x1, x2, . . . , xd) :=
n∑

j=0

Z j (n, a)eix1G1(h j (n))eix2G2(h j (n)) . . . eixdGd (h j (n))

where Z j (n, a), for j = 0, . . . , n, n ∈ N are suitable coefficients of a superoscillating
function in one variable as we will see in the sequel. We will give conditions on the
functions G1, . . . ,Gd in order that

lim
n→∞ Fn(x1, x2, . . . , xd) = eix1G1(a)eix2G2(a) . . . eixdGd (a),
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so that, when |G�(a)| > 1, Fn(x1, x2, . . . , xd) is superoscillating. Moreover, we shall
also treat the case of sequences that admit a supershift in d ≥ 2 variables.

Thepaper is organized in four sections including the introduction. Section2 contains
the preliminary material on superoscillations, the relevant function spaces and their
topology, and the study of the continuity of some infinite order differential operators
acting on such spaces. Section 3 is themain part of the paper and contains the definition
of superoscillating functions in d ≥ 2 variables as well as some results. Section 4
discusses the notion of supershift in this framework.

2 Preliminary Results on Infinite Order Differential Operators

We begin this section with some preliminary material on superoscillations and super-
shifts in one variable. Then we introduce some infinite order differential operators that
will be of crucial importance to define and study superoscillations and supershifts in
several variables.

Definition 2.1 We call generalized Fourier sequence a sequence of the form

fn(x) :=
n∑

j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R, (1)

where a belongs to an open subset of R, Z j (n, a) and h j (n) are complex and real
valued functions of the variables n, a and n, respectively. The sequence (1) is said to
be a superoscillating sequence if sup j,n |h j (n)| ≤ 1 and there exists an open subset
of R, which will be called a superoscillation set, on which fn(x) converges locally
uniformly to eig(a)x , where g is a continuous real valued function in an open subset
of R such that |g(a)| > 1.

Remark 2.2 In many applications, as we show in the next example, the index n of a
superoscillating sequence may not reach the value 0. In this case we write n ∈ N0 :=
N \ {0}.

The classical Fourier expansion is obviously not a superoscillating sequence since
its frequencies are not, in general, bounded.

Example 2.3 The most important example of superoscillating sequence is

fn(x) :=
(
cos
( x
n

)
+ ia sin

( x
n

))n =
n∑

j=0

C j (n, a)ei(1−2 j/n)x , n ∈ N0 and x ∈ R,

where a > 1 and the coefficients C j (n, a) are given by

C j (n, a) =
(
n

j

)(
1 + a

2

)n− j (1 − a

2

) j

.
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If we fix x ∈ R and we let n go to infinity, we obtain that

lim
n→∞ fn(x) = eiax ,

and the limit is uniform on the compact sets of the real line. From this example it is
possible to construct other examples, like e.g.

fn(x) :=
n∑

j=0

C j (n, a)ei(1−2 j/n)mx , n ∈ N0 and x ∈ R,

where a > 1 and m ∈ N. If we fix x ∈ R and we let n go to infinity, we obtain that

lim
n→∞ fn(x) = eia

mx

where the limit is uniform on the compact sets of the real line.

Our approach to the study of superoscillatory functions in one or several variables
makes use of infinite order differential operators. Such operators naturally act on spaces
of holomorphic functions. This is the reason for which we consider the holomorphic
extension to entire functions of the sequence fn(x) defined in (2.1) by replacing the
real variable x with the complex variable ξ . For the sequences of entire functions we
shall consider, a natural notion of convergence is the convergence in the space A1 or
in the space A1,B for some real positive constant B (see the following definition and
considerations). These spaces are recalled below:

Definition 2.4 The space A1 is the complex algebra of entire functions such that there
exists B > 0 such that

sup
ξ∈C

(| f (ξ)| exp(−B|ξ |)) < +∞. (2)

The space A1 has a rather complicated topology, see e.g. [17], since it is a linear
space obtained via an inductive limit. For our purposes, it is enough to consider, for
any fixed B > 0, the set A1,B of functions f satisfying (2), and to observe that

‖ f ‖B := sup
ξ∈C

(| f (ξ)| exp(−B|ξ |))

defines a norm on A1,B , called the B-norm. One can prove that A1,B is a Banach space
with respect to this norm.

Moreover, let f and a sequence ( fn)n belong to A1; fn converges to f in A1 if and
only if there exists B such that f , fn ∈ A1,B and

lim
n→∞ sup

ξ∈C

∣∣ fn(ξ) − f (ξ)
∣∣e−B|ξ | = 0.



Journal of Fourier Analysis and Applications (2023) 29 :66 Page 5 of 24 66

With these notations and definitionswe canmake the notion of continuity in A1 explicit
(see [14]):

A linear operator U : A1 → A1 is continuous if and only if for any B > 0 there
exists B ′ > 0 and C > 0 such that

U(A1,B) ⊂ A1,B′ and ‖U( f )‖B′ ≤ C‖ f ‖B, forany f ∈ A1,B . (3)

before to continue, it is useful to recall that in the recent paper [8] we enlarged the
class of superoscillating functions, with respect to the existing literature, by solving
the following problem.

Problem 2.5 Let h j (n) be given points in [−1, 1], j = 0, 1, . . . , n, for n ∈ N and let
a ∈ R be such that |a| > 1. Determine the coefficients X j (n) of the sequence

fn(x) =
n∑

j=0

X j (n)eih j (n)x , x ∈ R

in such a way that

f (p)
n (0) = (ia)p, for p = 0, 1, . . . , n.

Remark 2.6 The conditions f (p)
n (0) = (ia)p mean that the functions x 
→ eiax and

x 
→ fn(x) have the same derivatives at the origin, for p = 0, 1, . . . , n, and therefore
the same Taylor polynomial of order n.

Theorem 2.7 (Solution of Problem 2.5) Let h j (n) be a given set of points in [−1, 1],
j = 0, 1, . . . , n for n ∈ N and let a ∈ R be such that |a| > 1. If h j (n) �= hi (n), for
every i �= j , then the coefficients X j (n, a) are uniquely determined and given by

X j (n, a) =
n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
. (4)

As a consequence, the sequence

fn(x) =
n∑

j=0

n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
eixh j (n), x ∈ R

solves Problem 2.5. Moreover, when the holomorphic extensions of the functions fn
converge in A1, we have

lim
n→∞ fn(x) = eiax , for all x ∈ R.
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Remark 2.8 In Theorem 2.7, the hypothesis that the sequence { fn(x)}n∈N admits an
extension to C that converges in A1 can be removed. Indeed, by the residue theorem
we have

fn(x) = eiax − 1

2iπ

∫

�

⎛

⎝
n∏

j=0

a − h j (n)

ζ − h j (n)

⎞

⎠ eiζ xdζ

ζ − a
,

where � is any piecewise smooth simple loop which support surrounds in C the real
segment [−1, 1] and the point a ∈ R. Taking � = �a : θ ∈ [0, 2π ] 
→ (|a| + 2)eiθ ,
ξ ∈ C in place of x ∈ R, leads to the estimate

|eiξa − fn(ξ)| ≤ (|a| + 2)
e(|a|+2)|ξ |

2
(5)

since |a − h j (n)|/|ζ − h j (n)| ≤ (|a| + 1)/((|a| + 2) − 1) = 1 for any j = 0, . . . , n
and ζ ∈ Supp�. This shows that the sequence { fn(ξ)}n∈N is bounded in A1(C). Since
fn(ζ ) shares the same derivatives at the origin (up to order n) than eiζa , by inequality
(5) it converges to eiζa in A1,B for any B > |a| + 2 and locally uniformly in a (see
for the case

∏
�=0,� �= j |h�(n) − h j (n)| ≥ δn [16] while for the general case [25]). A

similar formula holds for

fn(x) =
n∑

j=0

n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
eixG(h j (n))

where G is a holomorphic function in an open neighborhood 	G of [−1, 1]. In this
case we have

fn(ξ) = eiξG(a) − 1

2iπ

∫

�G

⎛

⎝
n∏

j=0

a − h j (n)

ζ − h j (n)

⎞

⎠ eiξG(ζ )dζ

ζ − a
,

where �G is a piecewise smooth curve surranding a and contained in 	G \ [−1, 1].
The following result, seeLemma2.9 in [13], gives a characterization of the functions

in A1 in terms of the coefficients appearing in their Taylor series expansion.

Lemma 2.9 The entire function

f (ξ) =
∞∑

j=0

a jξ
j

belongs to A1 if and only if there exists C f > 0 and b > 0 such that

|a j | ≤ C f
b j

�( j + 1)
.
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Remark 2.10 To say that f ∈ A1 means that f ∈ A1,B for some B > 0. The compu-
tations in the proof of Lemma 2.9 given in [13], show that b = 2eB, and that we can
choose C f = ‖ f ‖B .

We now define two types of infinite order differential operators that will be used to
study superoscillatory functions and supershifts in several variables. We shall denote
by x the vector (x1, . . . , xd) in Rd .

Proposition 2.11 Let d be a positive integer and let R� ∈ R+ ∪{∞} for � = 1, . . . , d.
Let {g1,m}m∈N, . . . , {gd,m}m∈N be d sequences of complex numbers such that

lim sup
m→∞

|g�,m |1/m = 1

R�

, f or � = 1, . . . , d. (6)

Let x1, . . . , xd ∈ R. Denote by Dξ := ∂
∂ξ

the derivative operator with respect to the
auxiliary complex variable ξ . We define the formal operator:

U(x1, x2, . . . , xd , Dξ ) :=
∞∑

p=0

1

p!
∞∑

k=0

Yk,p
Dk

ξ

i k
(7)

where we have set

ym := i x1g1,m + . . . + i xdgd,m, for m ∈ N.

and

Yk,p :=
k∑

ν1

ν1∑

ν2=0

. . .

νp−2∑

νp−1=0

yνp−1 yνp−2−νp−1 . . . yν1−ν2 yk−ν1 .

Then, setting

R := min
�=1,...,d

R�,

for any real value 0 < B < R
4e , the operator U(x1, . . . , xd , Dξ ) : A1,B → A1,4eB is

continuous for all x ∈ R
d .

Proof Let us consider f ∈ A1,B ; then we have

U(x1, . . . , xd , Dξ ) f (ξ) =
∞∑

p=0

∞∑

k=0

Yk,p
p!

Dk
ξ

i k
f (ξ) =

∞∑

p=0

∞∑

k=0

Yk,p
p!

∞∑

j=k

a j
j !

( j − k)!ξ
j−k

=
∞∑

p=0

∞∑

k=0

Yk,p
p!

∞∑

j=0

a j+k
( j + k)!

j ! ξ j .
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Taking the modulus we get

|U(x1, . . . , xd , Dξ ) f (ξ)| ≤
∞∑

p=0

∞∑

k=0

|Yk,p|
p!

∞∑

j=0

|a j+k | ( j + k)!
j ! |ξ | j .

and Lemma 2.9 gives the estimate on the coefficients a j+k

|a j+k | ≤ C f
b j+k

�( j + k + 1)
.

where b = 2eB. Using the well known inequality (a + b)! ≤ 2a+ba!b! we also have

( j + k)! ≤ 2 j+k j !k!

so we get

|U(x1, . . . , xd , Dξ ) f (ξ)| ≤
∞∑

p=0

∞∑

k=0

|Yk,p|
p! C f

∞∑

j=0

b j+k

�( j + k + 1)

2 j+kk! j !
j ! |ξ | j .

Now we use the Gamma function estimate

1

�(a + b + 2)
≤ 1

�(a + 1)

1

�(b + 1)
(8)

to separate the series, and we have

1

�( j − 1
2 + k1 − 1

2 + 2)
≤ 1

�( j + 1
2 )

1

�(k1 + 1
2 )

and so

|U(x1, . . . , xd , Dξ ) f (ξ)| ≤ C f

∞∑

p=0

∞∑

k=0

|Yk,p|
p!

k!(2b)k
�(k + 1

2 )

∞∑

j=0

1

�( j + 1
2 )

(2b|ξ |) j .

Now observe that the latter series satisfies the estimate

∞∑

j=0

1

�(k + 1
2 )

(2b|ξ |) j ≤ Ce4b|ξ |

whereC is a positive constant, because of the properties of theMittag-Leffler function;
moreover, the series

∞∑

p=0

∞∑

k=0

|Yk,p|
p!

k!(2b)k
�(k + 1

2 )
(9)
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is convergent and it is bounded by a positive real constant Cx,G1,...,Gd . In fact, using
Stirling formula for the Gamma function, we have

k! ∼ √
2πk e−kkk, for k → ∞

and then we deduce

�(k + 1)

�(k + 1/2)
∼

√
2π k e−kkk√

2π(k − 1/2) e−(k−1/2) (k − 1/2)(k−1/2)
∼ √k − 1/2, for k → ∞

(10)

so that

k!
�(k + 1

2 )
∼
√
k − 1/2, for k → ∞. (11)

Now observe that (9) has positive coefficients and, by the definition of Yk,p and by
(11), it converges if

∞∑

p=1

1

p!
∞∑

k=1

⎛

⎝
k∑

ν1=0

. . .

νp−2∑

νp−1=0

|yνp−1 ||yνp−2−νp−1 | . . . |yν1−ν2 ||yk−ν1 |
⎞

⎠ (2b)k
√
k − 1/2

converges. Observing that them-th power of an absolutely convergent series
∑∞

m=0 am
can be computed by means of the Cauchy product:

( ∞∑

m=0

am

)p

=
∞∑

k=0

k∑

ν1=0

. . .

νp−2∑

νp−1=0

aνp−1aνp−2−νp−1 . . . ak−ν1 , (12)

and, using the inequality:

√
k − 1

2
≤ k ≤ νp−1 + (νp−2 − νp−1) + . . . + (k − ν1)

≤ (νp−1 + 2) · (νp−2 − νp−1 + 2) · · · · · (k − νp−1 + 2),

where k ≥ ν1 ≥ · · · ≥ νp−1 ≥ 0, we deduce that there exists a positive constant
Cx,G1,...,Gd such that the following chain of inequalities holds:

∞∑

p=1

1

p!
∞∑

k=1

⎛

⎝
k∑

ν1=0

. . .

νp−2∑

νp−1=0

|yνp−1 ||yνp−2−νp−1 | . . . |yk−ν1 |
⎞

⎠ (2b)k
√
k − 1/2

≤
∞∑

p=1

1

p!
∞∑

k=1

⎛

⎝
k∑

ν1=0

. . .

νp−2∑

νp−1=0

|yνp−1(νp−1 + 2)(2b)νp−1
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||yνp−2−νp−1(νp−2 − νp−1 + 2)(2b)νp−2−νp−1 |×

. . . × |yk−ν1(k − ν1 + 2)(2b)k−ν1 |
)

=
∞∑

p=1

1

(p)!

[ ∞∑

m=0

|ym |(m + 2)(2b)m
]p

≤
∞∑

p=1

1

(p)!

[ ∞∑

m=1

|x1|(m + 2)(2b)m |g1,m |

+ . . . + |xd |(m + 2)(2b)m |gd,m |
]p

≤ Cx,G1,...,Gd ;

note that for the equality we used (12), while the last inequality follows by the assump-
tion

B <
R

4e

which implies 2b < R. From the previous estimate we have that the series (9) con-
verges for all x1, . . . , xd ∈ R. So we finally have

|U(x1, . . . , xd , Dξ ) f (ξ)| ≤ C f Cx,G1,...,Gd C e4b|ξ |, x ∈ R
d , ξ ∈ C. (13)

Recalling that b = 2eB, the estimate (13) implies that U(x1, . . . , xd , ) f ∈ A1,8eB , in
fact

|U(x1, . . . , xd , Dξ ) f (ξ)| e−8eB|ξ | ≤ C f Cx,G1,...,Gd C x ∈ R
d , ξ ∈ C.

Moreover, we deduce that the 8eB-norm satisfies the estimate

‖U(x1, . . . , xd , Dξ ) f ‖8eB ≤ C f Cx,G1,...,Gd C = Cx,G1,...,Gd C‖ f ‖B .

Thus U(x1, . . . , xd , Dξ ) : A1,B → A1,8eB is continuous for all x ∈ R
d . ��

Remark 2.12 Wheneverwe fix a compact subset K ⊂ R
d , we have that, for any x ∈ K ,

the constants Cx,G1,...,Gd appearing in the proof of the previous theorem are bounded
by a constant which depends only on K andG1, . . . ,Gd .Moreover, if R� = ∞ for any
� = 1, . . . , d, the continuity of the operator U(x1, . . . , xd , Dξ ) holds for any B > 0
and the proof shows that the operator U(x1, . . . , xd , Dξ ) acts continuously from A1
to itself.

Proposition 2.13 Let d be a positive integer and let R� ∈ R+ ∪ {∞} for any � =
1, . . . , d. Let (g1,m), . . . , (gd,m) be d sequences of complex numbers such that

lim sup
m→∞

|g�,m |1/m = 1

R�

, f or � = 1, . . . , d. (14)
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We define the formal operator

V(x1, . . . , xd , Dξ ) :=
∞∑

k=0

Y ′
ki

k Dk
ξ , (15)

where

Y ′
k :=

k∑

ν1=0

ν1∑

ν2=0

· · ·
νd−2∑

νd−1=0

g1,νd−1x
νd−1
1 g2,νd−2−νd−1x

νd−2−νd−1
2 · · · gd,k−ν1x

k−ν1
d

and x1, . . . , xd ∈ R, ξ ∈ C. Then, for any real value B > 0, the operator

V(x1, . . . , xd , Dξ ) : A1,B → A1,8eB

is continuous whenever |x�| < R
4eB for any � = 1, . . . , d where R := min�=1,...,d R�.

Proof We apply the operator V(x1, . . . , xd , Dξ ) to a function f in A1,B for |x | < R
4eB .

We have

V(x1, . . . , xd , Dξ ) f (ξ) =
∞∑

k=0

Y ′
k

i k
Dk

ξ f (ξ) =
∞∑

k=0

Y ′
k

i k
Dk

ξ

∞∑

j=0

a jξ
j

=
∞∑

k=0

Y ′
k

i k

∞∑

j=k

a j
j !

( j − k)!ξ
j−k

=
∞∑

k=0

Y ′
k

i k

∞∑

j=0

ak+ j
(k + j)!

j ! ξ j .

We then have

|V(x1, . . . , xd , Dξ ) f (ξ)| ≤
∞∑

k=0

|Y ′
k |

∞∑

j=0

|ak+ j | (k + j)!
j ! |ξ | j

and using the estimate in Lemma 2.9

|ak+ j | ≤ C f
bk+ j

�(k + j + 1)
,

where b = 2eB, we get

|V(x1, . . . , xd , Dξ ) f (ξ)| ≤
∞∑

k=0

|Y ′
k |C f

∞∑

j=0

bk+ j

�(k + j + 1)

(k + j)!
j ! |ξ | j .
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With the estimates: (k + j)! ≤ 2k+ j k! j !, and
1

�(k − 1
2 + j − 1

2 + 2)
≤ 1

�(k + 1
2 )

1

�( j + 1
2 )

we separate the series

|V(x1, . . . , xd , Dξ ) f (ξ)| ≤
∞∑

k=0

|Y ′
k |

∞∑

j=0

C f b
k+ j 1

�(k + 1
2 )

1

�( j + 1
2 )

2k+ j k! j !
j ! |ξ | j .

Furthermore, we get

|V(x1, . . . , xd , Dξ ) f (ξ)| ≤ C f

∞∑

k=0

|Y ′
k |(2b)k

k!
�(k + 1

2 )

∞∑

j=0

1

�( j + 1
2 )

(2b|ξ |) j .

Using (10) we have

k!
�(k + 1

2 )
∼ √k − 1/2, for k → ∞.

Moreover, since
√
k − 1/2 ≤ k ≤ (νd−1 + 2)(νd−2 − νd−1 + 2) · · · (k − ν1), we also

obtain

∞∑

k=0

|Y ′
k |(2b)k

k!
�(k + 1

2 )
≤ C

∞∑

k=0

k∑

ν1=0

ν1∑

ν2=0

· · ·
νd−2∑

νd−1

|g1,νd−1 ||x1|νd−1(νd−1 + 2)(2b)νd−1

· |g2,νd−2−νd−1 ||x2|νd−2−νd−1(νd−2 − νd−1 + 2)(2b)νd−2−νd−1

· · · |gd,k−ν1 ||xd |νk−ν1 (k − ν1 + 2)(2b)k−ν1

≤ C
d∏

�=1

( ∞∑

m=0

|g�,m ||x�|mm(2b)m
)

.

Since |x�| < R
4eB for any � = 1, . . . , d and b = 2eB, the series

∑∞
m�=1 m|g�,m

|(2b|x�|)m , converges to a constant κx�
which depends on x� ∈ R. Thus there exist

constants Cx�
, � = 1, . . . , d such that

|V(x1, . . . , xd , Dξ ) f (ξ)| ≤ C f Cx1 . . .Cxd (2b|ξ |)e2b|ξ | ≤ C f Cx1,...,xd e
4b|ξ |

from which, recalling that C f = ‖ f ‖B , we deduce

‖V(x1, . . . , xd , Dξ ) f ‖8eB ≤ Cx1,...,xd‖ f ‖B,
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for someCx1,...,xd .We conclude that the operatorV(x1, . . . , xd , Dξ ) : A1,B → A1,8eB
is continuous. ��
Remark 2.14 Whenever we fix a compact subset

K ⊂
{
x ∈ R

d : |x�| <
R

4eB
for any � = 1, . . . , d

}
,

we have that, for any x ∈ K , the constantsCx�
’s, appearing in the proof of the previous

theorem are bounded by a constant which depends only on K . Moreover, if R� = ∞
for any � = 1, . . . , d, the continuity of the operator V(x1, . . . , xd , Dξ ) holds to be true
for any x ∈ R

d and the proof of the previous theorem shows that V(x1, . . . , xd , Dξ )

satisfies the conditions in (3). Thus we conclude that the operator V(x1, . . . , xd , Dξ )

acts continuously from A1 to itself.

3 Superoscillating Functions in Several Variables

We recall some preliminary definitions related to superoscillating functions in several
variables.

Definition 3.1 (Generalized Fourier sequence in several variables) For d ∈ N such
that d ≥ 2, we assume that (x1, . . . , xd) ∈ R

d . Let {h j,�(n)}, j = 0, . . . , n for n ∈ N,
be real-valued sequences for � = 1, . . . , d. We call generalized Fourier sequence in
several variables a sequence of the form

Fn(x1, . . . , xd) =
n∑

j=0

c j (n)eix1h j,1(n)eix2h j,2(n) . . . eixdh j,d (n), (16)

where {c j (n)} j,n , for j = 0, . . . , n and n ∈ N, is a complex-valued sequence.

Definition 3.2 (Superoscillating sequence) A generalized Fourier sequence in several
variables Fn(x1, . . . , xd), with d ∈ N such that d ≥ 2, is said to be a superoscillating
sequence if

sup
j=0,...,n, n∈N

|h j,�(n)| ≤ 1, for � = 1, . . . , d,

and there exists an open subset of Rd , which will be called a superoscillation set, on
which Fn(x1, . . . , xd) converges locally uniformly to eix1G1(a)eix2G2(a) . . . eixdGd (a),
where a belongs to an open subset U of R, G�’s are continuous functions of real
variable whose domain contains U and |G�(a)| > 1 for � = 1, . . . , d and a ∈ U .

In the paper [6] we studied the function theory of superoscillating functions in
several variables under the additional hypothesis that there exist r� ∈ N, such that

p = r1q1 + . . . + rdqd . (17)
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In that case, we proved that for p, q� ∈ N, � = 1, . . . , d, n ∈ N0, the function

Fn(x, y1, . . . , yd) =
n∑

j=0

C j (n, a)eix(1−2 j/n)p eiy1(1−2 j/n)q1 . . . eiyd (1−2 j/n)qd

is superoscillating when |a| > 1, where C j (n, a) are suitable coefficients. In the
paper [9], we were able to remove the condition (17), while here we will show that it
is possible to replace the functions (1 − 2 j/n)p in the exponent of eix(1−2 j/n)p with
more general holomorphic functions. As we shall see, different function spaces are
involved in the proofs according to the fact that the holomorphic functions are entire
or not.

Theorem 3.3 (The general case of d ≥ 2 variables) Let d be a positive integer and
let R� ∈ R+ ∪ {∞} be such that R� > 1 for any � = 1, . . . , d. Let G1, . . . , Gd be
holomorphic functions whose series expansion at zero is given by

G�(λ) =
∞∑

m�=0

g�,mλm� , ∀� = 1, . . . , d (18)

and, moreover, the sequences {g�,m}m∈N satisfy the condition

lim sup
m→∞

|g�,m |1/m = 1

R�

, ∀� = 1, . . . , d.

Let a ∈ R and

⎧
⎨

⎩ fn : x ∈ R 
→
n∑

j=0

Z j (n, a)eih j (n)x

⎫
⎬

⎭
n∈N

, (19)

be a generalized Fourier sequence as in Definition 2.1, with in addition h j (n) ∈
[−1, 1] for any 0 ≤ j ≤ n. Suppose also that the sequence of entire extensions

⎧
⎨

⎩ fn : ξ ∈ C 
→
n∑

j=0

Z j (n, a)eih j (n)ξ

⎫
⎬

⎭
n∈N

,

converges to ξ 
→ eiaξ in A1,B for some positive real value 0 < B < R
4e , where

R := min�=1,...,d R�. Let also

Fn : (x1, . . . , xd) ∈ R
d 
→

n∑

j=0

Z j (n, a)eix1G1(h j (n))eix2G2(h j (n)) . . . eixdGd (h j (n)).



Journal of Fourier Analysis and Applications (2023) 29 :66 Page 15 of 24 66

Then, whenever |a| < R and a ∈ R, we have

lim
n→∞ Fn(x1, x2, . . . , xd) = eix1G1(a)eix2G2(a) . . . eixdGd (a),

uniformlyon compact subsets ofRd . In particular, the sequence {Fn(x1, x2, . . . , xd)}n≥0
is superoscillating according to Definition (3.2) when |G�(a)| > 1 for any |a| < R.

Proof Since R� ≥ 1 for any � = 1, . . . , d and |h j (n)| ≤ 1, using (12) we have for
any (x1, . . . , xd) ∈ R

d the chain of equalities

Fn(x1, . . . , xd) =
n∑

j=0

Z j (n, a) exp

( ∞∑

m=0

ym(h j (n))m

)

=
n∑

j=0

Z j (n, a)

⎛

⎝
∞∑

p=0

(
∑∞

m=0 ym
(
h j (n))m

)p

p!

⎞

⎠

=
∞∑

p=0

1

p!

⎛

⎝
∞∑

k=0

Yk,p

⎛

⎝
n∑

j=0

(h j (n))k Z j (n, a)

⎞

⎠

⎞

⎠

=
∞∑

p=0

1

p!

⎛

⎝
∞∑

k=0

Yk,p

⎛

⎝
n∑

j=0

[
Dk

ζ

i k

(
Z j (n, a)eih j (n)ξ

)]

ξ=0

⎞

⎠

⎞

⎠

= [Ug(x1, . . . , xd , Dξ )( fn(ξ))
]
ξ=0

where, for any m, k ∈ N,

ym = i x1g1,m + · · · + i xdgd,m

Yk,p =
k∑

ν1=0

ν1∑

ν2=0

· · ·
νp−2∑

νp−1=0

yνp−1 yνp−2−νp−1 · · · yν1−ν2 yk−ν1

and Ug is the continuous operator from A1,B to A1,8eB , see Proposition 2.11, defined
by

Ug(x1, . . . , xd , Dξ ) =
∞∑

p=0

∞∑

k=0

Yk,p
p!
(
Dξ

i

)k

. (20)

The explicit computation of the term Ug(x1, . . . , xd , Dξ )eiξa gives

Ug(x1, . . . , xd , Dξ )e
iξa =

∞∑

p=0

1

p!
∞∑

k=0

Yk,p
Dk

ξ

i k
eiξa =

∞∑

p=0

∞∑

k=0

Yk,p
p! akeiξa .
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By the continuity of Ug , we can exchange the operator Ug with the limit and we finally
get

lim
n→∞ Fn(x1, . . . , xd) = lim

n→∞
[Ug(x1, . . . , xd , Dξ )( fn(ξ))

]
ξ=0

=
[
Ug(x1, . . . , xd , Dξ )e

iξa
]

ξ=0

=
∞∑

p=0

1

p!
∞∑

k=0

Yk,pa
keiξa

∣∣∣
ξ=0

=
∞∑

p=0

1

p!
∞∑

k=0

⎛

⎝
k∑

ν1=0

. . .

νk−1∑

νk=0

(yνp−1a
νp−1)(yνp−2−νp−1a

νp−2−νp−1)

. . . (yν1−ν2a
ν1−ν2)(yk−ν1a

k−ν1)
)

=
∞∑

p=0

1

p!

( ∞∑

m=1

yma
m

)p

=
∞∑

p=0

1

p! (i x1G1(a) + . . . + i xdGd(a))p

= eix1G1(a)+...+i xdGd (a),

where the third equality is due to the formula (12) and the fourth equality holds because
we are assuming |a| < R. The previous limit is uniform over the compact subset of
R
d because of Remark 2.12. ��

Remark 3.4 From the inspection of the proof we observe that:

(I) The space of the entire functions onwhich the operatorU(x1, . . . , xd , Dξ ) acts is
the space A1,B in one complex variable, for some positive real value 0 < B < R

4e .
(III) The variables (x1, x1, . . . , xd) become the coefficients of the infinite order dif-

ferential operator U(x1, x2, . . . , xd , Dξ ), defined in (20), that still acts on the
space A1,B .

Example 3.5 Using Theorem 3.3 and Remark 2.8, we can construct a superoscillating
sequence of d variables. In fact, consider the sequence

⎧
⎨

⎩ fn : ξ ∈ C 
→
n∑

j=0

X j (n, a)eih j (n)ξ

⎫
⎬

⎭
n∈N

where X j (n, a)’s are defined as in (4) and h j (n) ∈ [−1, 1] are fixed. By Remark 2.8
we know that this sequence converges in A1 to eiξa . Let G1, . . . ,Gd be holomor-
phic functions whose Taylor series centered at zero have rays of convergence equal
respectively to R1, . . . , Rd such that
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min
�=1,...,d

R�/4e > 3.

We can choose a ∈ R such that |a| > 1 and

|a| + 2 ≤ min
�=1,...,d

R�.

If |G�(a)| > 1 for all � = 1, . . . , d, then by Theorem 3.3 we have that the sequence

{Fn}n∈N =
⎧
⎨

⎩(x1, . . . , xd) 
→
n∑

j=0

X j (n, a)

d∏

�=1

eix�G�(a)

⎫
⎬

⎭
n∈N

is superoscillating and it converges on any compact subset of Rd towards

(x1, . . . , xd) 
→
d∏

�=1

eix�G�(a).

4 Supershifts in Several Variables

The procedure to define superoscillating functions can be extended to the case of
supershift. Recall that the supershift property of a function extends the notion of
superoscillation and that this concept, that we recall below in the case of one variable,
turned out to be a crucial ingredient for the study of the evolution of superoscillatory
functions as initial conditions of the Schrödinger equation.

Definition 4.1 (Supershift) Let I ⊆ R be an interval with [−1, 1] ⊂ I and let ϕ :
I × R → R, be a continuous function on I. We set

ϕh(x) := ϕ(h, x), h ∈ I, x ∈ R

and we consider a sequence of points (h j (n)) such that

h j (n) ∈ [−1, 1] for j = 0, . . . , n and n ∈ N.

We define the functions

ψn(x) =
n∑

j=0

c j (n)ϕh j (n)(x), (21)

where (c j (n)) is a sequence of complex numbers for j = 0, . . . , n and n ∈ N. If

lim
n→∞ ψn(x) = ϕa(x)
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for some a ∈ I with |a| > 1, we say that the function ψn(x), for x ∈ R, admits a
supershift.

Remark 4.2 The term supershift comes from the fact that the interval I can be arbi-
trarily large (it can also be R) and that the constant a can be arbitrarily far away from
the interval [−1, 1] where the functions ϕh j,n (·) are indexed, see (21).

Problem 2.5, for the supershift case, is formulated as follows.

Problem 4.3 Let h j (n) be a given points in [−1, 1], j = 0, 1, . . . , n, for n ∈ N and
let a ∈ R be such that |a| > 1. Suppose that for every x ∈ R the function h 
→ G(hx)
extends to a holomorphic and entire function in h. Consider the functions

fn(x) =
n∑

j=0

Y j (n, a)G(h j (n)x), x ∈ R

where h 
→ G(hx) depends on the parameter x ∈ R. Determine the coefficients Y j (n)

in such a way that

f (p)
n (0) = (a)pG(p)(0) f or p = 0, 1, . . . , n. (22)

The solution of Problem 4.3, obtained in [8], is summarized in the following theo-
rem.

Theorem 4.4 Let h j (n) be a given set of points in [−1, 1], j = 0, 1, . . . , n for n ∈ N

and let a ∈ R be such that |a| > 1. If h j (n) �= hi (n) for every i �= j and G(p)(0) �= 0
for all p = 0, 1, . . . , n, then there exists a unique solution Y j (n, a) of the linear system
(22) and it is given by

Y j (n, a) =
n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
,

so that

fn(x) =
n∑

j=0

n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
G(h j (n)x), x ∈ R.

Remark 4.5 By the residue theorem, the functions fn’s admit the following integral
representation formula

fn(ξ) = G(aξ) − 1

2π

∫

�

⎛

⎝
n∏

j=0

a − h j (n)

ζ − h j (n)

⎞

⎠ G(ξζ )dζ

ζ − a
,
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where� is a simple loop which support surrounds [−1, 1]. IfG ∈ A1, that is |G(ξ)| ≤
AeB|ξ | for some A, B ≥ 0, it follows from the integral representation formula that

|G(aξ) − fn(ξ)| ≤ A(|a| + 2)
e(|a|+2)B|ξ |

2
∀ξ ∈ C, ∀n ∈ N.

Since ξ 
→ G(aξ) and fn share the same Taylor coefficients at the origin up to order
n, the convergence of the sequence { fn}n∈N towards ξ 
→ G(aξ) holds in A1,B′ , and
thus in A1, provided B ′ > (|a| + 2)B.

We can now extend the notion of supershift of a function in several variables.

Definition 4.6 (Supershifts in several variables) Let |a| > 1. For d ∈ Nwith d ≥ 2,we
assume that (x1, . . . , xd) ∈ R

d . Let {h j,�(n)}, j = 0, . . . , n for n ∈ N, be real-valued
sequences for � = 1, . . . , d such that

sup
j=0,...,n, n∈N

|h j,�(n)| ≤ 1, for � = 1, . . . , d.

LetG�(λ), for� = 1, . . . , d, be entire holomorphic functions.Wesay that the sequence

Fn(x1, . . . , xd) =
n∑

j=0

c j (n)G1(x1h j,1(n))G2(x2h j,2(n)) . . .Gd(xdh j,d(n)),

(23)

where {c j (n)} j,n , j = 0, . . . , n, for n ∈ N is a complex-valued sequence, admits the
supershift property if

lim
n→∞ Fn(x1, . . . , xd) = G1(x1a)G2(x2a) . . .Gd(xda).

Theorem 4.7 (The case of d ≥ 2 variables) Let |a| > 1 and let

fn(x) :=
n∑

j=0

Z j (n, a)eih j (n)x , n ∈ N, x ∈ R, (24)

be a superoscillating function as in Definition 2.1 and assume that its holomorphic
extension to the entire functions fn(ξ) converges to eiaξ in the space A1,B for some
positive real value B. Let d be a positive integer and let R� ∈ R+ ∪ {∞} for any
� = 1, . . . , d. Let G1, . . . , Gd be holomorphic functions whose series expansion at
zero is given by

G�(λ) =
∞∑

m�=0

g�,mλm� , ∀� = 1, . . . , d. (25)
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Moreover, we suppose the sequences {gl,m}’s satisfy the condition

lim sup
m→∞

|g�,m |1/m = 1

R�

, ∀� = 1, . . . , d.

We define

Fn(x1, . . . , xd) =
n∑

j=0

Z j (n, a)G1(x1h j (n)) · · ·Gd(xdh j (n)),

where Z j (n, a) are given as in (24). Then, Fn(x1, . . . , xd) admits the supershift prop-
erty that is

lim
n→∞ Fn(x1, . . . , xd) = G1(x1a) · · ·Gd(xda)

uniformly on compact subsets of {x ∈ R
d : |x�| < R′ for any � = 1, . . . , d} where

R′ := min

(
R

|a| ,
R

4eB
, R

)
and R := min

�=1,...,d
R�.

Proof Since |x�| < R for any � = 1, . . . , d, we have

Fn(x1, . . . , xd) =
n∑

j=0

Z j (n, a)G1(x1h j (n)) . . .Gd(xdh j (n))

=
n∑

j=0

Z j (n, a)

∞∑

m1=0

gm1 · · ·
∞∑

md=0

gmd x
m1
1 · · · xmd

d (h j (n))m1+···+md

=
n∑

j=0

Z j (n, a)

∞∑

k=0

k∑

ν1=0

ν1∑

ν2=0

· · ·
νd−2∑

νd−1=0

g1,νd−1x
νd−1
1 g2,νd−2−νd−1x

νd−2−νd−1
2

· · · gd,k−ν1x
k−ν1
d (h j (n))k

=
n∑

j=0

Z j (n, a)

∞∑

k=0

Y ′
k(h j (n))k,

where

Y ′
k =

k∑

ν1=0

ν1∑

ν2=0

· · ·
νd−2∑

νd−1=0

g1,νd−1x
νd−1
1 g2,νd−2−νd−1x

νd−2−νd−1
2 · · · gd,k−ν1x

k−ν1
d .

We now consider the auxiliary complex variable ξ and we note that

λ� = 1

i�
D�

ξ e
iξλ
∣∣∣
ξ=0

for λ ∈ C, � ∈ N, (26)
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where Dξ is the derivative with respect to ξ and |ξ=0 denotes the restriction to ξ = 0.
We have

Fn(x1, . . . , xd) =
n∑

j=0

Z j (n, a)

∞∑

k=0

Y ′
k [h j (n)]k =

n∑

j=0

Z j (n, a)

∞∑

k=0

Y ′
k
1

i k
Dk

ξ e
iξh j (n)

∣∣∣
ξ=0

=
∞∑

k=0

Y ′
k
1

i k
Dk

ξ

n∑

j=0

Z j (n, a)eiξh j (n)
∣∣∣
ξ=0

.

We define the operator

V(x1, . . . , xd , Dξ ) :=
∞∑

k=0

Y ′
k

i k
Dk

ξ

so that we can write

Fn(x1, . . . , xd) = V(x1, . . . , xd , Dξ )

n∑

j=0

Z j (n, a)eiξh j (n)
∣∣∣
ξ=0

.

Since |x�| < R
4eB for any � = 1, . . . , d, we can use Proposition 2.13 to compute the

following limit

lim
n→∞ Fn(x1, . . . , xd) = V(x1, . . . , xd , Dξ ) lim

n→∞

n∑

j=0

Z j (n, a)eiξh j (n)
∣∣∣
ξ=0

= V(x1, . . . , xd , Dξ )e
iξa
∣∣∣
ξ=0

=
∞∑

k=0

ν1∑

ν2=0

· · ·
νd−2∑

νd−1=0

g1,νd−1x
νd−1
1 g2,νd−2−νd−1x

νd−2−νd−1
2

· · · gd,k−ν1x
k−ν1
d

1

i k
Dk

ξ e
iξa
∣∣∣
ξ=0

=
∞∑

k=0

ν1∑

ν2=0

· · ·
νd−2∑

νd−1=0

g1,νd−1x
νd−1
1 g2,νd−2−νd−1x

νd−2−νd−1
2 · · · gd,k−ν1x

k−ν1
d ak

=
d∏

�=1

( ∞∑

m=0

g�,mx
m
� am

)
= G1(ax1) · · ·Gd(axd)

where the last equality holds becausewe are assuming |x�| < R
|a| for any � = 1, . . . , d.

The previous limit is uniform over the compact subset of {x ∈ R
d : |x�| <

R′ for any � = 1, . . . , d} because of Remark 2.14. ��
Remark 4.8 Aspecial case of the previous theoremoccurswhen the holomorphic func-
tions G�’s are entire functions. Moreover, differently from Theorem 3.3, in Theorem
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4.7 the parameters x� appear in the arguments of the functions G�’s. This implies
that the hypothesis of Theorem 4.7 impose more constraints on the parameters x�’s,
namely |x�| < R′ for any � = 1, . . . , d.

Example 4.9 Applying Theorem 4.7, it is possible to construct examples of sequences
admitting the supeshift property. Suppose G1, . . . , Gd satisfy the hypothesis of The-
orem 4.7. We can consider the superoscillating sequences

f1,n(x) =
n∑

j=0

(
n

j

)(
1 + a

2

)n− j (1 − a

2

) j

ei(1−2 j/n)x n ∈ N0,

and

f2,n(x) =
n∑

j=0

n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
eixh j (n) n ∈ N,

which are such that the sequences {ξ ∈ C 
→ fi,n(ξ)} for i = 1, 2 converge to
ξ 
→ eiaξ in A1,B where B > |a|+1 (see [26]), respectively B > |a|+2 (see Remark
2.8). Thus the sequences

F1,n(x1, . . . , xd) =
n∑

j=0

(
n

j

)(
1 + a

2

)n− j (1 − a

2

) j

G1(x1(1 − 2 j/n)) · · ·Gd(xd(1 − 2 j/n))

and

F2,n(x1, . . . , xd) =
n∑

j=0

n∏

k=0, k �= j

( hk(n) − a

hk(n) − h j (n)

)
G1(x1h j (n)) · · ·Gd(xdh j (n))

admit the supershift property.
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