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3. Methods

Based on the OLR data, a time series prediction model was selected to predict the OLR
values in the pre-earthquake epicenter’s 5◦ × 5◦ spatial range. After preprocessing the
OLR data, the training and selection of the model was the key to obtaining the subsequent
analysis data, and it was also the core of the whole experiment. The trained model was
used to predict the OLR values for ninety days when there was no earthquake and ninety
days before the earthquake, respectively, and the similarity test was performed with the
actual values to detect whether there was any anomalous period before the earthquake.
Finally, 95% confidence intervals were set to extract and analyze the temporal and spatial
characteristics of the anomalies to detect the possible precursor information of earthquakes.
Figure 3 shows the whole process of the experiment.
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3.1. Time Series Forecasting Models
3.1.1. ARIMA

The ARIMA model is a famous time series forecasting method proposed by Box and
Jenkins in the early 1970s [30]. The model is relatively simple. It treats the data series of the
forecasting object over time as a random sequence, describes this sequence approximately
by fitting a mathematical model, and predicts the future values based on the time series of
past and present values. The ARIMA (p, d, q) model is described as follows:

yt = ϕ1yt−1 + · · ·+ ϕpyt−p + εt + θ1εt−1 + · · ·+ θqεt−q (1)

where p is the order of the autoregressive model, d is the number of differences that make
the series smooth, q is the order of the sliding average model, yt is the value of the OLR
time series, ϕi is the autoregressive coefficient, θi is the moving average coefficient, and εt
is the white noise process.

3.1.2. SVM

SVM is a supervised learning method in machine learning that transforms multiple
features nonlinearly via the kernel function, aiming to extract more information from
multiple feature inputs and obtain more accurate prediction results [31]. The specific
mathematical description is as follows:

The hyperplane is y = ωTx + b, where ω and b represent the weight vector and bias,
and T denotes the matrix transposition operation. The sample distance of the hyperplane
to different classes was maximized according to the SVM principle, which is expressed as

arg max
{

1
‖ ω ‖ ·min[(ωTx + b) · yi]

}
(2)

where ‖ ω ‖ represents the L2 norm of the weight vector used to balance the model’s
complexity and classification accuracy.

According to the distance formula from the point in space to the plane, the distance d
from the sample point to the hyperplane can be obtained:

d = (ωTx + b) · 1
‖ ω ‖ (3)

At this point, the optimization objective of the SVM algorithm is obtained after the
introduction of the penalty factor C and the relaxation variable ξ:

min
ω, b

1
2
‖ ω ‖2 + {

l

∑
i=1

ξi (4)

s.t.yi

(
ωTx + b

)
� 1− ξi (5)

The traditional solution is to introduce Lagrange multipliers:

1
2

l

∑
i=1

l

∑
j=1

∝i ∝j yiyjk(xixj)−
l

∑
i=1

∝i (6)

s.t.
l

∑
i=1

∝iyi = 0, 0 ≤∝i≤ {, i = 1, 2, · · · , l (7)

where k () is the kernel function of the SVM algorithm.
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3.1.3. XGBoost

XGBoost is an optimized distributed gradient boost library that can train the model
quickly and more efficiently [32]. The objective function during training consists of two
parts: the first part is the gradient boost algorithm loss (Formula (8)), and the second part
is the regularization term (Formula (9)).

L(∅) =
n

∑
i=1

l
((

y′i, yi
)
+ fk(xi)

)
+ Ω( fk) (8)

where n is the number of training function samples, l is the loss for a single sample,
assuming it is a convex function, y′i is the model’s predicted value for the training sample,
yi is the true labeled value of the training sample, and fk(xi) represents the predicted value
of the decision tree k for sample i.

The regularization term defines the complexity of the model:

Ω( fk) = γT +
1
2

λ∑T
j=1 ω2

j (9)

where γ and λ are manually set parameters, ω is the vector formed by the values of all leaf
nodes of the decision tree, and T is the number of leaf nodes.

3.1.4. LSTM/BILSTM

LSTM is a popular RNN structure that can learn long-term dependent information [33].
The LSTM network generally consists of three gate units (forgotten gate ft, input gate it,
and output gate ot) and a memory cell (Figure 4). The forgetting gate is responsible
for receiving the ht−1 output from the hidden layer at the previous time, the xt newly
input, and determining the information to be forgotten, the input gate is responsible for
controlling the update and storage of the information, the output gate determines the
information to be output in the current state, and the memory cell controls the transmission
of the information.
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Based on LSTM, BILSTM combines the information of the input sequence in both
forward and backward directions. For the output at time t, the forward LSTM layer has
information for time t and before in the input sequence, and the backward LSTM layer has
information for time t and after in the input sequence (Figure 5) [34]. The vectors output by
the two LSTM layers can be added, averaged, or concatenated.


