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Abstract

The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to
operator-valued cases, where the operators are taken from a C∗-subalgebra of an
operator algebra on a separable Hilbert space, (ii) to characterize the invertibility
conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study
relations between the invertibility of scaled hypercomplex numbers, and that of
operator-valued cases of (ii), and (iv) to confirm our invertibility of (ii) and (iii) are
equivalent to the general invertibility of (2 × 2)-block operator matrices.
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Operator-hypercomplexes
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1 Introduction
In this paper, we extend the scaled hypercomplex structures Ht with a scale t ∈ R to the
operator-valued structures by acting the operators of a C∗-subalgebra A of an operator
algebra B (H ) on a separable Hilbert space H under certain bi-module actions of the
Cartesian-product C∗-algebraA2 toHt from the left and the right. Roughly speaking, we
consider (2 × 2)-block operator matrices,(

T1 tT2
T ∗
2 T ∗

1

)
, or

(
T1 tT2
T2 T1

)
,

where T ∗
l are the usual adjoints of Tl in A, and Tl are certain conjugates of Tl in A, for

all l = 1, 2, for any t ∈ R. In particular, we are interested in inverses of such operators (if
exist). Our main results not only provide the characterization of the invertibility on such
operators, but also show the relations among the invertibility of the C∗-algebra of such
operators, the invertibility on {Ht}t∈R, and that on

M2 (A) =
{(

A B
C D

)
: A, B, C, D ∈ A

}
.

Throughout this paper, every vector (a, b) ∈ C
2 is understood as hypercomplexnumbers

(a, b) induced by the complex numbers a and b. Under a suitable scaling in the real field
R, the set C2 of hypercomplex numbers forms a ring,

Ht = (
C
2, +, ·t

)
,

where (+) is the usual vector addition onC
2, and (·t ) is the t-scaled vector-multiplication,

(a1, b1) ·t (a2, b2) =
(
a1a2 + tb1b2, a1b2 + b1a2

)
,

on C
2, where z are the conjugates of z in C.

By the Hilbert-space representation
(
C
2,πt

)
ofHt introduced in [3], we regard a hyper-

complex number h = (a, b) ∈ Ht as a (2×2)-matrix,

πt (h)
denote= [h]t

def=
(
a tb
b a

)
inM2 (C) ,

where M2 (C) is the matricial algebra (or, the operator C∗-algebra B
(
C
2) acting on the

Hilbert space C2) over C, for t ∈ R.
Remark and recall that the ring H−1 is the noncommutative field H of all quaternions

(e.g., [6,22]), and the ring H1 is the ring of all split-quaternions (e.g., [1,2]). The algebra,
analysis, spectra theory, operator theory, and free probability on {Ht}t∈R are studied in
[3]. The quaternions H = H−1 and the split-quaternions H1 has been studied in various
different fields in mathematics and applied science (e.g., [1,6,8,9,13–15,19,23,24,26]),
as an extended algebraic structure of the complex field C, or the hyperbolic numbers
D, which also motivates the construction and analysis on Clifford algebras (e.g., [4,7–
10,14,16–18,20]). From the theories on the quaternions H = H−1, we extend them to
those on the scaled-hypercomplex rings {Ht}t∈R in [3,5], generalizing the main results of
[6].
Meanwhile, the invertibility on the algebra M2 (A) of (2 × 2)-operator-block matrices

is characterized under suitable invertibility assumptions on a unital C∗-subalgebra A of
the operator algebra B (H ) on a separable Hilbert spaceH (e.g., see Chapter 3 of [1]). Our
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main results provide connections among the invertibility on Ht , the invertibility on

Ht
2 (A) =

{(
T tS
S∗ T ∗

)
: T, S ∈ A

}
,

that on

Ht
2 (A) =

{(
T tS
S T

)
: T, S ∈ A

}
,

and that onM2 (A), by finding the invertibility characterizations onHt
2 (A) and onHt

2 (A).

2 Scaled hypercomplex numbers
In this section, we review fundamental algebra, analysis, and operator theory on the scaled
hypercomplex rings {Ht}t∈R. Let

C
2 = {

(a, b) : a, b ∈ C
}
,

as the usual 2-dimensional Hilbert space over the complex field C.

2.1 Scaled hypercomplex rings

Fix an arbitrarily scale t in the real field R. On the Hilbert space C2, define the t-scaled
vector-multiplication (·t ) by

(a1, b1) ·t (a2, b2) def=
(
a1a2 + tb1b2, a1b2 + b1a2

)
, (2.1.1)

for (al, bl) ∈ C
2, for all l = 1, 2.

Proposition 1 The algebraic structure
(
C
2,+, ·t

)
forms a unital ring with its unity, or

the (·t )-identity, (1, 0), where (+) is the usual vector addition on C
2, and (·t ) is the vector

multiplication (2.1.1).

Proof The pair
(
C
2,+) is an abelian group for (+) with its (+)-identity (0, 0). And the

algebraic pair
(
C
2×, ·t

)
is a semigroup with its (·t )-identity (1, 0) whereC2× = C

2\ {(0, 0)}.
It is not difficult to check (+) and (·t ) are distributed on C

2 (e.g., see [2] for details). So,
the algebraic triple

(
C
2,+, ·t

)
forms a unital ring with its unity (1, 0). ��

Since C2 is a Hilbert space equipped with the usual-metric topology, one can understand
these unital rings

{(
C
2,+, ·t

)}
t∈R as topological rings.

Definition 2 For t ∈ R, the ring Ht
denote= (

C
2,+, ·t

)
is called the t-scaled hypercomplex

ring.

For a fixed t ∈ R, let Ht be the t-scaled hypercomplex ring. Define an injective map,

πt : Ht → M2 (C) ,

by

πt ((a, b)) =
(
a tb
b a

)
, ∀ (a, b) ∈ Ht , (2.1.2)

whereMk (C) is thematricial algebra of all (k × k)-matrices overC, which is ∗-isomorphic
to the operator algebra B

(
C
k) of all bounded linear operators on the Hilbert sace Ck , for
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all k ∈ N (e.g., [8] and [9]). Such an injection πt satisfies that

πt (h1 + h2) = πt (h1) + πt (h2) ,

and

πt (h1 ·t h2) = πt (h1)πt (h2) , (2.1.3)

inM2 (C) (e.g., see [3] for details).

Proposition 3 The pair
(
C
2, πt

)
forms an injective Hilbert-space representation of our

t-scaled hypercomplex ring Ht , where πt is an action (2.1.2).

Proof The injection πt of (2.1.2) is a ring-action of Ht acting on C
2 by (2.1.3). Since C2

andM2 (C) are finite-dimensional, the continuity of the ring-action πt is guaranteed. ��
By the above proposition, the realization,

Ht
2
denote= πt (Ht )

def=
{(

a tb
b a

)
∈ M2 (C) : (a, b) ∈ Ht

}
, (2.1.4)

of Ht is well-determined in M2 (C), in particular, by the injectivity of πt . The realization
Ht

2 of (2.1.4) is called the t-scaled (hypercomplex-)realization ofHt (inM2 (C)) for t ∈ R.
For convenience, we denote the realization πt (h) of h ∈ Ht by [h]t inHt

2. By definition,

Ht
T.R= Ht

2 inM2 (C), (2.1.5)

where “T.R= ”means “being topological-ring-isomorphic to.” IfH×
t

denote= Ht\ {(0, 0)} ,where
(0, 0) ∈ Ht is the (+)-identity, then, this setH×

t forms themaximal multiplicative monoid,

H
×
t

denote= (
H

×
t , ·t

)
,

embedded in the ringHt , with its monoid-identity (1, 0), called the t-scaled hypercomplex
monoid. By (2.1.5), the monoidH

×
t is monoid-isomorphic toHt×

2
denote= (Ht×

2 , ·) with its
identity, I2 = [(1, 0)]t , the (2 × 2)-identity matrix of M2 (C), where (·) is the matricial
multiplication, i.e.,

H
×
t = (

H
×
t , ·t

) Monoid= (Ht×
2 , ·) = Ht×

2 ,

where “Monoid= ” means “being monoid-isomorphic.”

2.2 Invertibility onHt

For an arbitrarily fixed t ∈ R, let Ht be the corresponding t-scaled hypercomplex ring,
isomorphic to its t-scaled realizationHt

2 by (2.1.5). Observe that, for any (a, b) ∈ Ht , one
has

det ([(a, b)]t ) = det
(
a tb
b a

)
= |a|2 − t

∣∣b∣∣2 . (2.2.1)

where det is the determinant, and |.| is the modulus on C.

Lemma 4 If (a, b) ∈ Ht , then |a|2 �= t
∣∣b∣∣2 inC, if and only if (a, b) is invertible inHt with

its inverse,

(a, b)−1 =
(

a
|a|2 − t

∣∣b∣∣2 ,
−b

|a|2 − t
∣∣b∣∣2

)
in Ht ,

satisfying[
(a, b)−1

]
t
= [(a, b)]−1

t in Ht
2. (2.2.2)
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Proof The relation (2.2.2) holds whenever det ([(a, b)]t ) �= 0. ��

An algebraic structure (X,+, ·) is said to be a noncommutative field, if it is a unital ring,
where

(
X×, ·) is a non-abelian group (e.g., [3,6]) with X× = X\ {0X }, where 0X is the

(+)-identity.

Theorem 5 We have that

t < 0 inR ⇐⇒ Ht is a noncommutative field. (2.2.3)

Proof (⇒) By the above theorem, if t < 0 in R, then every hypercomplex number (a, b)
of the t-scaled hypercomplex monoid H

×
t automatically satisfies the condition (2.2.2):

|a|2 �= t
∣∣b∣∣2, because

|a|2 > t
∣∣b∣∣2 =⇒ |a|2 �= t

∣∣b∣∣2 .
Thus, if t < 0, then every monoidal element h ∈ H

×
t is invertible in Ht , equivalently, the

monoidH
×
t is a group.

(⇐) Assume that t ≥ 0. First, let t = 0. If (0, b) ∈ H
×
0 (i.e., b �= 0), then

det ([(0, b)]0) = det
((

0 0
b 0

))
= 0,

implying that [(0, b)]0 ∈ Ht
2 is not invertible. Now, let t > 0. If (a, b) ∈ H

×
t , with

∣∣b∣∣2 = |a|2
t

in C, then

det ([(a, b)]t ) = |a|2 − t
∣∣b∣∣2 = 0,

implying that (a, b) is not invertible in Ht . So, if t ≥ 0, then Ht is not a noncommutative
field. ��

By (2.2.3), the negative-scaled hypercomplex rings {Hs}s<0 are noncommutative fields,
but, the non-negative-scaled hypercomplex rings {Ht}t≥0 cannot be noncommutative
fields. So, for any scale t ∈ R, the t-scaled hypercomplex ring Ht is decomposed by

Ht = H
inv
t � H

sing
t

with

H
inv
t =

{
(a, b) : |a|2 �= t

∣∣b∣∣2} , (2.2.4)

and

H
sing
t =

{
(a, b) : |a|2 = t

∣∣b∣∣2} ,
where � is the disjoint union. By (2.2.4), the t-scaled hypercomplex monoidH×

t is decom-
posed to be

H
×
t = H

inv
t � H

×sing
t ,

with

H
×sing
t = H

sing
t \ {(0, 0)} . (2.2.5)

Proposition 6 The subsetHinv
t is a non-abelian group in the monoidH

×
t . Meanwhile, the

subset H×sing
t is a semigroup in H

×
t without identity.
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Proof Let t ∈ R, and H
×
t , the t-scaled hypercomplex monoid, decomposed by (2.2.5). If

h1, h2 ∈ H
inv
t , then h1 ·t h2 ∈ H

inv
t , because

det ([h1 ·t h2]t ) = det ([h1]t [h2]t ) = det ([h1]t ) det ([h2]t ) �= 0.

So, the algebraic pair
(
H

inv
t , ·t

)
forms a group in the monoid H

×
t . Meanwhile, if h1, h2 ∈

H
×sing
t , then h1 ·t h2 ∈ H

×sing
t , since

det ([h1 ·t h2]t ) = det ([h1]t [h2]t ) = det ([h1]t ) det ([h2]t ) = 0.

This operation (·t ) is associative on H
×sing
t , however, it does not have its identity (1, 0) in

H
×sing
t . Thus, the pair

(
H

×sing
t , ·t

)
forms a semigroup without identity in H

×
t . ��

TheblockHinv
t of (2.2.5) is called the group-part ofH×

t (or, ofHt ), and the other algebraic
block H×sing

t of (2.2.5) is called the semigroup-part of H×
t (or, of Ht ).

Corollary 7 If t < 0 in R, then H
×
t = H

inv
t , and hence, Ht = H

inv
t ∪ {(0, 0)}. Meanwhile,

if t ≥ 0 in R, then H
×sing
t is a non-empty properly embedded semigroup of H×

t , without
identity, satisfying the decomposition (2.2.4) of Ht .

Proof The proof is done by the above proposition. ��

2.3 The hypercomplex conjugate

In this section, we consider certain adjoints on the scaled hypercomplex rings {Ht}t∈R,
motivated by the adjoints introduced in [4]. Fix an arbitrary scale t ∈ R and Ht . Define a
function,

(†) : Ht → Ht ,

by

† ((a, b)) denote= (a, b)† def= (a, −b) , ∀ (a, b) ∈ Ht . (2.3.1)

This function (2.3.1) satisfies that the injectivity,

h1 = (a1, b1) �= (a2, b2) = h2 in Ht ,

then

h†1 = (a1,−b1) �= (a2,−b2) = h†2 ,

and the surjectivity in the sense that: for any (a, b) ∈ Ht , there exists (a,−b) ∈ Ht , such
that

(a,−b)† = (
a, − (−b)

) = (a, b) ,

inHt . So, this function (†) of (2.3.1) is a bijection. SinceHt is topological-ring-isomorphic
to its realizationHt

2 by (2.1.5), one can define the bijection, also denoted by (†) onHt
2,

† : Ht
2 → Ht

2,

definedby

† ([(a, b)]t )
denote= [(a, b)]†t

def=
[
(a, b)†

]
t
= [(a,−b)]t , (2.3.2)

for all (a, b) ∈ Ht . i.e., the bijection † of (2.3.2) on Ht
2 is defined to be π2 ◦ † with the

bijection † of (2.3.1) on Ht .
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Theorem 8 The bijection J of (2.3.1) acting on Ht is an adjoint on Ht over R (or, a R-
adjoint on Ht ) in the sense that: for all h1, h2 ∈ Ht ,

h††1 =
(
h†1
)† = h1,

(h1 + h2)† = h†1 + h†2 ,

(h1 ·t h2)† = h†2 ·t h†1 ,
inadditionto

(r ·t h)† = r ·t h†, (2.3.3)

for all r ∈ R and h ∈ Ht .

Proof Since Ht is topological-ring-isomorphic to Ht
2, it is sufficient to show that † is a

R-adjoint on Ht
2 satisfying the conditions of (2.3.3). Observe that, for all (a, b) ∈ Ht , we

have

[(a, b)]††t =
[
(a, b)†

]†
t

= [(a,−b)]†t = [(
a, − (−b)

)]
t = [(a, b)]t ;

and, for any (al, bl) ∈ Ht , for l = 1, 2,

([(a1, b1)]t + [(a2, b2)]t )† = [(a1 + a2, b1 + b2)]†t
= [(

a1 + a2, − (b1 + b2)
)]

t = [(a1,−b1)]t + [(a2,−b2)]t
=
[
(a1, b1)†

]
t
+
[
(a2, b2)†

]
t
= [(a1, b1)]†t + [(a2, b2)]† ;

and

([(a1, b1)]t [(a2, b2)]t )† =
⎛
⎜⎝
a1a2 + tb1b2 t (a1b2 + b1a2)

a1b2 + b1a2 a1a2 + tb1b2

⎞
⎟⎠
†

=
⎛
⎜⎝ a1a2 + tb1b2 t (−a1b2 − b1a2)

−a1b2 − b1a2 a1a2 + tb1b2

⎞
⎟⎠

=
⎛
⎜⎝ a2 t (−b2)

−b2 a2

⎞
⎟⎠
⎛
⎜⎝ a1 t (−b1)

−b1 a1

⎞
⎟⎠

= [(a2, b2)]†t [(a1, b1)]
†
t .

Moreover, if r ∈ R inducing (r, 0) ∈ Ht and (a, b) ∈ Ht , then

([(r, 0)]t [(a, b)]t )† =
⎛
⎜⎝ ra trb

rb ra

⎞
⎟⎠
†

=
⎛
⎜⎝ ra t (−rb)

−rb ra

⎞
⎟⎠

= [(r, 0)]t [(a,−b)]t = [(r, 0)]t [(a, b)]†t

Therefore, the bijection † of (2.3.2) is a R-adjoint onHt
2. ��

The above theorem shows that the bijection † of (2.3.1) is R-adjoint on Ht by (2.3.3).

Definition 9 The bijection † of (2.3.1), or the bijection † of (2.3.2), is called the
hypercomplex-conjugate on Ht , respectively, onHt

2, for all t ∈ R.
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If (a, b) ∈ Ht , then

[h]†t [h]t =
[(

|a|2 − t
∣∣b∣∣2 , 0)]

t
= [h]t [h]†t , (2.3.4)

for all h = (a, b) ∈ Ht , for all t ∈ R.

Proposition 10 If (a, b) ∈ H
t , then

(a, b)† ·t (a, b) =
(
|a|2 − t

∣∣b∣∣2 , 0) = (a, b) ·t (a, b)† , (2.3.5)

in H
t , for all t ∈ R. It implies that

σt
(
(a, b)† ·t (a, b)

)
= |a|2 − t

∣∣b∣∣2 = det ([(a, b)]t ) = σt
(
(a, b) ·t (a, b)†

)
, (2.3.6)

for all (a, b) ∈ Ht , for all t ∈ R.

Proof The relation (2.3.5) is proven by (2.3.4). By (2.3.5), the first t-spectral-value relation
of (2.3.6) is obtained, because

det ([(a, b)]t ) = |a|2 − t
∣∣b∣∣2 ,

for all (a, b) ∈ Ht , for all t ∈ R. ��

3 Semi-normed spaces {(Ht , ||.||t)}t∈R
Fix a scale t ∈ R, and the corresponding t-scaled hypercomplex ring Ht . We showed in
Sect. 2.3 that, on Ht , the hypercomplex-conjugate (†) is defined by

(a, b)† = (a, −b) , ∀ (a, b) ∈ Ht ,

as a R-adjoint, inducing the R-adjoint on the t-scaled realizationHt
2,

[(a, b)]†t =
[
(a, b)†

]
t
= [(a,−b)]t . (3.1)

by (2.3.5) and (2.3.6), for all (a, b) ∈ Ht . Since the t-scaled realizationHt
2 is a sub-structure

ofM2 (C), the normalized trace,

τ = 1
2
tr on M2 (C) ,

is restricted to τ
denote= τ |Ht

2
on Ht

2, where tr is the usual trace on M2 (C), i.e., for any
[(a, b)]t ∈ Ht

2,

τ ([(a, b)]t ) = 1
2
tr
((

a tb
b a

))
= 1

2
(a + a) ,

equivalently,

τ ([(a, b)]t ) = Re (a) , ∀ (a, b) ∈ Ht , (3.2)

as a R-linear functional satisfying the tracial property,

τ (TS) = τ (ST ) , ∀T, S ∈ Ht
2.

By (3.1) and (3.2), without loss of generality, one can define a R-trace τ on Ht by

τ ((a, b)) def= Re (a) , ∀ (a, b) ∈ Ht (3.3)

Define now a form,

〈, 〉t : Ht × Ht → R ⊂ C,

by 〈
h1, h2

〉
t
def= τ

(
h1 ·t h†2

)
, ∀h1, h2 ∈ Ht , (3.4)



D. Alpay, I. Cho Res Math Sci           (2023) 10:47 Page 9 of 44    47 

where τ in (3.2) is in the sense of (3.3). Then, the form (3.4) satisfies that〈
(a1, b1) + (a2, b2) , (a3, b3)

〉
t

= τ

⎛
⎜⎜⎝
⎛
⎜⎜⎝
a1a3 + a2a3 − t

(
b1b3 + b2b3

)
t (−a1b3 − a2b3 + a3b1 + a3b2)

−a1b3 − a2b3 + a3b1 + a3b2 a1a3 + a2a3 − t
(
b1b3 + b2b3

)
⎞
⎟⎟⎠
⎞
⎟⎟⎠

= Re
(
a1a3 + a2a3 − t

(
b1b3 + b2b3

))
= Re

(
a1a3 − tb1b3

)
+ Re

(
a2a3 − tb2b3

)
= τ

(
(a1, b1) ·t (a3, b3)†

)
+ τ

(
(a2, b2) ·t (a3, b3)†

)
= 〈

(a1, b1) , (a3, b3)
〉
t + 〈

(a2, b2) , (a3, b3)
〉
t ,

for all (al, bl) ∈ Ht , for l = 1, 2, 3, i.e.,〈
h1 + h2, h3

〉
t = 〈

h1, h3
〉
t + 〈

h2, h3
〉
t , (3.5)

similarly, one has〈
h1, h2 + h3

〉
t = 〈

h1, h2
〉
t + 〈

h1, h3
〉
t (3.6)

for all h1, h2, h3 ∈ Ht . Also, if hl = (al, bl) ∈ Ht , for l = 1, 2, and r ∈ R, then〈
rh1, h2

〉
t = τ

(
((r, 0) ·t h1) ·t h†2

)

= τ

⎛
⎜⎝
⎛
⎜⎝

ra1a2 − trb1b2 t (−ra1b2 + ra2b1)

−ra1b2 + ra2b1 ra1a2 − trb1b2

⎞
⎟⎠
⎞
⎟⎠

= Re
(
ra1a2 − trb1b2

)
= rRe

(
a1a2 − tb1b2

)
= rτ

(
(a1, b1) ·t (a2, b2)†

)
= r

〈
h1, h2

〉
t ,

i.e., 〈
rh1, h2

〉
t = r

〈
h1, h2

〉
t , ∀r ∈ R andh1, h2 ∈ Ht . (3.7)

similarly,〈
h1, rh2

〉
t = r

〈
h1, h2

〉
t , ∀r ∈ R and h1, h2 ∈ Ht . (3.8)

Lemma 11 The form 〈, 〉t of (3.6) is a well-defined bilinear form on Ht over R.

Proof It is shown by (3.5), (3.6), (3.7) and (3.8). ��

By the above lemma, the t-scaled hypercomplex ring Ht is equipped with a well-defined
bilinear form 〈, 〉t of (3.4) over R.

Lemma 12 If h1, h2 ∈ Ht , then〈
h1, h2

〉
t = 〈

h2, h1
〉
t inR (3.9)
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Proof Let hl = (al, bl) ∈ Ht , for l = 1, 2. Then

〈
h1, h2

〉
t = τ

⎛
⎜⎝
⎛
⎜⎝
a1a2 − tb1b2 t (a2b1 − a1b2)

a2b1 − a1b2 a1a2 − tb1b2

⎞
⎟⎠
⎞
⎟⎠

= Re
(
a1a2 − tb1b2

)
,

and

〈
h2, h1

〉
t = τ

⎛
⎜⎝
⎛
⎜⎝
a1a2 − tb1b2 t (a1b2 − a2b1)

a1b2 − a2b1 a1a2 − tb1b2

⎞
⎟⎠
⎞
⎟⎠

= Re
(
a1a2 − tb1b2

)
= Re

(
a1a2 − tb1b2

)
= 〈

h1, h2
〉
t . (3.10)

Therefore, by (3.10),〈
h2, h1

〉
t = 〈

h1, h2
〉
t = 〈

h1, h2
〉
t , inR.

��

By (3.9), the bilinear form 〈, 〉t of (3.4) is symmetric.

Lemma 13 If h1, h2 ∈ Ht , then∣∣〈h1, h2〉2∣∣2 ≤ ∣∣〈h1, h1〉t ∣∣2 ∣∣〈h2, h2〉t ∣∣2 (3.11)

where |.| is the absolute value on R.

Proof By (3.10), if hl = (al, bl) ∈ Ht for l = 1, 2, then one has∣∣〈h1, h2〉t ∣∣ =
∣∣∣Re (a1a2 − tb1b2

)∣∣∣ ,
and hence,∣∣〈hl, hl 〉t ∣∣ =

∣∣∣|al |2 − t
∣∣bl∣∣2∣∣∣ ,

for l = 1, 2. Therefore, the inequality (3.11) holds. ��

Observe now that, by (3.1) and (3.4), if h = (a, b) ∈ Ht , then〈
h, h

〉
t = τ

(
(a, b) ·t (a, b)†

)
= Re

(
|a|2 − t

∣∣b∣∣2) ,
implying that〈

h, h
〉
t = |a|2 − t

∣∣b∣∣2 = det ([h]t ) . (3.12)

This formula (3.12) says that the bilinear form 〈, 〉t of (3.4) is not positively defined in
general.

Lemma 14 Let h = (a, b) ∈ Ht . If 〈, 〉t is the bilinear form (3.4), then〈
h, h

〉
t = 0 ⇐⇒ |a|2 = t

∣∣b∣∣2 ⇐⇒ h ∈ H
sing
t . (3.13)

Proof The relation (3.13) is shown by (2.2.4) and (3.12). ��

Now, let’s consider the following concepts.
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Definition 15 For a vector space X over R, a form 〈, 〉 : X × X → R is a (definite)
semi-inner product on X over R, if (i) it is a bilinear form on X over R, (ii)

〈x1, x2〉 = 〈x2, x1〉 , ∀x1, x2 ∈ X,

and (iii) 〈x, x〉 ≥ 0, for all x ∈ X . If such a semi-inner product 〈, 〉 satisfies an additional
condition (iv)

〈x, x〉 = 0, if and only if x = 0X ,

where 0X is the zero vector of X , then it is called an inner product on X over R. If 〈, 〉 is a
semi-inner product (or, an inner product) on the R-vector space X , then the pair (X, 〈, 〉)
is said to be a semi-inner product space (respectively, an inner product space) over R (in
short, a R-SIPS, respectively, a R-IPS).

Every R-IPS is automatically a R-SIPS, but, not all R-SIPSs are R-IPSs.

Definition 16 For a vector space X overR, a form 〈, 〉 : X ×X → R is called an indefinite
semi-inner product on X over R, if (i) it is a bilinear form on X over R, (ii)

〈x1, x2〉 = 〈x2, x1〉 , ∀x1, x2 ∈ X,

and (iii) 〈x, x〉 ∈ R, for all x ∈ X . If such an indefinite semi-inner product 〈, 〉 satisfies an
additional condition (iv)

〈x, x〉 = 0, if and only if x = 0X ,

then it is said to be an indefinite inner product on X over R. If 〈, 〉 is an indefinite semi-
inner product (or, an indefinite inner product) on the R-vector space X , then the pair
(X, 〈, 〉) is called an indefinite-semi-inner product space (respectively, an indefinite-inner
product space) over R (in short, a R-ISIPS, respectively, R-IIPS).

Depending on the scales, the scaled hypercomplex rings are regarded as certain vector
spaces over R, by the existence of the bilinear form 〈, 〉t .

Theorem 17 Let t ∈ R. Then

t < 0 =⇒ 〈, 〉t is an inner product on Ht , (3.14)

meanwhile,

t ≥ 0 =⇒ 〈, 〉t is an indefinite semi-inner product on Ht . (3.15)

Proof If t < 0 in R, then H
sing
t = {(0, 0)} , in Ht , and hence,

Ht = H
inv
t ∪ {(0, 0)} .

Thus, one has〈
h, h

〉
t = 0 ⇐⇒ h = (0, 0) ∈ Ht ,

whenever t < 0. Moreover, for any h = (a, b) ∈ Ht , if t < 0, then

det ([h]t ) = |a|2 − t
∣∣b∣∣2 = τ

([
h ·t h†

])
= 〈

h, h
〉
t ≥ 0.

Therefore, the statement (3.14) holds.
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Assume now that t ≥ 0 in R. Then the semigroup-part H×sing
t is not empty in Ht , and

hence,

H
sing
t ⊃ {(0, 0)} in Ht ,

and

det ([(a, b)]t ) = |a|2 − t
∣∣b∣∣2 ∈ R,

for (a, b) ∈ Ht , in general. Thus, the statement (3.15) holds. ��
The following corollary is an immediate consequence of the above theorem.

Corollary 18 If t < 0, then the pair (Ht , 〈, 〉t ) is aR-IPS,meanwhile, if t ≥ 0, then (Ht , 〈, 〉t )
is a R-ISIPS.

Proof It is proven by (3.14) and (3.15). ��
Recall that a pair (X, ‖.‖) of a vector space X over R, and a map ‖.‖ : X → R is called a
semi-normed space, if ‖.‖ is a semi-norm, in the sense that: (i) ‖x‖ ≥ 0, for all x ∈ X , (ii)
‖rx‖ = |r| ‖x‖, for all r ∈ R and x ∈ X , and (iii)

‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ , ∀x1, x2 ∈ X.

If the semi-norm ‖.‖ satisfies an additional condition (iv)

‖x‖ = 0 ⇐⇒ x = 0X in X,

then it called a norm on X . In such a case, the semi-normed space (X, ‖.‖) is called a
normed space over R.

Definition 19 If a pair (X, ‖.‖X ) of a vector spaceX overR, and a semi-norm (respectively,
a norm) ‖.‖ onX , is complete under its semi-norm topology (respectively, norm topology)
induced by ‖.‖, then it is said to be a complete semi-normed space (respectively, a Banach
space) over R, in short, a complete R-SNS (respectively, R-Banach space).

Let (Ht , 〈, 〉t ) be either a R-IPS (if t < 0), or a R-ISIPS (if t ≥ 0). Define a function
‖.‖t : Ht → R by∥∥h∥∥t def=

√∣∣〈h, h〉t ∣∣ =
√∣∣det ([h]t )∣∣, ∀h ∈ Ht . (3.16)

Theorem 20 Let t ∈ R, and (Ht , 〈, 〉t ), either a R-IPS (if t < 0), or a R-ISIPS (if t ≥ 0),
and let ‖.‖t be a function (3.18).

t < 0 =⇒ (Ht , ‖.‖t ) isaR − Banach space, (3.17)

meanwhile,

t ≥ 0 =⇒ (Ht , ‖.‖t ) is a complete R-SNS. (3.18)

Proof By (3.14), if t < 0, then the pair (Ht , 〈, 〉t ) forms a R-IPS, inducing the norm ‖.‖t
of (3.16), canonically. So, if t < 0, then (Ht , ‖.‖t ) forms a normed space over R. The
completeness of (Ht , ‖.‖t ) is guaranteed by (3.11). So, the statement (3.17) holds.
Now, assume that t ≥ 0, and (Ht , 〈, 〉t ) is the correspondingR-ISIPS. If ‖.‖t is defined to

be the function (3.16), then it is a semi-norm on Ht over R. In particular,∥∥(a, b)∥∥t = 0 ⇐⇒ |a|2 − t
∣∣b∣∣2 = 0 ⇐⇒ (a, b) ∈ H

sing
t ,
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inHt . So, this semi-norm ‖.‖t cannot be a norm whenever t ≥ 0. However, by (3.11), this
semi-norm is complete on Ht . Thus, the statement (3.18) holds. ��

By the above two theorems, one obtain the following result.

Corollary 21 Let t ∈ R, and (Ht , 〈, 〉t ), either a R-IPS (if t < 0), or a R-ISIPS (if t ≥ 0).

t < 0 =⇒ (Ht , 〈, 〉t ) is a R-Hilbert space, (3.19)

meanwhile,

t ≥ 0 =⇒ (Ht , 〈, 〉t ) is a complete R-ISIPS. (3.20)

Proof The statement (3.19) (respectively, (3.20)) is proven by (3.14) and (3.17) (respec-
tively, (3.15) and (3.18)). ��

SinceHt is both a ring and a complete SNS, it forms a topological algebra “over R,” for all
t ∈ R.

Theorem 22 Let t ∈ R, and Ht , the t-scaled hypercomplex ring.

t < 0 =⇒ Ht is a C∗ − algebra over R (or, R − C∗ − algebra) (3.21)

meanwhile,

t ≥ 0 =⇒ Ht is a complete R − semi − normed ∗ −algebra. (3.22)

Proof By (3.19) and (3.20), the t-scaledhypercomplex ringHt is aR-vector space equipped
with its complete semi-norm (or, norm if t < 0), for all t ∈ R. It shows thatHt forms a com-
plete semi-normed ∗-algebra overR, equipped with theR-adjoint (†), the hypercomplex-
conjugate, for all t ∈ R. Especially, this complete semi-normed ∗-algebra Ht is acting on
the R-semi-normed space (Ht , ‖.‖t ), by the action,

m : h ∈ Ht �−→ mh ∈ B ((Ht , ‖.‖t )) ,
where

mh (η) = h ·t η, ∀η ∈ (Ht , ‖.‖t ) , (3.23)

satisfying

mh1mh2 = mh1h2 , ∀h1, h2 ∈ Ht ,

and

m∗
h = mh† , ∀h ∈ Ht ,

and

‖mh‖ def= sup
{∥∥mh(η)

∥∥
t : ‖η‖t = 1

} = ∥∥h∥∥t , ∀h ∈ Ht ,

in the operator algebra BR ((Ht , ‖.‖t )) of all bounded R-linear operators on the complete
semi-normed space (Ht , ‖.‖t ), where ‖.‖ is the operator norm on BR ((Ht , ‖.‖t )). It shows
that the functionm of (3.23) is a continuous ring-action of Ht acting on (Ht , ‖.‖t ). So,

m (Ht )
def= {

mh : h ∈ Ht
}
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forms the closed subalgebra of BR ((Ht , ‖.‖t )), as a complete semi-normed ∗-algebra over
R. Clearly, there does exist the ∗-isomorphism,

�t : h ∈ Ht �−→ mh ∈ m (Ht ) ,

and hence, Ht is a complete R-semi-normed ∗-algebra, for “all t ∈ R.” Therefore, the
statement (3.21) holds.
In particular, if t < 0, then the operator algebra BR ((Ht , ‖.‖t )) is on theR-Hilbert space

(Ht , 〈, 〉t ), and hence, Ht
∗-iso= m (Ht ) becomes a complete R-Banach ∗-algebra acting on

the R-Hilbert space (Ht , 〈, 〉t ), i.e., if t < 0, then Ht is (∗-isomorphic to) a R-C∗-algebra
(m (Ht )). Therefore, the statement (3.22) holds. ��
Notation andAssumption. Frombelow, the setHt of all t-scaled hypercomplex numbers
is understood to be the ring, or either the R-Hilbert space (if t < 0) or the complete R-
ISIPS (if t ≥ 0), or either the R-C∗-algebra (if t < 0) or the complete R-semi-normed
∗-algebra (if t ≥ 0), case-by-case. And we call the setHt , the t-scaled hypercomplexes for
t ∈ R. ��
Let t ∈ R, and Ht , the t-scaled hypercomplexes. Define a subset Dt of Ht by

Dt
def= {

(x, y) ∈ Ht : x, y ∈ R
}
, (3.24)

realized to be

Dt
2
def= πt (Dt ) =

{[
(x, y)

]
t =

(
x ty
y x

)
: (x, y) ∈ Dt

}
, (3.25)

inHt
2 = πt (Ht ). Then Dt is a sub-structure of Ht , as a sub-ring algebraically, or, a closed

subspace analytically, or a ∗-subalgebra over R operator-algebraically, case-by-case. By
definition, one has the R-adjoint on Dt ,

(x, y)† = (x,−y) = (x,−y) inDt ,

because x, y ∈ R.

Definition 23 The sub-structure Dt of (4.1) is called the t-scaled hyperbolics of the t-
scaled hypercomplexes Ht .

Note that, the (−1)-scaled hyperbolics D−1 is isomorphic to the complex field C, and
the 1-scaled hyperbolics D1 is isomorphic to the (classical) hyperbolic numbers,

D = {
x + yj : j2 = 1, x, y ∈ R

}
.

(e.g., see [4] in detail).

4 Scaled operator-valued-hypercomplexes
In this section, we extend our scaled hypercomplex numbers of {Ht}t∈R to operators under
certain actions. Now, let B (H ) be the operator algebra of all bounded linear operators on
a Hilbert space H , andA is a unital C∗-subalgebra of B (H ) with its unity 1 ∈ A, which is
the identity operator on H .

Definition 24 Let A be a unital C∗-algebra in an operator algebra B (H ) on a Hilbert
space H . Define the setHt

2 (A) by

Ht
2 (A) def=

{(
T1 tT2
T ∗
2 T ∗

1

)
: T1, T2 ∈ A

}
, (4.1)
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where T ∗
l are the adjoints of Tl inA, for all l = 1, 2, equipped with the semi-norm ‖.‖(t),∥∥∥∥∥

(
T1 tT2
T ∗
2 T ∗

1

)∥∥∥∥∥
(t)

def= ‖(‖T1‖A , ‖T2‖A)‖t ,

identified with∥∥∥∥∥
(
T1 tT2
T ∗
2 T ∗

1

)∥∥∥∥∥
(t)

=
√∣∣‖T1‖2A − t ‖T2‖2A

∣∣,
where ‖.‖t is the semi-normonHt (for all t ∈ R, in particular, the norm, if t < 0), and ‖.‖A
is the C∗-norm on A, inherited from the operator-norm on B (H ). We call Ht

2 (A), the
t-scaled A(-valued)-hypercomplexes, for t ∈ R, and all operator-block (2 × 2)-matrices
ofHt

2 (A) are said to be operator(-valued)-hypercomplexes.

By abusing notations, one may/can write each operator-hypercomplex
(
T1 tT2
T ∗
2 T ∗

1

)
∈

Ht
2 (A) by [(T1, T2)]t , for all T1, T2 ∈ A.

Proposition 25 LetHt
2 (A) be the t-scaledA-hypercomplexes (4.1). Then

Ht
2 (A) is a complete R − SNS, ∀t ∈ R, (4.2)

In particular, if t < 0, then it is a R-Banach space.

Proof Suppose [(T1, T2)]t , [(S1, S2)]t ∈ Ht
2 (A), and r1, r2 ∈ R. Then

r1 [(T1, T2)]t + r2 [(S1, S2)]t =
⎛
⎜⎝ r1T1 + r2S1 tz1T2 + tr2S2

r1T ∗
2 + r2S∗

2 r1T ∗
1 + r2S∗

1

⎞
⎟⎠ ,

identifies with⎛
⎜⎝ r1T1 + r2S1 t (r1T2 + r2S2)

(r1T2 + r2S2)∗ (r1T1 + r2S1)∗

⎞
⎟⎠ = [(r1T1 + r2S1, r1T2 + r2S2)]t ,

contained inHt
2 (A). And hence,Ht

2 (A) forms a R-vector space. SinceA is a C∗-algebra
(and hence, it is complete over R), and Ht is a complete R-semi-normed ∗-algebra, this
R-vector spaceHt

2 (A) forms a complete R-SNS, for any t ∈ R.
Recall and remark that, if t < 0, then Ht is a R-Banach ∗-algebra, and hence, in such a

case, the semi-norm ‖.‖(t) onHt
2 (A) becomes a norm, by definition. Thus, if t < 0, then

Ht
2 (A) becomes a complete R-NS, equivalently, a R-Banach space. ��

The above proposition provides a structure theorem for the t-scaled A-hypercomplexes
Ht

2 (A), characterized to be a complete R-SNS, by (4.2). Then can it be a R-algebra in a
usual sense? The answer is negative. Observe that, if [(T1, T2)]t , [(S1, S2)]t ∈ Ht

2 (A), then

([(T1, T2)]t ) ([(S1, S2)]t ) =
(
T1 tT2
T ∗
2 T ∗

1

)(
S1 tS2
S∗
2 S∗

1

)
,

identical to⎛
⎜⎝T1S1 + tT2S∗

2 t
(
T1S2 + T2S∗

1
)

T ∗
2 S1 + T ∗

1 S
∗
2 tT ∗

2 S2 + T ∗
1 S

∗
1

⎞
⎟⎠ /∈ Ht

2 (A) , (4.3)
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in general, since(
T1S1 + tT2S∗

2
)∗ = S∗

1T
∗
1 + tS2T ∗

2 �= T ∗
1 S

∗
1 + tT ∗

2 S2,

or (
T1S2 + T2S∗

1
)∗ = S∗

2T
∗
1 + S1T ∗

2 �= T ∗
2 S1 + T ∗

1 S
∗
2 , (4.4)

inA, in general. i.e.,

([(T1, T2)]t ) ([(S1, S2)]t ) /∈ Ht
2 (A) ,

in general, under the usual block-operator multiplication.

Theorem 26 The C∗-algebraA is commutative in the sense that: TS = ST , for all T, S ∈
A, if and only if the t-scaledA-hypercomplexesHt

2 (A) is a R-semi-normed ∗-algebra, for
all t ∈ R. i.e., for all t ∈ R,

A : commutative ⇐⇒ Ht
2 (A) : completeR − semi − normed ∗ −algebra. (4.5)

In particular, if t < 0, thenHt
2 (A) is a R-Banach ∗-algebra in the characterization (4.5).

Proof By (4.2), the t-scaled A-hypercomplexes Ht
2 (A) is a complete R-SNS, for all t ∈

R. Fix an arbitrary scale t ∈ R. Assume that the C∗-algebra A is commutative. Then
the vector-multiplication (4.3) is well-defined on Ht

2 (A), i.e., the usual (2 × 2)-block-
operator multiplication is closed on Ht

2 (A), because the non-equalities in (4.4) become
the equalities under the commutativity of A. Therefore, equipped with this well-defined
vector-multiplication (4.3), the completeR-SNSHt

2 (A) formsa completeR-semi-normed
algebra. Define now a bijection (†) onHt

2 (A) by

† ([(T1, T2)]t )
denote= [(T1, T2)]†t

def= [(
T ∗
1 ,−T2

)]
t ,

i.e., (
T1 tT2
T ∗
2 T ∗

1

)†
=
(

T ∗
1 t (−T2)

−T ∗
2 T1

)
, inHt

2 (A) , (4.6)

like the R-adjoint (†) on Ht . Then

[(T1, T2)]††t = [(
T ∗
1 ,−T2

)]†
t = [(

T ∗∗
1 ,− (−T2)

)]
t = [(T1, T2)]t ,

and

(r [(T1, T2)]t )† = [(rT1, rT2)]†t = [(
rT ∗

1 r (−T2)
)]

t = r [(T1, T2)]†t ,

for all [(T1, T2)]t ∈ Ht
2 (A) and r ∈ R, and

([(T1, T2)]t + [(S1, S2)]t )† = [(T1 + S1, T2 + S2)]†t
= [(

(T1 + S1)∗ ,− (T2 + S2)
)]

t = [(
T ∗
1 + S∗

1
)
,−T2 − S2

]
t

= [(
T ∗
1 ,−T2

)]
t + [(

S∗
1 ,−S2

)]
t = [(T1, T2)]†t + [(S1, S2)]†t

and

([(T1, T2)]t [(S1, S2)]t )† =
⎛
⎜⎝ T1S1 + tT2S∗

2 t
(
T1S2 + T2S∗

1
)

(
T1S2 + T2S∗

1
)∗ (

T1S1 + tT2S∗
2
)∗
⎞
⎟⎠
†
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by (4.3) and (4.4), under the commutativity ofA

=
⎛
⎜⎝
(
T1S1 + tT2S∗

2
)∗ t

(−T1S2 − T2S∗
1
)

(−T1S2 − T2S∗
1
)∗ T1S1 + tT2S∗

2

⎞
⎟⎠

=
⎛
⎜⎝ S∗

1T
∗
1 + tS2T ∗

2 t
(−T1S2 − T2S∗

1
)

(−T1S2 − T2S∗
1
)∗ T1S1 + tT2S∗

2

⎞
⎟⎠

=
(

S∗
1 t (−S2)

−S∗
2 S1

)(
T ∗
1 t (−T2)

−T ∗
2 T1

)

by the commutativity ofA
= [(S1, S2)]†t [(T1, T2)]†t ,

in Ht
2 (A), for all [(T1, T2)]t , [(S1, S2)]t ∈ Ht

2 (A). Therefore, the bijection (†) of (4.6) is
a well-defined R-adjoint on Ht

2 (A). So, this complete R-semi-normed algebra Ht
2 (A)

forms a complete R-semi-normed ∗-algebra ifA is a commutative C∗-algebra.
Conversely, assume that A is a noncommutative C∗-algebra. Then, by (4.3) and (4.4),

the complete R-SNSHt
2 (A) cannot be a R-algebra.

Therefore, the characterization (4.5) holds true.
Now, take t < 0 in R. Then, by (4.5), one has that A is commutative, if and only if the

t-scaledA-hypercomplexesHt
2 (A) is a complete R-semi-normed ∗-algebra. However, if

t < 0, then, under the commutativity ofA,Ht
2 (A) becomes aR-Banach space, and hence,

it forms a R-Banach ∗-algebra. i.e., if t < 0 in R, then A is commutative, if and only if
Ht

2 (A) is a R-Banach ∗-algebra. ��
The above theorem proves that the complete R-SNSs

{Ht
2 (A)

}
t∈R can be the complete

R-semi-normed ∗-algebras equipped with the R-adjoint (4.6), if and only if A is a com-
mutative C∗-algebra by (4.5). Without the commutativity on A, the complete R-SNSs{Ht

2 (A)
}
t∈R cannot be R-algebras in a usual sense.

Remark 4.1. Suppose T ∈ B (H ) is a self-adjoint operator on a Hilbert space H . Then the
C∗-subalgebra AT = C∗ ({T }) of B (H ) generated by T is a commutative C∗-algebra, ∗-
isomorphic to the C∗-algebra C (spec (T )) of all continuous functions on the compact set
spec (T ), the spectrum of T , in C. And hence, such commutative C∗-subalgebras do exist
in B (H ). More generally, if T1, . . . , TN ∈ B (H ) are self-adjoint, and mutually commuting
from each other in the sense that:

T ∗
l = Tl inB (H ) , ∀l = 1, . . . , N,

and

Tl1Tl2 = Tl2Tl1 , ∀l1, l2 ∈ {1, . . . , N } ,
in B (H ), forN ∈ N∪{∞}, then the C∗-subalgebraAT1,...,TN = C∗ ({T1, . . . , TN }) of B (H )
forms a commutative C∗-algebra. (e.g., see [11,12]). ��
Now, letA2 = A×A be the Cartesian-productC∗-algebra of two copies ofA’s, consist-

ing of the operator-pairs ofA. Define amorphism α ofA2 on the t-scaled hypercomplexes
Ht by

α (T1, T2) (a, b) = [(aT1, bT2)]t =
(
aT1 t (bT2)
bT ∗

2 aT ∗
1

)
, (4.7)
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identical to(
aT1 t (bT2)

(bT2)∗ (aT1)∗

)
contained in Ht

2 (A) ,

for all (a, b) ∈ Ht . This morphism α of (4.7) satisfies that

α (z1T1 + z2T2, T3) = z1α (T1, T3) + z2α (T2, T3) ,

and

α (T1, z1T2 + z2T3) = z1α (T1, T2) + z2α (T1, T3) , (4.8)

on Ht , whose images are inHt
2 (A), for all z1, z2 ∈ C and T1, T2, T3 ∈ A.

Theorem 27 Let A2 = A × A be the Cartesian-product C∗-algebra of the fixed uni-
tal C∗-algebra A, and α, the morphism (4.7) from A2 to the t-scaled A-hypercomplexes
Ht

2 (A). Then α is a well-defined continuous bi-module action ofA2 acting on the t-scaled
hypercomplexes Ht realized inHt

2 (A). i.e.,

α is a bi−module action of A2 acting on Ht realized in Ht
2 (A) . (4.9)

Proof By the definition (4.7) of the morphism α, every image α (T1, T2) of α is a well-
defined function from Ht intoHt

2 (A), because,

α (T1, T2) (a, b) = [(aT1, bT2)]t ,

inHt
2 (A), since aT1, bT2 ∈ A, for all (a, b) ∈ Ht , and (T1, T2) ∈ A2. i.e.,

α (T1, T2) ∈ BR

(
Ht ,Ht

2 (A)
)
, ∀ (T1, T2) ∈ A2,

where BR

(
Ht ,Ht

2 (A)
)
is the operator space of all boundedR-linear transformations from

the complete R-SNS Ht to the complete R-SNS Ht
2 (A). Indeed, for any r1, r2 ∈ R and

(a1, b1) , (a2, b2) ∈ Ht , one has that

α (T1, T2) (r1 (a1, b1) + r2 (a2, b2))

= α (T1, T2) ((r1a1 + r2a2, r1b1 + r2b2))

=

⎛
⎜⎜⎝

(r1a1 + r2a2)T1 t (r1b1 + r2b2)T2

(
r1b1 + r2b2

)
T ∗
2 (r1a1 + r2a2)T ∗

1

⎞
⎟⎟⎠

= r1

⎛
⎜⎝ a1T1 tb1T2

b1T ∗
2 a1T ∗

1

⎞
⎟⎠+ r2

⎛
⎜⎝ a2T1 tb2T2

b2T ∗
2 a2T ∗

1

⎞
⎟⎠

= r1α (T1, T2) (a1, b1) + r2α (T1, T2) (a2, b2) (4.10)

satisfying

∥∥α (T1, T2) (a, b)
∥∥
(t) =

√∣∣∣‖aT1‖2A − t
∥∥bT2

∥∥2
A
∣∣∣,

identical to∥∥(‖aT1‖A ,
∥∥bT2

∥∥
A
)∥∥

t < ∞,

implying that

‖α (T1, T2)‖ = sup
{∥∥α (T1, T2) (h)

∥∥
(t) :

∥∥h∥∥t = 1
}

< ∞, (4.11)
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for all (T1, T2) ∈ A2, where ‖.‖ of (4.11) is the operator-norm on BR

(
Ht ,Ht

2 (A)
)
. There-

fore,

α (T1, T2) ∈ BR

(
Ht ,Ht

2 (A)
)
, ∀ (T1, T2) ∈ A2, (4.12)

by (4.10) and (4.11).
Therefore, by the relation (4.8) and (4.12), the map α of (4.7) is a bi-module action of

A2 acting on Ht realized inHt
2 (A), i.e., the relation (4.9) holds. ��

The above theorem shows that, indeed, our scaled A-hypercomplexes
{Ht

2 (A)
}
t∈R are

well-defined, as the images of the bi-module action α ofA2 acting on the t-scaled hyper-
complexes Ht , where α (T1, T2) ∈ BR

(
Ht ,Ht

2 (A)
)
by (4.9). It also illustrate the relation

between {Ht}t∈R and
{Ht

2 (A)
}
t∈R, as complete R-SNSs.

Corollary 28 As a complete R-SNS, the t-scaledA-hypercomplexesHt
2 (A) is isomorphic

to the bi-module α
(A2) (Ht ).

Ht
2 (A) iso=A (Ht )A

denote= α
(A2) (Ht ) . (4.13)

Proof The key idea of the proof is that, for any z ∈ C and T ∈ A, the scalar-product
zT ∈ A. Define a function � :A (Ht )A → Ht

2 (A) by

� (α (T1, T2) (a, b)) = [(aT1, bT2)]t ,

for all (T1, T2) ∈ A2 and (a, b) ∈ Ht . Then this well-defined function � is injective, since
if

α (T1, T2) (a1, b1) �= α (S1, S2) (a2, b2) ,

in A (Ht )A, then

[(a1T1, b1T2)]t �= [(a2S1, b2S2)]t ,

in Ht
2 (A), by (4.7). Moreover, it is surjective, since, for any [(T1, T2)]t ∈ Ht

2 (A), there
exists (a, b) ∈ Ht , with (a, b) ∈ Ht with a, b ∈ C \ {0}, such that

[(T1, T2)]t = α

(
1
a
T1,

1
b
T2

)
(a, b) .

Therefore, this function � is bijective from A (Ht )A onto Ht
2 (A). Moreover, for any

r1, r2 ∈ R and

βl
denote= α

(
T1,l , T2,l

)
(al, bl) ∈A (Ht )A , for l = 1, 2,

one has

� (r1β1 + r2β2) = [
(r1a1T1,1 + r2a2T1,2, r1b1T1,2 + r2b2T2,2)

]
t ,

identical to

� (r1β1 + r2β2) = r1� (β1) + r2� (β2) ,

in Ht
2 (A). So, this bijection � is a R-linear transformation, and hence, it is a R-vector-

space-isomrophism from A (Ht )A ontoHt
2 (A). By the completeness, this isomorphism�

is bounded. Therefore, the isomorphic relation (4.13) holds. ��
The above corollary illustrates again that our scaled A-hypercomplexes

{Ht
2 (A)

}
t∈R are

well-defined as complete R-SNSs. It also shows the connections between {Ht}t∈R and{Ht
2 (A)

}
t∈R.
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5 Invertibility onHt
2 (A)

In this section, we study the invertibility on the t-scaledA-hypercomplexesHt
2 (A), where

A is a unital C∗-algebra in the operator algebra B (H ) on a Hilbert space H . First of all, to
consider the invertibility on the complete R-SNSHt

2 (A), we need a well-defined vector-
multiplication on it. i.e., we need to understandHt

2 (A) as a R-algebra. So, we restrict our
interests to the caseswhereA is a commutativeC∗-algebra by (4.5), andhence, understand
Ht

2 (A) as a complete R-semi-normed ∗-algebra. Then the vector-multiplication,
(
T1 tT2
T ∗
2 T ∗

1

)(
S1 tS2
S∗
2 S∗

1

)
=
⎛
⎜⎝ T1S1 + tT2S∗

2 t
(
T1S2 + T2S∗

1
)

(
T1S2 + T2S∗

1
)∗ (

T1S2 + tT2S∗
2
)∗
⎞
⎟⎠ , (5.0.1)

is well-defined on Ht
2 (A), for all [(T1, T2)]t , [(S1, S2)]t ∈ Ht

2 (A). Note again that the
commutativity on a fixed C∗-algebra A allows us to have the above multiplications “on
Ht

2 (A),” by (4.5). i.e., Ht
2 (A) becomes a complete R-semi-normed ∗-algebra, equipped

with its R-adjoint (†),(
T tS
S∗ T ∗

)†
=
(

T ∗ t (−S)
−S∗ T

)
, (5.0.2)

for all T, S ∈ A. Consider the case where(
T1 tT2
T ∗
2 T ∗

1

)(
S1 tS2
S∗
2 S∗

1

)
=
(
1 0
0 1

)
=
(
S1 tS2
S∗
2 S∗

1

)(
T1 tT2
T ∗
2 T ∗

1

)
, (5.0.3)

where1 is the unity (or, the identity operator), and0 is the zero operator ofA, equivalently,⎛
⎜⎝ T1S1 + tT2S∗

2 t
(
T1S2 + T2S∗

1
)

(
T1S2 + T2S∗

1
)∗ (

T1S2 + tT2S∗
2
)∗
⎞
⎟⎠ =

(
1 0
0 1

)
,

and (
1 0
0 1

)
=
⎛
⎜⎝ S1T1 + tS2T ∗

2 t
(
S1T2 + S2T ∗

1
)

(
S1T2 + S2T ∗

1
)∗ (

S1T1 + tS2T ∗
2
)∗
⎞
⎟⎠ , (5.0.4)

by (5.0.3). The equalities of (5.0.4) is equivalent to

T1S1 + tT2S∗
2 = 1 = S1T1 + tS2T ∗

2 ,

and

T1S2 + T2S∗
1 = 0 = S1T2 + S2T ∗

1 , (5.0.5)

inA, if and only if

T1S1 + tT2S∗
2 = 1 = T1S1 + tT ∗

2 S2,

and

T1S2 + T2S∗
1 = 0 = T2S1 + T ∗

1 S2, (5.0.6)

by (5.0.5) and the commutativity onA.

Definition 29 LetA be a commutative unital C∗-algebra with its unity 1, and letHt
2 (A),

the corresponding t-scaled A-hypercomplexes. An element η ∈ Ht
2 (A) is invertible “in”

Ht
2 (A), if there exists a unique element, denoted by η−1, inHt

2 (A), such that

ηη−1 =
(
1 0
0 1

)
= η−1η, in Ht

2 (A) ,
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where 0 is the zero element ofA.

By the above definition, one obtains the following result.

Proposition 30 Suppose A is a commutative unital C∗-algebra with its unity 1, and
[(T1, T2)]t ∈ Ht

2 (A). Then [(T1, T2)]t is invertible in Ht
2 (A), if and only if there exists a

unique element [(S1, S2)]t ∈ Ht
2 (A), such that

T1S1 + tT2S∗
2 = 1 = T1S1 + tT ∗

2 S2,

and

T1S2 + T2S∗
1 = 0 = T2S1 + T ∗

1 S2, (5.0.7)

inA, for all scales t ∈ R.

Proof The invertibility characterization (5.0.7) of the inverse [(S1, S2)]t = [(T1, T2)]−1
t in

Ht
2 (A) is obtained by (5.0.6), under the commutativity ofA. ��

Motivated by (5.0.7), we consider two different cases where t �= 0, and where t = 0.

5.1 The case where t = 0

In this section, we let A be a fixed “commutative” unital C∗-algebra with its unity 1, and
H0

2 (A), the 0-scaledA-hypercomplexes,

H0
2 (A) =

{(
T 0
S∗ T ∗

)
: T, S ∈ A

}
,

equipped with the usual block-operator-matrix addition, and the multiplication (5.0.1),
and the adjoint (5.0.2). By (5.0.7), an element [(T1, T2)]0 is invertible inH0

2 (A), if and only
if there exists a unique element [(S1, S2)]t ∈ H0

2 (A), such that

T1S1 + 0 · T2S∗
2 = 1 = T1S1 + 0 · T ∗

2 S2,

and

T1S2 + T2S∗
1 = 0 = T2S1 + T ∗

1 S2, (5.1.1)

inA, and hence,

T1S1 = 1, andT1S2 + T2S∗
1 = 0 = T2S1 + T ∗

1 S2, (5.1.2)

inA, by (5.1.1).
Observe the first equality T1S1 = 1 in (5.1.2). By the commutativity of A, this equality

is in fact identified with

T1S1 = 1 = S1T1, in A,

implying that T1 is invertible inA, with its inverse T−1
1 = S1 inA, i.e.,

S1 = T−1
1 , in A, (5.1.3)

where T−1
1 ∈ A means the inverse of T1 ∈ A, as the inverse operator of the operator

algebra B (H ) (containingA). And, by (5.1.2) and (5.1.3),

T1S2 = −T2S∗
1 = −T2

(
T−1
1

)∗
,

and hence,

S2 = −T−1
1 T2

(
T−1
1

)∗
, in A. (5.1.4)
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Theorem 31 An element [(T1, T2)]0 is invertible in H0
2 (A), with its inverse [(S1, S2)]0 ∈

H0
2 (A), if and only if

T1 is invertible with its inverse S1 = T−1
1 , inA,

and

[(S1, S2)]0 =
[(

T−1
1 , −T−1

1 T2
(
T−1
1

)∗)]
0

∈ H0
2 (A) . (5.1.5)

Proof An element [(T1, T2)]0 is invertible inH0
2 (A) with its inverse [(S1, S2)]t ∈ H0

2 (A),
if and only if the relation (5.1.2) holds, if and only if T1 is invertible in A with S1 = T−1

1
inA, by (5.1.3), and

S2 = −T−1
1 T2

(
T−1
1

)∗
, in A,

by (5.1.4). Therefore, [(T1, T2)]0 is invertible in H0
2 (A), if and only if the relation (5.1.5)

holds. ��

Observe that

([(T1, T2)]0)
([(

T−1
1 , −T−1

1 T2
(
T−1
1

)∗)]
0

)

=
⎛
⎜⎝ T1 0

T ∗
2 T ∗

1

⎞
⎟⎠
⎛
⎜⎜⎝

T−1
1 0

−
(
T−1
1

)∗
T ∗
2T

−1
1

(
T−1
1

)∗

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 0

T ∗
2T

−1
1 − T ∗

1

(
T−1
1

)∗
T ∗
2T

−1
1 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1 0

T ∗
2T

−1
1 −

(
T−1
1 T1

)∗
T ∗
2T

−1
1 1

⎞
⎟⎟⎠ =

⎛
⎜⎝1 0

0 1

⎞
⎟⎠ ,

and, similarly,
([(

T−1
1 , −T−1

1 T2
(
T−1
1

)∗)]
0

)
([(T1, T2)]0) =

(
1 0
0 1

)
,

inH0
2 (A), confirming the invertibility characterization (5.1.5) onH0

2 (A).

5.2 The case where t �= 0

In Sect. 5.1, we characterize the invertibility on the 0-scaled A-hypercomplexes H0
2 (A)

by (5.1.5), where A is a commutative unital C∗-subalgebra of the operator algebra B (H )
on a Hilbert space H . As in Sect. 5.1, we fix a “commutative” unital C∗-algebraA, and let
Ht

2 (A) be the corresponding t-scaled A-hypercomplexes, where t �= 0. Throughout this
section, we automatically assume that any fixed scale t∈ R is non-zero. Recall that, by
(5.0.7), an element [(T1, T2)]t is invertible in Ht

2 (A) with its inverse [(S1, S2)]t ∈ Ht
2 (A),

if and only if

T1S1 + tT2S∗
2 = 1 = T1S1 + tT ∗

2 S2,

and

T1S2 + T2S∗
1 = 0 = T2S1 + T ∗

1 S2, (5.2.1)
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inA. Since t �= 0 in R, the invertibility condition (5.2.1) is equivalent to

tT2S∗
2 = 1 − T1S1 = tT ∗

2 S2,

and

T1S2 + T2S∗
1 = 0 = T2S1 + T ∗

1 S2,

if and only if

T2S∗
2 = 1

t
(1 − T1S1) = T ∗

2 S2 = (
T2S∗

2
)∗ ,

and

T1S2 = −T2S∗
1 , andT2S1 = −T ∗

1 S2, (5.2.2)

in A. Suppose T1 and T2 are invertible in the commutative C∗-algebra A. Then their
adjoints T ∗

1 and T ∗
2 are invertible, too, with

(
T ∗
l
)−1 =

(
T−1
l

)∗
inA, for all l = 1, 2. So, if

T1 and T2 are invertible, then the invertibility condition (5.2.2) of [(T1, T2)]t ∈ Ht
2 (A) is

equivalent to

S2 = 1
t
(
T ∗
2
)−1 (1 − T1S1) ,

respectively,

S1 = −T−1
2 T ∗

1 S2, in A, (5.2.3)

implying that

S2 = 1
t
(
T ∗
2
)−1 (1 − T1S1) = 1

t
(
T ∗
2
)−1

(
1 − T1

(
−T−1

2 T ∗
1 S2

))
,

⇐⇒
S2 = 1

t
(
T ∗
2
)−1

(
1 + T1T−1

2 T ∗
1 S2

)
,

⇐⇒
S2 = 1

t
(
T ∗
2
)−1 + 1

t
(
T ∗
2
)−1 T1T−1

2 T ∗
1 S2,

⇐⇒(
1 − 1

t
(
T ∗
2
)−1 T1T−1

2 T ∗
1

)
S2 = 1

t
(
T ∗
2
)−1 , inA.

So, if 1 − 1
t
(
T ∗
2
)−1 T1T−1

2 T ∗
1 is invertible inA, then

S2 = 1
t
(
T ∗
2
)−1

(
1 − 1

t
(
T ∗
2
)−1 T1T−1

2 T ∗
1

)−1
,

⇐⇒

S2 = 1
t

((
1 − 1

t
(
T ∗
2
)−1 T1T−1

2 T ∗
1

) (
T ∗
2
))−1

,

since (TS)−1 = S−1T−1 = T−1S−1 in A (by the commutativity of A), for all T, S ∈ A,
implying that

S2 = 1
t

(
T ∗
2 − 1

t
T ∗
2
(
T ∗
2
)−1 T1T−1

2 T ∗
1

)−1
,

and hence,

S2 = 1
t

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)−1
, in A (5.2.4)
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and, under the same hypotheses,

S1 = −T−1
2 T ∗

1 S2, by (5.2.3),

⇐⇒

S1 = −T−1
2 T ∗

1

(
1
t

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)−1
)
,

by (5.2.4), if and only if

S1 = −1
t
T−1
2 T ∗

1

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)−1
. (5.2.5)

Theorem 32 Assume that T1, T2 and 1 − 1
t
(
T ∗
2
)−1 T1T−1

2 T ∗
1 are invertible in A. Then

an element [(T1, T2)]t is invertible with its inverse [(S1, S2)]t inHt
2 (A), if and only if

S1 = −1
t
T−1
2 T ∗

1

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)−1
,

and

S2 = 1
t

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)−1
. (5.2.6)

Proof Suppose T1, T2 and 1 − 1
t
(
T ∗
2
)−1 T1T−1

2 T ∗
1 are invertible in the commutative

C∗-algebra A. The invertibility condition (5.2.6) is shown by (5.2.4) and (5.2.5) on
Ht

2 (A). ��

The above theorem provides a partial characterization (5.2.6) of the invertibility on the
non-zero-scaledA-hypercomplexesHt

2 (A) of a commutativeC∗-algebraA, under certain
invertibility assumptions onA.

5.3 Summary and discussion

Let Ht
2 (A) be the t-scaled A-hypercomplexes of a “commutative” unital C∗-algebra A,

for all t ∈ R. The main results of this section are summarized by the following corollary.

Corollary 33 If t = 0 in R, then an element [(T1, T2)]0 is invertible in H0
2 (A) with its

inverse [(S1, S2)]0 ∈ Ht
2 (A), if and only if

T1 is invertible inA, with its inverse T−1
1 ,

and

[(S1, S2)]0 =
[(

T−1
1 , −T−1

1 T2
(
T−1
1

)∗)]
0

∈ H0
2 (A) . (5.3.1)

Meanwhile, if t �= 0 inR, then an element [(T1, T2)]t is invertible with its inverse [(S1, S2)]t
inHt

2 (A), if and only if

T2S∗
2 = 1

t
(1 − T1S1) = T ∗

2 S2 = (
T2S∗

2
)∗ ,

and

T1S2 = −T2S∗
1 , and T2S1 = −T ∗

1 S2, (5.3.2)
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in A. So, as a special case, if t �= 0, and T1, T2 and 1 − 1
t
(
T ∗
2
)−1 T1T−1

2 T ∗
1 are invertible

inA, then the invertibility (5.3.2) is equivalent to

S1 = −1
t
T−1
2 T ∗

1

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)−1
,

and

S2 = 1
t

(
T ∗
2 − 1

t
T1T−1

2 T ∗
1

)
, in A. (5.3.3)

Proof The invertibility characterization (5.3.1) onH0
2 (A) is proven by (5.1.5). The invert-

ibility characterization (5.3.2) on
{Ht

2 (A)
}
t∈R\{0} is shown by (5.0.7), or (5.2.2). The proof

of the special case (5.3.3) of (5.3.2) is done by (5.2.6). ��
The above invertibility conditions on

{Ht
2 (A)

}
t∈R are interesting themselves. However,

it is true that the commutativity assumption on a fixed unital C∗-algebra A is strong,
but it is needed by (4.5). So, to avoid such a “strong” condition, we consider a new type
adjoint-like structure on a unital C∗-algebra A, motivated by (4.3) and (4.4). See Sect. 6
below.

6 The conjugation on a Unital C∗-AlgebraA
In this section, letA be a unitalC∗-subalgebra of the operator algebraB (H ) on a separable
(finite, or infinite dimensional) Hilbert space H , which is not necessarily commutative,
where the dimension of H , which is the cardinality of the orthonormal basis of H , is
N ∈ N∪ {∞} (by the separability ofH ), i.e., dimCH = N . Note that every element T ∈ A
is realized to be a (N × N )-matrix on H , i.e.,

T = [
zij
]
N×N =

⎛
⎜⎜⎜⎜⎝

z11 z12 · · · z1N
z21 z22 · · · z2N
...

...
. . .

...
zN1 zN2 · · · zNN

⎞
⎟⎟⎟⎟⎠ ,

where N ∈ N ∪ {∞} (e.g., see [11,12]). We now define the conjugate (•) onA by

T = [
zij
]
N×N

def= [
zij
]
N×N , ∀T = [

zij
]
N×N ∈ A, (6.0.1)

where zij are the usual conjugates of zij in C. Then this conjugation onA satisfies that

T = [
zij
]
N×N =

[
zij
]
N×N

= [
zij
]
N×N = T,

for all T ∈ A; and

zT = z
[
zij
]
N×N = [

zzij
]
N×N = [

zzij
]
N×N = z

[
zij
]
N×N = zT ,

for all z ∈ C and T ∈ A; and

T + S = [
zij
]
N×N + [

wij
]
N×N = [

zij + wij
]
N×N = T + S,

for all T, S ∈ A; and

TS = [
zij
]
N×N

[
wij
]
N×N =

[ N∑
k=1

zikwkj

]
N×N

=
[ N∑
k=1

zikwkj

]
N×N

=
[ N∑
k=1

(zik )
(
wkj

)]
N×N

= [
zij
]
N×N

[
wij
]
N×N = (

T
) (
S
)
,
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in A. So, this conjugation (6.0.1) on a unital C∗-subalgebra A of B (H ) on a separable
Hilbert space H is acting “like” an adjoint, but

TS = T S, in A, ∀T, S ∈ A,
different from the usual adjoint (∗) onA.

Proposition 34 The conjugation (6.0.1) on a unital C∗-subalgebra A of B (H ) satisfies
that

T = T, and zT = zT ,

for all T ∈ A and z ∈ C, and

T + S = T + S, and TS = T S,

for all T, S ∈ A.

Proof The proof is done by the very above paragraph. ��
Now, just like the scaled A-hypercomplexes

{Ht
2 (A)

}
t∈R of (4.1), we define a following

structure.

Definition 35 Let A be a unital C∗-subalgebra of the operator algebra B (H ) on a sepa-
rable Hilbert space H . For any fixed t ∈ R, define a R-vector space,

Ht
2 (A) def=

{(
T1 tT2
T2 T1

)
: T1, T2 ∈ A

}
,

of (2 × 2)-operator-block matrices, where T means the conjugate (6.0.1) of T in A,
equipped with the semi-norm,∥∥∥∥∥

(
T1 tT2
T2 T1

)∥∥∥∥∥
(t)

def= ‖(‖T1‖A , ‖T2‖A)‖t .

We call the R-SNS Ht
2 (A), the t-(scaled-)conjugateA-hypercomplexes.

Note that, by the completeness of theC∗-norm ‖.‖A onA, and the completeness of ‖.‖t
on the t-scaled hypercomplexesHt , the norm ‖.‖(t) on the t-conjugateA-hypercomplexes
Ht
2 (A) is complete, i.e., Ht

2 (A) forms a complete semi-normed space, as a topological

space. Just like Sect. 5, if there are no confusions, then we denote
(
T1 tT2
T2 T1

)
by [(T1, T2)]t ,

i.e.,
Ht
2 (A) = {

[(T1, T2)]t : T1, T2 ∈ A} .
Observe that, if [(T1, T2)]t , [(S1, S2)]t ∈ Ht

2 (A) and r1, r2 ∈ R, then

r1 [(T1, T2)]t + r2 [(S1, S2)]t =
(
r1T1 t (r1T2)
r1T2 r1T1

)
+
(
r2S1 t (r2S2)
r2S2 r2S1

)

=
⎛
⎜⎝ r1T1 + r2S1 t (r1T2 + r2S2)

r1T2 + r2S2 r1T1 + r2S1

⎞
⎟⎠

=
⎛
⎜⎝ r1T1 + r2S1 t (r1T2 + r2S2)

r1T2 + r2S2 r1T1 + r2S1

⎞
⎟⎠ (6.0.2)
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by (6.0.1), and hence, it is contained in Ht
2 (A), where (+) is the usual block-operator-

matrix addition, and

[(T1, T2)]t [(S1, S2)]t =
(
T1 tT2
T2 T1

)(
S1 tS2
S2 S1

)

=
⎛
⎜⎝T1S1 + tT2S2 t

(
T1S2 + T2S1

)
T2S1 + T1S2 tT2S2 + T1S1

⎞
⎟⎠

=
⎛
⎜⎝
T1S1 + tT2S2 t

(
T1S2 + T2S1

)

T1S2 + T2S1 T1S1 + tT2S2

⎞
⎟⎠ , (6.0.3)

by (6.0.1), showing that the product is also contained in Ht
2 (A), where (·) is the usual

block-operator-matrix multiplication.

Theorem 36 The t-conjugate A-hypercomplexes Ht
2 (A) of a unital C∗-subalgebra A of

the operator algebra B (H ) on a separable Hilbert space H is a complete R-semi-normed
algebra. i.e.,

Ht
2 (A) is a complete R − semi − normed algebra. (6.0.4)

Proof The t-conjugate A-hypercomplexes Ht
2 (A) is a R-vector space because the usual

operator-block-matrix addition is closed on it by (6.0.2). So, as a complete semi-normed
space, it forms a complete semi-normed R-vector space. This R-vector space Ht

2 (A)
becomes anR-algebra since the usual operator-block-matrix multiplication is closed on it
by (6.0.3). Therefore, it is a complete R-semi-normed algebra, i.e., the structure theorem
(6.0.4) holds. ��

By (6.0.4), we understand our t-conjugate A-hypercomplexes Ht
2 (A) as a complete R-

semi-normed algebra. So, interestingly, without the commutativity assumption on a fixed
unital C∗-subalgebra A of B (H ), one can consider the invertibility on Ht

2 (A), similar to,
but different from Sect. 5.
Recall that the t-hypercomplex A-hypercomplexes Ht

2 (A) is isomorphic to the A-A
bimodule A (Ht )A = α

(A2) (Ht ), for any scale t ∈ R, by (4.13). By the very construction
of t-conjugateA-hypercomplexesHt

2 (A), we have a similar structure theorem like (4.13).
Let A2 = A × A be the Cartesian-product C∗-algebra of two copies of a given unital
C∗-algebraA (which is not necessarily commutative). And define an action,

β : A2 → BR

(
Ht ,Ht

2 (A)
)
,

by

β (T1, T2) (a, b) = [aT1, bT2]t =
(
aT1 t (bT2)
bT2 aT1

)
,

in Ht
2 (A), for all (T1, T2) ∈ A2, and (a, b) ∈ Ht . i.e., β (T1, T2) ∈ BR

(A2,Ht
2 (A)

)
, where

BR

(A2,Ht
2 (A)

)
is the operator space of all bounded R-linear transformations from A2

into Ht
2 (A) over R. Then, similar to the proof of (4.9), the morphism β is a well-defined

bounded bi-module action fromA2 acting on our t-conjugateA-hypercomplexesHt
2 (A).

So, similar to (4.13), we obtain the following result.
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Theorem 37 The t-conjugate A-hypercomplexes Ht
2 (A) of a unital C∗-algebra A is iso-

morphic to theA-A bimodule β
(A2) (Ht ), i.e.,

Ht
2 (A) iso=A (Ht )A

denote= β
(A2) (Ht ) .

Proof The proof is similar to that of (4.13). ��

The above theorem shows a relation between the scaled hypercomplexes {Ht}t∈R and
scaled-conjugateA-hypercomplexes

{
Ht
2 (A)

}
t∈R. The difference between (4.13) and the

above theorem is that a t-scaled A-hypercomplexes Ht
2 (A) is a R-semi-normed “vector

space” as a bimodule A (Ht )A, meanwhile, a t-conjugate A-hypercomplexes Ht
2 (A) is a

R-semi-normed “algebra” as a bimodule A (Ht )A.

Definition 38 Let Ht
2 (A) be the t-conjugate A-hypercomplexes for a scale t ∈ R. An

element η ∈ Ht
2 (A) is invertible “in Ht

2 (A)” with its inverse η−1 ∈ Ht
2 (A), if

ηη−1 = [(1, 0)]t =
(
1 0
0 1

)
= η−1η,

where 1 is the identity operator ofA, and 0 is the zero operator ofA, in B (H ).

Suppose η = [(T1, T2)]t is invertible in the t-conjugate A-hypercomplexes Ht
2 (A) is

invertible with its inverse η−1 = [(S1, S2)]t ∈ Ht
2 (A). Then

ηη−1 =
⎛
⎜⎝
T1S1 + tT2S2 t

(
T1S2 + T2S1

)

T1S2 + T2S1 T1S1 + tT2S2

⎞
⎟⎠ =

⎛
⎜⎝1 0

0 1

⎞
⎟⎠ ,

and

η−1η =
⎛
⎜⎝
S1T1 + tS2T2 t

(
S1T2 + S2T1

)

S2T2 + S2T1 S1T1 + tS2T2

⎞
⎟⎠ =

⎛
⎜⎝1 0

0 1

⎞
⎟⎠ ,

if and only if

T1S1 + tT2S2 = 1 = S1T1 + tS2T2,

and

T1S2 + T2S1 = 0 = S1T2 + S2T1, inA. (6.0.5)

Proposition 39 An element [(T1, T2)]t is invertible with its inverse [(S1, S2)]t in the t-
conjugateA-hypercomplexes Ht

2 (A), if and only if

T1S1 + tT2S2 = 1 = S1T1 + tS2T2,

and

T1S2 + T2S1 = 0 = S1T2 + S2T1, in A. (6.0.6)

Proof The invertibility condition (6.0.6) on Ht
2 (A) is shown by (6.0.5). ��

6.1 The case where t = 0

In this section, we fix the zero scale in R, and the corresponding 0-conjugate A-
hypercomplexes H0

2 (A) of a unital C∗-subalgebra A of the operator algebra B (H ) on
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a separable Hilbert space H , i.e.,

H0
2 (A) =

{
[(T, S)]0 =

(
T 0
S T

)
: T, S ∈ A

}
,

as a complete R-semi-normed algebra by (6.0.4). By (6.0.6), an element [(T1, T1)]0 is
invertible with its inverse [(S1, S2)]0 in H0

2 (A), if and only if

T1S1 = 1 = S1T1,

and

T1S2 + T2S1 = 0 = S1T2 + S2T1, in A. (6.1.1)

The first formula of (6.1.1) implies that T1 is invertible in A, with its inverse T−1
1 = S1.

So, the invertibility condition (6.1.1) is equivalent to

S1 = T−1
1 , and T1S2 + T2S1 = 0 = S1T2 + S2T1, (6.1.2)

inA, if and only if

S1 = T−1
1 , T1S2 = −T2T−1

1 , and S2T1 = −T−1
1 T2,

if and only if

S1 = T−1
1 , S2 = −T−1

1 T2T−1
1 , inA, (6.1.3)

by (6.1.2).

Theorem 40 An element [(T1, T2)]0 is invertible in H0
2 (A), if and only if

T1 is invertible with its inverse T−1
1 inA,

and

[(T1, T2)]−1
0 =

[(
T−1
1 , −T−1

1 T2T−1
1

)]
0

∈ H0
2 (A) . (6.1.4)

Proof The proof of the invertibility condition (6.1.4) on Ht
2 (A) is done by (6.1.3). ��

The above theorem shows that [(T, S)]0 is invertible in H0
2 (A), if and only if there exists

the inverse,

[(T, S)]−1
0 =

[(
T−1, −T−1ST−1

)]
0

∈ H0
2 (A) ,

by (6.1.4). It shows that if T is not invertible in A, then [(T, S)]0 cannot be invertible in
H0
2 (A). So, all elements [(T, S)]0 are not invertible in H0

2 (A), whenever T is not invertible
inA.

6.2 The case where t �= 0

InSect. 6.1,wecharacterize the invertibility conditionon the0-conjugateA-hypercomplexes
H0
2 (A) of a unital C∗-subalgebra A of the operator algebra B (H ) on a separable Hilbert

space H , by (6.1.4). In this section, we fix a non-zero scale t ∈ R \ {0}, and study the
invertibility on the corresponding t-conjugate A-hypercomplexes Ht

2 (A). Throughout
this section, any given scale t is automatically assumed to be non-zero in R.
By (6.0.6), an element [(T1, T2)]t is invertible with its inverse [(S1, S2)]t in Ht

2 (A), if and
only if

T1S1 + tT2S2 = 1 = S1T1 + tS2T2,

and

T1S2 + T2S1 = 0 = S1T2 + S2T1, inA. (6.2.1)
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This condition (6.2.1) is equivalent to

T2S2 = 1
t
(1 − T1S1) , S2T2 = 1

t
(1 − S1T1) ,

and

T2S1 = −T1S2, S2T1 = −S1T2, inA. (6.2.2)

Note that, an operatorT is invertible inA, if and only if the conjugateT is also invertible
inA, because

T−1T = T−1T = 1 = 1 = 1 = TT−1 = TT−1,

implyingthat

TT−1 = 1 = T−1T,⇐⇒ (
T
)−1 = T−1, inA. (6.2.3)

Assume that T2 (and hence, T2) is invertible inA (by (6.2.3)).
Take the second equality of the first line of (6.2.2), and the second equality of the second

line of (6.2.2). Then we obtain that

S2 = 1
t
(1 − S1T1)T−1

2 , by (6.2.3),

and

S1 = −S2T1T−1
2 , in A. (6.2.4)

From the second formula of (6.2.4), one has

S1 = −
(
1
t
(1 − S1T1)T−1

2

)
T1T−1

2 ,

⇐⇒
S1 = −

(
1
t
T−1
2 − 1

t
S1T1T−1

2

)
T1T−1

2 ,

⇐⇒
S1 = −1

t
T−1
2 T1T−1

2 + 1
t
S1T1T−1

2 T1T−1
2 ,

implying that

S1 − 1
t
S1T1T−1

2 T1T−1
2 = −1

t
T−1
2 T1T−1

2 ,

⇐⇒
S1
(
1 − 1

t
T1T−1

2 T1T−1
2

)
= −1

t
T−1
2 T1T−1

2 , in A. (6.2.5)

Now, assume that

1 − 1
t
T1T−1

2 T1T−1
2 is invertible inA.

Then, by (6.2.5), we have that

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
. (6.2.6)

Therefore, by (6.2.4) and (6.2.6),

S2 = 1
t
(1 − S1T1)T−1

2 ,

and

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,

implying that

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 , (6.2.7)

inA.
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Theorem 41 Suppose T2 and 1 − 1
t T1T−1

2 T1T−1
2 are invertible in a unital C∗-algebra

A. An element [(T1, T2)]t is invertible in the t-conjugateA-hypercomplexesHt
2 (A)with its

inverse [(S1, S2)]t ∈ Ht
2 (A), if and only if

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,

and

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 , (6.2.8)

inA.

Proof By (6.2.2), an element [(T1, T2)]t is invertible with its inverse [(S1, S2)]t in Ht
2 (A),

if and only if

T2S2 = 1
t
(1 − T1S1) , S2T2 = 1

t
(1 − S1T1) ,

and

T2S1 = −T1S2, S2T1 = −S1T2, inA.

Under the assumption that

T2 and 1 − 1
t
T1T−1

2 T1T−1
2 are invertible inA,

we have

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,

and

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 ,

in A, by (6.2.6) and (6.2.7), respectively. Therefore, the invertibility condition (6.2.8) is
obtained under hypothesis. ��

The above theorem partially characterizes the invertibility (6.0.6), or (6.2.1) on the t-
conjugate A-hypercomplexes Ht

2 (A) under certain invertibility assumption on A by
(6.2.8).

6.3 Summary and conclusion

In this section, we summarize the main results of Sects. 6.1 and 6.2. Let A be a unital
C∗-subalgebra of the operator algebra B (H ) on a separable Hilbert spaceH , and let t ∈ R,
and Ht

2 (A), the corresponding t-conjugateA-hypercomplexes.

Corollary 42 If t = 0 in R, then an element [(T1, T2)]0 is invertible with its inverse
[(S1, S2)]0 in H0

2 (A), if and only if

T1 is invertible inA,

and

[(S1, S2)]0 =
[(

T−1
1 , −T−1

1 T2T−1
1

)]
0

∈ H0
2 (A) . (6.3.1)
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Meanwhile, if t �= 0 in R, then [(T1, T2)]t is invertible with its inverse [(S1, S2)]t in Ht
2 (A),

if and only if

T2S2 = 1
t
(1 − T1S1) , S2T2 = 1

t
(1 − S1T1) ,

and

T2S1 = −T1S2, S2T1 = −S1T2, inA. (6.3.2)

In particular, if T2 and 1 − 1
t T1T−1

2 T1T−1
2 are invertible inA, then

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,

and

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 , (6.3.3)

inA.

Proof The invertibility (6.3.1) on H0
2 (A) is shown by (6.1.4). The invertibility character-

ization (6.3.2) on
{
Ht
2 (A)

}
t∈R\{0} holds by (6.2.2). The special case (6.3.3) of (6.3.2) is

proven by (6.2.8). ��
The above corollary provides the invertibility characterization on the scaled-conjugate
A-hypercomplexes

{
Ht
2 (A)

}
t∈R of a unitalC∗-subalgebraA of the operator algebra B (H )

on a separable Hilbert space H .

7 The invertibility onHt and onHt
2 (A)

In this section, we briefly consider the relation between the invertibility on the t-scaled
hypercomplexes Ht and that on the t-conjugate A-hypercomplexes Ht

2 (A) of a unital
C∗-subalgebraA of the operator algebra B (H ) on a separable Hilbert space H , for t ∈ R.
Remember that, for any scale t ∈ R, a t-scaled hypercomplex number (a, b) ∈ Ht is
invertible, if and only if (a, b) ∈ H

inv
t , if and only if

det ([(a, b)]t ) = |a|2 − t
∣∣b∣∣2 �= 0,

where [(a, b)]t =
(
a tb
b a

)
∈ Ht

2, by (2.2.2). Also, recall that the t-conjugate A-

hypercomplexes Ht
2 (A) is isomorphic to theA-A bimodule,

A (Ht )A
denote= β

(A2) (Ht ) ,
as a R-SNS, where

β (T1, T2) (a, b) = [(aT1, bT2)]t =
(
aT1 t(bT2)
bT2 aT1

)
,

in Ht
2 (A), for all (T1, T2) ∈ A2 and (a, b) ∈ Ht .

Note that, for any arbitrary [(T1, T2)]t ∈ Ht
2 (A), there exists at least one (a, b) ∈ Ht ,

with a, b ∈ C \ {0}, such that

[(T1, T2)]t =
[(

a
(
1
a
T1

)
, b

(
1
b
T2

))]
t
= β

(
1
a
T1,

1
b
T2

)
(a, b) ,

in Ht
2 (A). For instance,

[(0, 0)]t = β (0, 0) (1, 1) ,

[(T, 0)]t = β (T, 0) (1, 1) ,
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and

[(T, S)]t = β

(
1
i
T,

1
i
S
)
(i, i) ,

etc.. Now, let (a, b) ∈ H
inv
t with its inverse,

(a, b)−1 =
(

a
|a|2 − t

∣∣b∣∣2 ,
−b

|a|2 − t
∣∣b∣∣2

)
∈ Ht ,

by (2.2.2). Assume that the operators T1 and T2 are invertible in the C∗-algebra A, with
their inverses T−1

1 and T−1
2 , respectively. For (a, b) ∈ H

inv
t , consider the element,

T = β (T1, T2) (a, b) = [(aT1, bT2)]t ,

and

S = β
(
T−1
1 , T−1

2

) (
(a, b)−1

)
=
[(

aT−1
1

|a|2 − t
∣∣b∣∣2 ,

−bT−1
2

|a|2 − t
∣∣b∣∣2

)]
t

, (7.1)

in the t-conjugateA-hypercomplexesHt
2 (A). Remark that the conjugateT2 is also invert-

ible in A, with its inverse T2
−1 = T−1

2 in A, and hence, the element S of (7.1) is well-
determined in Ht

2 (A). Observe that

TS = ([(aT1, bT2)]t )

([(
aT−1

1

|a|2 − t
∣∣b∣∣2 ,

−bT−1
2

|a|2 − t
∣∣b∣∣2

)]
t

)

=
⎛
⎜⎝aT1 tbT2

bT2 aT1

⎞
⎟⎠
⎛
⎜⎜⎜⎜⎝

aT−1
1

|a|2−t|b|2
−tbT−1

2
|a|2−t|b|2

−bT−1
2

|a|2−t|b|2
aT−1

1
|a|2−t|b|2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

|a|21−t|b|21
|a|2−t|b|2 t −abT1T−1

2 +abT2T−1
1

|a|2−t|b|2

−abT1T−1
2 +abT2T−1

1
|a|2−t|b|2

|a|21−t|b|21
|a|2−t|b|2

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

1 t −abT1T−1
2 +abT2T−1

1
|a|2−t|b|2

−abT1T−1
2 +abT2T−1

1
|a|2−t|b|2 1

⎞
⎟⎟⎟⎟⎠ , (7.2)

and, similarly, we have

ST =

⎛
⎜⎜⎜⎜⎝

1 t −abT1T−1
2 +abT2T−1

1
|a|2−t|b|2

−abT1T−1
2 +abT2T−1

1
|a|2−t|b|2 1

⎞
⎟⎟⎟⎟⎠ , (7.3)

in Ht
2 (A), i.e.,

TS =
[(

1,
−abT1T−1

2 + abT2T−1
1

|a|2 − t
∣∣b∣∣2

)]
t

= ST, (7.4)

in Ht
2 (A) by (7.2) and (7.3), whenever T and S are in the sense of (7.1).

Define a subsetAinv ofA by the set of all invertible operators ofA, i.e.,

Ainv def= {
T ∈ A : ∃T−1 inA} .
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Lemma 43 Let (a, b) ∈ H
inv
t in Ht for t ∈ R, where

a �= 0 and b �= 0, in C.

If T ∈ Ainv in the fixed C∗-algebra A, then [(aT1, bT2)]t is invertible in the t-conjugate
A-hypercomplexes Ht

2 (A), with its inverse,

[(
aT, bT

)]−1
t =

[(
aT−1

|a|2 − t
∣∣b∣∣2 ,

−bT
|a|2 − t

∣∣b∣∣2
)]

t

,

satisfying(
β
(
T, T

)
(a, b)

)−1 = β
(
T−1, T

) (
(a, b)−1

)
, (7.5)

in Ht
2 (A), where

(a, b)−1 =
(

a
|a|2 − t

∣∣b∣∣2 ,
−b

|a|2 − t
∣∣b∣∣2

)
∈ Ht .

Proof Let (a, b) ∈ H
inv
t be an invertible t-scaled hypercomplex number of Ht , where

a, b ∈ C \ {0} , in C,

with its inverse,

(a, b)−1 =
(

a
|a|2 − t

∣∣b∣∣2 ,
−b

|a|2 − t
∣∣b∣∣2

)
∈ Ht .

For the invertible operators T1, T2 ∈ Ht
2 (A), if we let

T = β (T1, T2) (a, b) = [(aT1, bT2)]t ,

and

S = β
(
T−1
1 , T−1

2

) (
(a, b)−1

)
=
[(

aT−1
1

|a|2 − t
∣∣b∣∣2 ,

−bT−1
2

|a|2 − t
∣∣b∣∣2

)]
t

,

in Ht
2 (A), then

TS =
[(

1,
−abT1T−1

2 + abT2T−1
1

|a|2 − t
∣∣b∣∣2

)]
t

= ST,

in Ht
2 (A), by (7.3) and (7.4). It shows that

T1T−1
2 = 1 = T2T−1

1 in A,

if and only if

TS = [(1, 0)]t =
(
1 0
0 1

)
= ST,

in Ht
2 (A). Equivalently,

T−1
2 = T1 inA ⇐⇒ TS =

(
1 0
0 1

)
= ST inHt

2 (A) ,

if and only if

T−1
2 = T1 inA ⇐⇒ T−1 = S inHt

2 (A) . (7.6)
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By (7.6), if (a, b) ∈ H
inv
t and T ∈ Ainv , with T−1 = T inA, then the element

[(
aT, bT

)]
t

is invertible in Ht
2 (A), with

[(
aT, bT

)]−1
t =

[(
aT−1

|a|2 − t
∣∣b∣∣2 ,

−bT
|a|2 − t

∣∣b∣∣2
)]

t

.

Therefore, the invertibility condition (7.5) holds on Ht
2 (A). ��

Similar to (7.5), one can get the following result.

Lemma 44 If (a, b) = (0, b) ∈ H
inv
t is an invertible t-scaled hypercomplex number of Ht ,

where

a = 0 and b �= 0, in C,

then

[(
0 · T, bT)]−1

t = [(
0, bT

)]−1
t =

[(
0,

bT−1

t
∣∣b∣∣2

)]
t

∈ Ht
2 (A) ,

equivalently,(
β
(
T, T

)
(0, b)

)−1 = β
(
0, T−1) ((0, b)−1

)
, inHt

2 (A) . (7.7)

Proof If (a, b) ∈ H
inv
t is invertible in Ht , with a = 0 and b �= 0 in C, then

(a, b)−1 = (0, b)−1 =
(

0
|0|2 − t

∣∣b∣∣2 ,
−b

|0|2 − t
∣∣b∣∣2

)
=
(
0,

b
t
∣∣b∣∣2

)
,

in Ht . If T ∈ Ainv inA, then

[(
0 · T, bT)]−1

t = [(
0, bT

)]−1
t =

[(
0,

bT−1

t
∣∣b∣∣2

)]
t

,

in Ht
2 (A). Thus, the invertibility (7.7) holds. Indeed,

[(
0, bT

)]
t

[(
0,

bT−1

t
∣∣b∣∣2

)]
t

=
⎛
⎜⎝ 0 tbT

bT 0

⎞
⎟⎠
⎛
⎜⎜⎜⎝

0 bT−1

|b|2

bT−1

t|b|2 0

⎞
⎟⎟⎟⎠

=
⎛
⎜⎝1 0

0 1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

0 bT−1

|b|2

bT−1

t|b|2 0

⎞
⎟⎟⎟⎠
⎛
⎜⎝ 0 tbT

bT 0

⎞
⎟⎠

=
[(

0,
bT−1

t
∣∣b∣∣2

)]
t

[(
0, bT

)]
t ,

in the t-conjugateA-hypercomplexes Ht
2 (A). ��

Just like (7.7), we obtain the following result.

Lemma 45 If (a, b) = (a, 0) ∈ H
inv
t is an invertible t-scaled hypercomplex number of Ht ,

where

a �= 0 and b = 0, in C,
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then
[(
aT, 0 · T)]−1

t = [(aT, 0)]−1
t =

[(
aT−1

|a|2 , 0
)]

t
∈ Ht

2 (A) ,

equivalently,(
β
(
T, T

)
(0, b)

)−1 = β
(
T−1, 0

) (
(a, 0)−1) , inHt

2 (A) . (7.8)

Proof If (a, b) ∈ H
inv
t is invertible in Ht , with a �= 0 and b = 0 in C, then

(a, b)−1 = (a, 0)−1 =
(

a
|a|2 − t |0|2 ,

−0
|a|2 − t |0|2

)
=
(

a
|a|2 , 0

)
,

in Ht . If T ∈ Ainv inA, then[(
aT, 0 · T)]−1

t = [(aT, 0)]−1
t =

[(
aT−1

|a|2 , 0
)]

t
,

in Ht
2 (A). Thus, the invertibility (7.8) holds. Indeed,

[(aT, 0)]t
[(

aT−1

|a|2 , 0
)]

t
=
⎛
⎜⎝aT 0

0 aT

⎞
⎟⎠
⎛
⎜⎜⎝

aT−1

|a|2 0

0 aT−1

|a|2

⎞
⎟⎟⎠

=
⎛
⎜⎝1 0

0 1

⎞
⎟⎠ =

⎛
⎜⎜⎝

aT−1

|a|2 0

0 aT−1

|a|2

⎞
⎟⎟⎠
⎛
⎜⎝aT 0

0 aT

⎞
⎟⎠

=
[(

aT−1

|a|2 , 0
)]

t
[(aT, 0)]t ,

in the t-conjugateA-hypercomplexes Ht
2 (A). ��

By summarizing the abovemain results (7.5), (7.7) and (7.8), onehas the following theorem.

Theorem 46 Let (a, b) ∈ H
inv
t be invertible in the t-scaled hypercomplexes Ht , with its

inverse,

(a, b)−1 =
(

a
|a|2 − t

∣∣b∣∣2 ,
−b

|a|2 − t
∣∣b∣∣2

)
∈ Ht ,

and let T ∈ Ainv inA. If a, b ∈ C \ {0}, then(
β
(
T, T

)
(a, b)

)−1 = β
(
T−1, T

) (
(a, b)−1

)
(7.9)

and if a = 0 and b �= 0 in C, then(
β
(
T, T

)
(a, b)

)−1 = β
(
0, T−1) ((a, b)−1

)
(7.10)

and if a �= 0 and b = 0 in C, then(
β
(
T, T

)
(a, b)

)−1 = β
(
T−1, 0

) (
(a, b)−1

)
, inHt

2 (A) (7.11)

Proof The invertibility conditions (7.9), (7.10) and (7.11) are shown by (7.5), (7.7) and
(7.8), respectively. ��
The above theorem shows a relation among the invertibility on the scaled hypercom-
plexes {Ht}t∈R, the invertibility onA, and that on the scaled-conjugateA-hypercomplexes{
Ht
2 (A)

}
t∈R by (7.9), (7.10) and (7.11), whereA is a unital C∗-subalgebra of the operator

algebra B (H ) on a separable Hilbert space H .
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8 The invertibility on (2 × 2)-Block Operators and That onHt
2 (A)

In this section, we confirm that our invertibility on the t-conjugate A-hypercomplexes
Ht
2 (A) is determined by the invertibility on the (2 × 2)-block operators M2 (A) in the

canonical sense of Chapter 3 of [1] over a unital C∗-subalgebra of the operator algebra
B (H ) on a separable Hilbert space H , where

M2 (A) =
{[

Aij
]
2×2

denote=
(
A11 A12
A21 A22

)
: A11, A12, A21, A22 ∈ A

}
.

The following proposition is know (e.g., see [1]).

Proposition 47 Suppose operators A, D, A − BD−1C ∈ Ainv are invertible in A. Then

a (2 × 2)-block operator
(
A B
C D

)
∈ M2 (A) is invertible with its inverse

(
U V
W Z

)
, if and

only if

U = (
A − BD−1C

)−1 ,

V = − (
A − BD−1C

)−1 BD−1,

W = −D−1C
(
A − BD−1C

)−1 ,

and

Z = D−1 + D−1C
(
A − BD−1C

)−1 BD−1, (8.1)

inA. i.e., under the hypothesis, the inverse
(
A B
C D

)−1

is

⎛
⎜⎝

(
A − BD−1C

)−1 − (
A − BD−1C

)−1 BD−1

−D−1C
(
A − BD−1C

)−1 D−1 + D−1C
(
A − BD−1C

)−1 BD−1

⎞
⎟⎠ ,

in M2 (A).

Proof See e.g., the formula (3.2.8) in Chapter 3 of [1]. ��
With respect to (8.1), we consider a connection between the invertibility on the (2 × 2)-
block-operator algebra M2 (A) over A, and that on the t-conjugate A-hypercomplexes
Ht
2 (A), for an arbitrary scale t ∈ R. Recall that, by (6.1.4),

[(T1, T2)]−1
0 =

[(
T−1
1 , −T−1

1 T2T−1
1

)]
0

∈ H0
2 (A) (8.2)

and, by (6.2.8), if [(T1, T2)]t is invertible in Ht
2 (A) with its inverse [(S1, S2)]t ∈ Ht

2 (A),
then

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,

and

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 , (8.3)

inA, under suitable invertibility assumptions.
Assumption andNotation 8.1. (From below, AN8.1) In the rest of this section, if we
express “a certain formula holds under suitable invertibility assumptions,” then it means
that “if we write the inverse notationA−1 for an operatorA in a fixedC∗-algebraA, then it
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automatically assumed thatA is invertible inAwith its inverseA−1 ∈ A.” For instance, as
in the above paragraph, “the formulas (8.3) holds under suitable invertibility assumptions”
means that “the formula (8.3) holds by assuming that

T1, T2, and 1 − 1
t
T1T−1

2 T1T−1
2

are invertible inA.” ��
Now, assume that t = 0 in R, and let

A = T1, B = 0 · T2 = 0, C = T2, andD = T1, inA (8.4)

Then, if⎛
⎜⎝A B

C D

⎞
⎟⎠ let=

⎛
⎜⎝T1 0

T2 T1

⎞
⎟⎠ = [(T1, T2)]0 ∈ Ht

2 (A) ,

is invertible “inM2 (A),” then(
A B
C D

)−1

=
(
U V
W Z

)
∈ M2 (A) ,

whereU,V,W andZ satisfy (8.1) under suitable invertibility assumption onA, and hence,

U =
(
T1 − 0T1

−1T2
)−1 = T−1

1 ,

V = −
(
T1 − 0T1

−1T2
)−1

0T1
−1 = 0,

W = −T1
−1T2

(
T1 − 0T1

−1T2
)−1 = −T1

−1T2T−1
1 ,

and

Z = T1
−1 + T1

−1T2
(
T1 − 0T1

−1T2
)−1

0T1
−1 = T1

−1, (8.5)

inA, by (8.1) and (8.4).

Theorem 48 Under suitable invertibility assumptions (in the sense ofAN8.1), the invert-
ibility on the 0-conjugate A-hypercomplexes H0

2 (A) and the invertibility on the algebra
M2 (A) are equivalent, i.e.,

The invertibility on H0
2 (A) equi= the invertibility on M2 (A) (8.6)

Proof Under suitable invertibility assumptions, by the invertibility (8.1) onM2 (A), if

[(T1, T2)]0 =
(
T1 0
T2 T1

)
∈ H0

2 (A) ⊂ M2 (A)

is invertible “inM2 (A),” then

[(T1, T2)]−1
0 =

⎛
⎜⎝

T−1
1 0

−T−1
1 T2T−1

1 T−1
1

⎞
⎟⎠ denote= U ∈ M2 (A) ,

by (8.5), because

A−1 = A−1, inA, if A is invertible inA.



D. Alpay, I. Cho Res Math Sci           (2023) 10:47 Page 39 of 44    47 

It shows that the inverse U ∈ M2 (A) of [(T1, T2)]0 ∈ H0
2 (A) is identified with

U =

⎛
⎜⎜⎝

T−1
1 0 ·

(
−T−1

1 T2T−1
1

)

−T−1
1 T2T−1

1 T−1
1

⎞
⎟⎟⎠ ∈ M2 (A) ,

contained “in H0
2 (A),” as

U =
[(

T−1
1 , −T−1

1 T2T−1
1

)]
0

∈ H0
2 (A) .

Therefore, the invertibility on M2 (A) implies the invertibility on H0
2 (A) under suitable

invertibility assumptions.
Since H0

2 (A) is a subalgebra ofM2 (A) by definition, the invertibility on H0
2 (A) implies

that onM2 (A). Therefore, the equivalence (8.6) holds. ��

The above theorem shows that the invertibility on the 0-conjugate A-hypercomplexes
H0
2 (A) and that on M2 (A) are equivalent under suitable invertibility assumptions by

(8.6).
Now, assume that t �= 0 in R, and let

A = T1, B = tT2, C = T2, andD = T1, in A (8.7)

Then, if⎛
⎜⎝A B

C D

⎞
⎟⎠ let=

⎛
⎜⎝T1 tT2

T2 T1

⎞
⎟⎠ = [(T1, T2)]t ∈ Ht

2 (A) ,

is invertible “inM2 (A),” then(
A B
C D

)−1

=
(
U V
W Z

)
∈ M2 (A) ,

where U,V,W and Z satisfy (8.1);

U = (
A − BD−1C

)−1 ,

V = − (
A − BD−1C

)−1 BD−1,

W = −D−1C
(
A − BD−1C

)−1 ,

and

Z = D−1 + D−1C
(
A − BD−1C

)−1 BD−1,

inA, equivalently,

U =
(
T1 − tT2T1

−1T2
)−1

,

V = −
(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1,

W = −T1
−1T2

(
T1 − tT2T1

−1T2
)−1

,

and

Z = T1
−1 + T2

(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1, (8.8)
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in A, under suitable invertibility assumptions in A, by (8.1) and (8.7). Recall that, by
(8.3), under suitable invertibility assumptions, if [(T1, T2)]t is invertible with its inverse
[(S1, S2)]t “in Ht

2 (A),” then

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,

and

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 , (8.9)

inA. From the first formula of (8.9), one has that

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1

= −1
t
T−1
2 T1

(
T2 − 1

t
T1T−1

2 T1T−1
2 T2

)−1

= −1
t
T−1
2 T1

(
T2 − 1

t
T1T−1

2 T1

)−1

= −1
t
T−1
2

(
T2T1

−1 − 1
t
T1T−1

2 T1T1
−1
)−1

= −1
t
T−1
2

(
T2T1

−1 − 1
t
T1T−1

2

)−1

= −1
t

(
T2T1

−1T2 − 1
t
T1T−1

2 T2

)−1

= 1
t

(
−T2T1

−1T2 + 1
t
T1

)−1
=
(
−tT2T1

−1T2 + T1
)−1 = U, (8.10)

whereU is in the sense of (8.8), i.e., the S1 of (8.9) is identical toU of (8.8) inA, by (8.10).
Now, let

S1
in (8.9)

= U
in (8.8)

=
(
T1 − tT2T1

−1T2
)−1 ∈ A,

by (8.10).
Also, in the second formula of (8.8), one has

V = −
(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1,

and by (8.9),

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 ,

inA, under suitable invertibility assumptions.

Proposition 49 Let A, B ∈ A be invertible elements of a fixed C∗-subalgebra A of the
operator algebra B (H ) on a separable Hilbert space H. Then(

A − BA−1B
)−1 = A−1 + A−1B

(
A − BA−1B

)−1 BA−1,

and

A−1B
(
BA−1B − A

)−1 = (
BA−1B − A

)−1 BA−1, inA. (8.11)

Proof The above two formulas of (8.11) are shown by the formulas (3.9.25) and (3.9.26)
of [1], respectively. ��
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By (8.11), one obtains the following corollary.

Corollary 50 Let A, B ∈ A be invertible elements of a fixed C∗-algebraA. Then

A−1 + A−1B
(
A − BA−1B

)
BA−1 =

(
A − BA−1B

)−1
, inA. (8.12)

Proof The formula (8.12) is shown by (8.11). Indeed,

A−1 + A−1B
(
A − BA−1B

)
BA−1

=
(
1 + A−1B

(
A − BA−1B

)−1 B
)
A−1

=
(
1 + A−1B

(
1 − A−1BA−1B

)−1
A−1B

)
A−1

=
(
1 − A−1BA−1B

)−1
A−1 =

(
A − BA−1B

)−1
,

inA, by applying the formulas of (8.11). ��
If S1 ∈ A is in the sense of (8.9), then one has

S1 = U =
(
T1 − tT2T1

−1T2
)−1 =

(
T1 − tT2T−1

1 T2
)−1

, (8.13)

inA, by (8.10). Then, by (8.11) and (8.12),

S1 =T1
−1 + tT1

−1T2
(
T1 − tT2T1

−1T2
)
T2T1

−1, inA. (8.14)

Note and recall that, by the fourth formula of (8.8), we have

Z = T1
−1 + T2

(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1,

inA. It shows that

Z
in (8.8)

= S1
in (8.9)

, in A, (8.15)

by (8.13) and (8.14).
Now, consider the operator V in the second formula of (8.8),

V = −
(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1,

and the operator S2 of (8.9),

tS2 =
(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2

inA. Then

tS2 =
(
1 −

(
−1
t
T−1
2 T1

(
T2 − 1

t
T1T−1

2 T1T−1
2 T2

)−1
)
T1

)
T−1
2

=
(
1 −

(
−T−1

2

(
tT2T1

−1 − T1T−1
2 T1T1

−1)−1
)
T1

)
T−1
2

=
(
1 −

(
−tT2T1

−1T2 + T1T−1
2 T2

)−1
T1

)
T−1
2

=
(
1 −

(
−tT2T1

−1T2 + T1
)−1

T1

)
T−1
2

=
(
1 −

(
T1 − tT2T1

−1T2
)−1

T1

)
T−1
2

= T2
−1 −

(
T1 − tT2T1

−1T2
)−1

T1T−1
2 , (8.16)
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inA. Now, let’s compare the operatorsV of (8.8) and the the operator tS2 of (8.16) induced
from the operator S2 of (8.9).

tS2 = T2
−1 −

(
T1 − tT2T1

−1T2
)−1

T1T−1
2

by (8.16)

= T2
−1 −

((
1 − tT2T1

−1T2T−1
1

)−1
T−1
1 T1T2

−1
)

= T2
−1 −

((
1 − tT2T1

−1T2T−1
1

)−1
T2

−1
)

=
(
1 −

(
1 − tT2T1

−1T2T−1
1

))
T2

−1 (8.17)

=
(
1 −

(
1 + T−1

1

(
1 − tT2T1

−1T2T−1
1

)
tT2T1

−1T2
))

T2
−1 (8.18)

since

(1 − AB)−1 = 1 + A (1 − BA)−1 B,

inA under suitable invertibility assumptions for A, B ∈ A; so, one can take

A = T−1
1 , and B = tT2T1

−1T2,

in (8.17). Thus, by (8.18),

tS2 =
(
−T−1

1

(
1 − tT2T1

−1T2T−1
1

)
tT2T1

−1T2
)
T2

−1

= −T−1
1

(
1 − tT2T1

−1T2T−1
1

)
tT2T1

−1

= −
(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1 = V, (8.19)

inA. i.e., by (8.19), we have that

tS2
where S2 is from (8.9)

= V
of (8.8)

, in A. (8.20)

By (8.20), we obtain that

S2
of (8.9)

= 1
t
(tS2) =

by(8.18)
1
t
V = W

of (8.8)
, in A,

where

W = −T1
−1T2

(
T1 − tT2T1

−1T2
)−1

. (8.21)

Theorem 51 Let t �= 0 in R. Under suitable invertibility assumptions (in the sense of
AN8.1), the invertibility on the t-conjugateA-hypercomplexesHt

2 (A) and the invertibility
on the algebra M2 (A) are equivalent, i.e.,

the invertibility on M2 (A) equi= the invertibility on Ht
2 (A) , ∀t ∈ R \ {0} . (8.22)

Proof For a nonzero scale t ∈ R \ {0}, suppose the element [(T1, T2)]t is invertible “in the
t-conjugateA-hypercomplexes Ht

2 (A)” with its inverse,

[(S1, S2)]t =
(
S1 tS2
S2 S1

)
∈ Ht

2 (A) ,

where

S1 = −1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
,
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and

S2 = 1
t

(
1 −

(
−1
t
T−1
2 T1T−1

2

(
1 − 1

t
T1T−1

2 T1T−1
2

)−1
)
T1

)
T−1
2 ,

in A by (6.2.8), or (8.3), under suitable invertibility assumptions. Then as a (2 × 2)-
operator-block matrix,

[(T1, T2)]t =
(
T1 tT2
T2 T1

)
∈ Ht

2 (A) , inM2 (A) ,

it can have its inverse “inM2 (A) ,”(
U V
W Z

)
∈ M2 (A) ,

with

U =
(
T1 − tT2T1

−1T2
)−1

,

V = −
(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1,

W = −T1
−1T2

(
T1 − tT2T1

−1T2
)−1

,

and

Z = T1
−1 + T2

(
T1 − tT2T1

−1T2
)−1

(tT2)T1
−1,

inA, by (8.8). However, by (8.10), (8.13), (8.20) and (8.21), we have that(
U V
W Z

)
=
(
S1 tS2
S2 S1

)
,

“inHt
2 (A),” insideM2 (A). It shows that the invertibility onM2 (A) implies that onHt

2 (A).
SinceHt

2 (A) is a subalgebra ofM2 (A), the invertibility onHt
2 (A) implies that onM2 (A).

Therefore, the equivalence (8.22) holds. ��

So, we obtain the following main result of this section.

Corollary 52 The invertibility on the t-conjugate A-hypercomplexes Ht
2 (A) and the

invertibility on M2 (A) are equivalent, for all scales t ∈ R.

Proof It is shown by the equivalences (8.6) and (8.22). ��
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