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Abstract

The main purposes of this paper are (i) to enlarge scaled hypercomplex structures to
operator-valued cases, where the operators are taken from a C*-subalgebra of an
operator algebra on a separable Hilbert space, (i) to characterize the invertibility
conditions on the operator-valued scaled-hypercomplex structures of (i), (iii) to study
relations between the invertibility of scaled hypercomplex numbers, and that of
operator-valued cases of (ii), and (iv) to confirm our invertibility of (i) and (iii) are
equivalent to the general invertibility of (2 x 2)-block operator matrices.

Keywords: Scaled hypercomplex numbers, Scaled hyperbolic numbers,
Operator-hypercomplexes
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1 Introduction

In this paper, we extend the scaled hypercomplex structures H; with a scale ¢ € R to the
operator-valued structures by acting the operators of a C*-subalgebra A of an operator
algebra B (H) on a separable Hilbert space H under certain bi-module actions of the
Cartesian-product C*-algebra A2 to H; from the left and the right. Roughly speaking, we
consider (2 x 2)-block operator matrices,

T, tTy or T, tTy
Ty TF )’ T, T )

where T} are the usual adjoints of 7} in A, and T are certain conjugates of T in A, for
all/ = 1,2, for any ¢ € R. In particular, we are interested in inverses of such operators (if
exist). Our main results not only provide the characterization of the invertibility on such
operators, but also show the relations among the invertibility of the C*-algebra of such
operators, the invertibility on {H;},cr, and that on

My (A) = !(gﬁ) :A,B,C,DGA}.

Throughout this paper, every vector (4, b) € C? is understood as hypercomplex numbers
(@, b) induced by the complex numbers a and b. Under a suitable scaling in the real field
R, the set C? of hypercomplex numbers forms a ring,

Ht = ((Cz) +1 't) p)
where (4) is the usual vector addition on C?, and (-;) is the ¢-scaled vector-multiplication,
(a1, b1) ¢ (a2, b2) = (amz + th1by, arby + blﬂ_Z);

on C?, where Z are the conjugates of z in C.
By the Hilbert-space representation ((Cz, ;) of Hy introduced in [3], we regard a hyper-
complex number 4 = (a, b) € Hy as a (2x2)-matrix,

e () = ], < (g ;b) in M (C),

where Mj (C) is the matricial algebra (or, the operator C*-algebra B ((CZ) acting on the
Hilbert space C2) over C, for ¢ € R.

Remark and recall that the ring H_; is the noncommutative field H of all quaternions
(e.g., [6,22]), and the ring H is the ring of all split-quaternions (e.g., [1,2]). The algebra,
analysis, spectra theory, operator theory, and free probability on {H;},cg are studied in
[3]. The quaternions H = H_; and the split-quaternions H; has been studied in various
different fields in mathematics and applied science (e.g., [1,6,8,9,13-15,19,23,24,26]),
as an extended algebraic structure of the complex field C, or the hyperbolic numbers
D, which also motivates the construction and analysis on Clifford algebras (e.g., [4,7—
10,14,16-18,20]). From the theories on the quaternions H = H_;, we extend them to
those on the scaled-hypercomplex rings {H;},cg in [3,5], generalizing the main results of
[6].

Meanwhile, the invertibility on the algebra M, (A) of (2 x 2)-operator-block matrices
is characterized under suitable invertibility assumptions on a unital C*-subalgebra A of
the operator algebra B (H) on a separable Hilbert space H (e.g., see Chapter 3 of [1]). Our
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main results provide connections among the invertibility on Hy, the invertibility on

HY (A) = {(ST ;S*):T,SGA],

that on

ﬁé(A)z{(??):ﬂSeA},

and that on M (A), by finding the invertibility characterizations on H5 (A) and on §5 (A).

2 Scaled hypercomplex numbers
In this section, we review fundamental algebra, analysis, and operator theory on the scaled
hypercomplex rings {H},cg. Let

C?>={(ab):abeC},

as the usual 2-dimensional Hilbert space over the complex field C.

2.1 Scaled hypercomplex rings
Fix an arbitrarily scale ¢ in the real field R. On the Hilbert space C2, define the ¢-scaled
vector-multiplication () by

def — _
(an, br) ¢ (a2 ba) = <ﬂ1fl2 + th1by, arby + bwz) , (2.1.1)
for (a;, b;) € C?, foralll =1, 2.

Proposition 1 The algebraic structure ((CZ, + -t) forms a unital ring with its unity, or
the (-¢)-identity, (1,0), where (+) is the usual vector addition on C?, and (-;) is the vector
multiplication (2.1.1).

Proof The pair ((CZ, +) is an abelian group for (+) with its (+)-identity (0, 0). And the
algebraic pair (C**, -;) is a semigroup with its (-;)-identity (1, 0) where C** = C?\ {(0, 0)}.
It is not difficult to check (+) and (-;) are distributed on C? (e.g., see [2] for details). So,
the algebraic triple ((Cz, —+, - t) forms a unital ring with its unity (1, 0). O

Since C? is a Hilbert space equipped with the usual-metric topology, one can understand
these unital rings {((C2, + -t) } ;g as topological rings.

Definition 2 For ¢ € R, the ring H; denote (C2% +, 1) is called the ¢-scaled hypercomplex
ring.

For a fixed t € R, let H; be the ¢-scaled hypercomplex ring. Define an injective map,

m : Hy — My (C),
by
atb

7 (4, b)) = (b _

), V (4, b) € H, (2.1.2)
a

where My (C) is the matricial algebra of all (k x k)-matrices over C, which is *-isomorphic
to the operator algebra B ((Ck ) of all bounded linear operators on the Hilbert sace CX, for
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all k € N (e.g., [8] and [9]). Such an injection 7; satisfies that
e (h + ho) = e () + e (h2),
and
7ty (hy ¢ o) = 7¢ (1) e (h2), (2.1.3)
in My (C) (e.g., see [3] for details).

Proposition 3 The pair ((Cz, nt) forms an injective Hilbert-space representation of our
t-scaled hypercomplex ring Hy, where 1y is an action (2.1.2).

Proof The injection m; of (2.1.2) is a ring-action of H; acting on C2 by (2.1.3). Since C?
and M3 (C) are finite-dimensional, the continuity of the ring-action 7; is guaranteed. O

By the above proposition, the realization,

HY 9t ) & { (g b ) e M (C): (@b) e H, }, (2.1.4)

of H; is well-determined in M (C), in particular, by the injectivity of ;. The realization
'Hé of (2.1.4) is called the ¢-scaled (hypercomplex-)realization of H; (in My (C)) for ¢ € R.
For convenience, we denote the realization ; (1) of & € H by [h], in H5. By definition,

H, = H, inM, (C), (2.1.5)

where “=” means “being topological-ring-isomorphic to.” If H* denote H;\ {(0, 0)}, where
(0, 0) € H is the (4)-identity, then, this set Htx forms the maximal multiplicative monoid,

By I 7, ),

embedded in the ring H;, with its monoid-identity (1, 0), called the ¢-scaled hypercomplex
monoid. By (2.1.5), the monoid H;* is monoid-isomorphic to 5 denote (H5, -) with its
identity, Iy = [(1,0)],, the (2 x 2)-identity matrix of My (C), where (-) is the matricial
multiplication, i.e.,

= (H ) MR () =

«Monoid,,

where means “being monoid-isomorphic.”

2.2 Invertibility on H;

For an arbitrarily fixed ¢ € R, let H; be the corresponding ¢-scaled hypercomplex ring,
isomorphic to its ¢-scaled realization ’Hg by (2.1.5). Observe that, for any (a, b) € Hy, one
has

th
det ([(a, b)],) = det (‘-; _) = laf* — ¢ [b]". (22.1)
a
where det is the determinant, and |.| is the modulus on C.

Lemma 4 If (a, b) € Hy, then |a|® # t |b{2 in C, if and only if (a, b) is invertible in H; with
its inverse,

a —b
(@b)! = N in H,
Qw—ww|w—nw> l

satisfying
[(a, b)_l]t =@ b)) in H (2.2.2)
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Proof The relation (2.2.2) holds whenever det ([(4, b)];) # 0. O

An algebraic structure (X, +, -) is said to be a noncommutative field, if it is a unital ring,
where (X*, ) is a non-abelian group (e.g.,, [3,6]) with X* = X\ {0x}, where Oy is the
(+)-identity.

Theorem 5 We have that

t < 0inR <= H; is a noncommutative field. (2.2.3)

Proof (=) By the above theorem, if £ < 0 in R, then every hypercomplex number (4, b)
of the ¢-scaled hypercomplex monoid H,* automatically satisfies the condition (2.2.2):

lal*> £t |b

2
, because

lal® > t|b]* = la® # ¢ |b]*.

Thus, if £ < 0, then every monoidal element 4 € HJ* is invertible in Hj, equivalently, the
monoid H;* is a group.
(<) Assume that £ > 0. First, let t = 0. If (0, b) € Hj (i.e., b # 0), then

00
det ([(0, b)]o) = det ((E 0)) =0,

implying that [(0, b)]y € H} is notinvertible. Now, let ¢ > 0.1f (g, b) € H], with ’b|2 = #
in C, then

det ([(a, b)) = lal* — ¢ [ =0,

implying that (g, b) is not invertible in H;. So, if t > 0, then H; is not a noncommutative
field. o

By (2.2.3), the negative-scaled hypercomplex rings {H;},_, are noncommutative fields,
but, the non-negative-scaled hypercomplex rings {H;};>o cannot be noncommutative
fields. So, for any scale ¢ € R, the ¢-scaled hypercomplex ring H; is decomposed by

H, = H" U H"™

= ¢
with
- 2

H™ = [(a, b): lal® # t || ] (2.2.4)

and

" = {(@ bl = ¢[p[*},

where LI is the disjoint union. By (2.2.4), the ¢-scaled hypercomplex monoid H* is decom-
posed to be

X __ mminv xsing
H; = HG" U, ™,
with

Htxsing _ Hiing \ {(0,0)}. (2.2.5)

Proposition 6 The subset H" is a non-abelian group in the monoid H.\. Meanwhile, the
subset Htx " is a semigroup in H;* without identity.
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Proof Lett € R, and H/', the ¢-scaled hypercomplex monoid, decomposed by (2.2.5). If
hy, hy € Hff’", then i1y -4 hy € Hi’”’, because

det ([hn ¢ h2];) = det ([h1], [h2],) = det ([n],) det ([h2],) # O.
So, the algebraic pair ( i’”’, 't) forms a group in the monoid Htx. Meanwhile, if /11, hy €
Htxsmg, then /1y 4 hy € Hfsmg, since

det ([ ¢ ha];) = det ([l [h2];) = det ([h1];) det ([h2];) = O.
This operation (-;) is associative on ]Hlt>< sing , however, it does not have its identity (1, 0) in

H: "¢ Thus, the pair (IHItX S ~t> forms a semigroup without identity in H;. ]

The block Hi"v of (2.2.5) is called the group-part of H,* (or, of H), and the other algebraic
block Htx "8 of (2.2.5) is called the semigroup-part of H* (or, of Hy).

Corollary 7 Ift < 0inR, then ]I-]ItX = Hi”", and hence, H; = Hi’”’ U {(0, 0)}. Meanwhile,
ift > 0inR, then Htx "¢ is a non-empty properly embedded semigroup of H;, without
identity, satisfying the decomposition (2.2.4) of Hy.

Proof The proof is done by the above proposition. O

2.3 The hypercomplex conjugate
In this section, we consider certain adjoints on the scaled hypercomplex rings {H;};cR,
motivated by the adjoints introduced in [4]. Fix an arbitrary scale ¢ € R and Hy. Define a

function,
(t) : Hy — Hy,
by
(@ b)) = (4, 0)" ¥ @ —b), V(4 b) € HL,. (2.3.1)
This function (2.3.1) satisfies that the injectivity,
hi = (a1, b1) # (a2, by) = hy in H,
then
hi = @1, —b1) # @ —b2) = h,

and the surjectivity in the sense that: for any (a, b) € H, there exists (@, —b) € H;, such
that

@-b)' =@ —(-b) = @bh),

in H. So, this function (1) of (2.3.1) is a bijection. Since Hy is topological-ring-isomorphic
to its realization H by (2.1.5), one can define the bijection, also denoted by (1) on H5,

t:HE — H,
definedby
H(@ b)) “E* (@ b)) < @ b)) = 1@-b),, (23.2)

for all (a,b) € Hy. ie., the bijection t of (2.3.2) on H} is defined to be 75 o + with the
bijection 1 of (2.3.1) on Hy.
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Theorem 8 The bijection ] of (2.3.1) acting on H; is an adjoint on H; over R (or, a R-
adjoint on Hy) in the sense that: for all h1, hy € Hy,

h?‘?" (hf) = Iy,
(h + hz)7L 1’17L + h
(hy ¢ )" =] - ],
inadditionto
) =r i, (2.3.3)
forallr e Rand h € H.

Proof Since H; is topological-ring-isomorphic to H3, it is sufficient to show that 1 is a

R-adjoint on 'Hé satisfying the conditions of (2.3.3). Observe that, for all (4, b) € Hy, we
have

@il =[@n)'] =1@ 51 = [@ - 5], = @b
and, for any (a;, b;) € Hy, forl =1, 2,
(a1, b)), + (@2 b2)])" = [(a1 + az b1 + b))}
= [(a1 a2 — (b1 + b2))], = [(@, —b1)], + (@ —b2)),
= [@b0)] + @2 52| = (@, ba))] + (@2 b2
and

airay +thiby t(a1by + b1a3)
([(ar, b)), (@2, b2)]) T =

arby + bvay ayax + tblb_g

aray + thiby t(—aiby — b1@3)

—arby —bi@;  araz + thiby

a; t(—=by) a1 t(—=by)

—_bg an —_b1 al
= [(a2, bz)] [(a1, bl)]t

Moreover, if r € R inducing (r, 0) € H; and (g, b) € H, then

ra trb t 7a t(—rb)
([ 0], [(@ b)) = _

E ra —_rb ra
= [(50)], [(@ —b)], = [(1, 0], [(a b)]I]

Therefore, the bijection t of (2.3.2) is a R-adjoint on 5. ]
The above theorem shows that the bijection 1 of (2.3.1) is R-adjoint on H; by (2.3.3).

Definition 9 The bijection t of (2.3.1), or the bijection t+ of (2.3.2), is called the
hypercomplex-conjugate on H;, respectively, on 1%, for all ¢ € R.

47
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If (a, b) € Hi, then

i} vl = [ (1al? = ¢, 0)] = v, 1] (234)
forall s = (a, b) € Hy, forall £ € R.

Proposition 10 If (a, b) € I, then

@)+ (@, b) = (la — ¢ |b

2, o) — (@ b) (@b, (2.3.5)
inHY, forall t € R. It implies that

o; ((a, b (@ b)) = |al? — ¢ |b* = det ([(a b)],) = o1 ((a, b) - (a b)f), (2.3.6)
forall (a, b) € Hy, forall t € R.

Proof The relation (2.3.5) is proven by (2.3.4). By (2.3.5), the first t-spectral-value relation

of (2.3.6) is obtained, because
det ([(a, b)];) = la* — ¢ |b

for all (a, b) € Hy, forall t € R. O

2
)

3 Semi-normed spaces {(Hy, [|.]l¢)}ter
Fix a scale ¢t € R, and the corresponding ¢-scaled hypercomplex ring H;. We showed in
Sect. 2.3 that, on H, the hypercomplex-conjugate (t) is defined by

@b =@ —b), V(ab) cH,
as a R-adjoint, inducing the R-adjoint on the ¢-scaled realization H5,
(@b = [@b)] =1@-b),. (3.)

by (2.3.5) and (2.3.6), for all (a, b) € H. Since the ¢-scaled realization 'Hé is a sub-structure
of M (C), the normalized trace,

1
t:itr on M;(C),

. . denot . .
is restricted to T = ¢ |H§ on Hé, where tr is the usual trace on M; (C), i.e., for any

(@ b)), € H,

1 b 1
(@ b)) = ir ((g;)) =@+,

equivalently,
7 ([(4, b)];) = Re(a), VY (a b) € Hy, (3.2)
as a R-linear functional satisfying the tracial property,
T (TS) =t (ST), VT, S € H5.
By (3.1) and (3.2), without loss of generality, one can define a R-trace v on H; by
(@ b)) ¥ Re (1), V(ab) e H, (3.3)
Define now a form,
() Hy xH; > RcCC,
by
(hi, ha), &t (h1 . h;), Vhy, hy € H, (3.4)
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where 7 in (3.2) is in the sense of (3.3). Then, the form (3.4) satisfies that

(@1, b1) + (a2, b2), (a3, b3)),
ayaz +azxaz —t (19117_3 + bzb_3> t (—aibs — azbs + azby + azby)

“arbs —axbs  ash + @by s +ax@s — t (bibs + babs
— Re (ﬂlﬂ_?, tands —t (b1b_3 + bgb_g,))
—Re (ﬂla_g - tblb_g) + Re (42@ - tbgb_g)
=7 (@1 b) ¢ (@3,b9)" ) + 7 (@2, b2) -« (a3, 53)")
= ((a1, b1), (a3, b3)), + (a2 b2), (a3, b3)),,
for all (ay, by) € Hy, for i = 1,2,3, i,
(1 + ha, h3), = (h, h3), + (ha, h3),, (3.5)
similarly, one has
(I, i + hs), = (I, ho), + [, ), (3.6)
for all A, hy, hs € Hy. Also, if by = (ay, by) € Hy, for [ = 1,2, and r € R, then
(o), = ((030) 1 ) - 1

raia; — trblb_z t (—ra1by + raxby)

I
«

—ra1by +rasby  raija; — trblb_z
= Re (mla_z — trblb_2> = rRe (61111_2 — tblb_z)

=t (@1, b1) « (@2, b2)" ) = r (1, ),

ie,

<rh1, hz)t = r(hl, h2>t, Vr € Randhy, hy € Hg. (3.7)
similarly,

(hl, rhz)t = 7’<h1, hz)t, Vr € Rand hl, h2 S Ht. (3.8)

Lemma 11 The form (, ); of (3.6) is a well-defined bilinear form on H; over R.
Proof 1t is shown by (3.5), (3.6), (3.7) and (3.8). |

By the above lemma, the ¢-scaled hypercomplex ring H is equipped with a well-defined
bilinear form ¢, ); of (3.4) over R.

Lemma 12 Ifhy, hy € Hy, then

<h1, h2>t = (1’12, hl)t inR (3.9)
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Proof Let h; = (ay, b;) € Hy, forl =1, 2. Then

a1d@; — thiby t(axby — arby)
<h1; h2>t =T

arby —arby  a1d; — thiby
=Re (ﬂlﬁ - tb1b_2),

and

@iay — thiby t(a1by — azby)

(hz, h1>t =1

arby — axby,  @as — thiby

= Re (61_16{2 — tb_1b2> = Re ‘ﬂ_lag — tb_1b2> = <h1, hz)t. (3.10)

Therefore, by (3.10),

<h2) hl)t = <h1) h2>t = (hlx h2>t’ inR.

By (3.9), the bilinear form ¢, ); of (3.4) is symmetric.
Lemma 13 Ifhy, hy € Hy, then
(s, o)y | < (s, ) * [ o), | (3.11)
where |.| is the absolute value on R.
Proof By (3.10), if i; = (ay, b;) € H; for [ = 1, 2, then one has

’

{11, 2), | = [Re (15 — tbBy)

and hence,

|

(B hy), | = ‘Iﬂzl2 —t|b

for [ = 1, 2. Therefore, the inequality (3.11) holds. O
Observe now that, by (3.1) and (3.4), if 7 = (a, b) € H, then

(hh), =7 (@b @b)T) =Re (1af — ¢ |5[*),
implying that

(h ), = lal? — ¢ |b|* = det ([h],). (3.12)

This formula (3.12) says that the bilinear form {, ); of (3.4) is not positively defined in
general.

Lemma 14 Let h = (a, b) € Hy. If {, ), is the bilinear form (3.4), then
(i), =0 la> =t |b]" <= heH"™ (3.13)
Proof The relation (3.13) is shown by (2.2.4) and (3.12). O

Now, let’s consider the following concepts.
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Definition 15 For a vector space X over R, a form (,) : X x X — R is a (definite)
semi-inner product on X over R, if (i) it is a bilinear form on X over R, (ii)

(1, ®2) = (%2, %1), Yx1,%2 € X,

and (iii) (x, x) > 0, for all x € X. If such a semi-inner product (, ) satisfies an additional
condition (iv)

(x, ) =0, ifand only if x = Oy,

where Oy is the zero vector of X, then it is called an inner product on X over R. If (, ) isa
semi-inner product (or, an inner product) on the R-vector space X, then the pair (X, (, ))
is said to be a semi-inner product space (respectively, an inner product space) over R (in
short, a R-SIPS, respectively, a R-IPS).

Every R-IPS is automatically a R-SIPS, but, not all R-SIPSs are R-IPSs.

Definition 16 For a vector space X over R, aform (,) : X x X — Ris called an indefinite
semi-inner product on X over R, if (i) it is a bilinear form on X over R, (ii)

(x1,%2) = (%2, 1), Yxp, 0 € X,

and (iii) (x, x) € R, for all x € X. If such an indefinite semi-inner product (, ) satisfies an
additional condition (iv)

(%, x) =0, ifand only if x = Oy,

then it is said to be an indefinite inner product on X over R. If (, ) is an indefinite semi-
inner product (or, an indefinite inner product) on the R-vector space X, then the pair
(X, () is called an indefinite-semi-inner product space (respectively, an indefinite-inner
product space) over R (in short, a R-ISIPS, respectively, R-IIPS).

Depending on the scales, the scaled hypercomplex rings are regarded as certain vector
spaces over R, by the existence of the bilinear form ).

Theorem 17 Lett € R. Then

t <0= (), isan inner product on Hy, (3.14)
meanwhile,
t > 0= (); is an indefinite semi-inner product on H;. (3.15)

Proof Ift < 0in R, then Hiing = {(0,0)}, in Hy, and hence,
H, = H™ U {(0,0)}.

Thus, one has
(mh), =0<= h=(00)cH,

whenever ¢ < 0. Moreover, for any & = (a, b) € Hy, ift < 0, then
det ([h],) = lal> — t b = ([h . h*]) = (W H), = 0.

Therefore, the statement (3.14) holds.
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Assume now that ¢ > 0 in R. Then the semigroup-part Htx S8 i not empty in Hy, and
hence,

H;" 5 ((0,0)} in H,
and
det (@, b)],) = lal* — ¢|b| € R
for (a, b) € H, in general. Thus, the statement (3.15) holds. O

The following corollary is an immediate consequence of the above theorem.

Corollary 18 Ift < O, then the pair (Hy, {, );) is a R-IPS, meanwhile, ift > 0, then (Hy, , );)
is a R-ISIPS.

Proof It is proven by (3.14) and (3.15). O

Recall that a pair (X, ||.||) of a vector space X over R, and a map ||.|| : X — R is called a
semi-normed space, if |.|| is a semi-norm, in the sense that: (i) ||x|| > 0, for all x € X, (ii)
lrx|l = || lx||, for all » € R and x € X, and (iii)

%1 + %20l < llerll + llx2ll, Va1, 20 € X
If the semi-norm ||.|| satisfies an additional condition (iv)
x| =0 <= x =0x in X,
then it called a norm on X. In such a case, the semi-normed space (X, ||.||) is called a

normed space over R.

Definition 19 Ifapair (X, ||.|| x) of a vector space X over R, and a semi-norm (respectively,
anorm) ||.|| on X, is complete under its semi-norm topology (respectively, norm topology)
induced by ||. ||, then it is said to be a complete semi-normed space (respectively, a Banach
space) over R, in short, a complete R-SNS (respectively, R-Banach space).

Let (Hy, (, );) be either a R-IPS (if ¢ < 0), or a R-ISIPS (if ¢ > 0). Define a function
Illl; : He = R by

[, /1w B | = |/ |det (111,)

Theorem 20 Lett € R, and (Hy, (, );), either a R-IPS (if t < 0), or a R-ISIPS (if t > 0),
and let |.||; be a function (3.18).

, Vh e H,. (3.16)

t <0 = (Hy |.|l;) isaR — Banach space, (3.17)
meanwhile,
t>0 = (Hy |.ll;) is a complete R-SNS. (3.18)

Proof By (3.14), if t < 0, then the pair (Hj, (, );) forms a R-IPS, inducing the norm ||.|,
of (3.16), canonically. So, if ¢ < 0, then (Hj, ||.||;) forms a normed space over R. The
completeness of (Hy, ||.||;) is guaranteed by (3.11). So, the statement (3.17) holds.

Now, assume that ¢ > 0, and (Hy, ¢, );) is the corresponding R-ISIPS. If ||. ||, is defined to
be the function (3.16), then it is a semi-norm on H; over R. In particular,

|@b)|, =0 lal® — ¢ |b]” = 0 = (a,b) € B},
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in Hy. So, this semi-norm |.||; cannot be a norm whenever ¢ > 0. However, by (3.11), this
semi-norm is complete on H;. Thus, the statement (3.18) holds. O

By the above two theorems, one obtain the following result.

Corollary 21 Lett € R, and (Hy, (, );), either a R-IPS (if t < 0), or a R-ISIPS (ift > 0).

t <0 = (M ();) isaR-Hilbert space, (3.19)
meanwhile,
t>0 = (H (,);) is a complete R-ISIPS. (3.20)

Proof The statement (3.19) (respectively, (3.20)) is proven by (3.14) and (3.17) (respec-
tively, (3.15) and (3.18)). O

Since H is both a ring and a complete SNS, it forms a topological algebra “over R,” for all
teR

Theorem 22 Lett € R, and H;, the t-scaled hypercomplex ring.

t <0 = H; is a C* — algebra over R (or, R — C* — algebra) (3.21)
meanwhile,
t >0 = H; is a complete R — semi — normed * —algebra. (3.22)

Proof By(3.19)and (3.20), the t-scaled hypercomplex ring H is a R-vector space equipped
with its complete semi-norm (or, normift < 0),forall¢ € R.Itshows that H; formsacom-
plete semi-normed *-algebra over R, equipped with the R-adjoint (), the hypercomplex-
conjugate, for all £ € R. Especially, this complete semi-normed x-algebra H is acting on
the R-semi-normed space (H, ||.||;), by the action,

m:he Ht > my < B((Hb ”'”t))’
where

my(n) =h-n, VYne |, (3.23)
satisfying
My, Mpy = Mp s Vhl, //12 € Ht,
and
mj, = m, Vh € H,

and

Il < sup {| ()], < Inll, = 1) = |A],, Vi € H,

in the operator algebra Br ((Hy, |.||;)) of all bounded R-linear operators on the complete
semi-normed space (Hy, ||.||;), where ||.| is the operator norm on B ((Hp, |.||;)). It shows
that the function m of (3.23) is a continuous ring-action of H; acting on (H, ||.|/;). So,

m () € {my, - h e H,)
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forms the closed subalgebra of Bg ((Hy, ||.|I;)), as a complete semi-normed *-algebra over
R. Clearly, there does exist the x-isomorphism,

W, heH; — my, € m(Hy),

and hence, H; is a complete R-semi-normed *-algebra, for “all £ € R.” Therefore, the
statement (3.21) holds.

In particular, if ¢ < 0, then the operator algebra Br ((Hy, ||.||;)) is on the R-Hilbert space
(Hy (, )¢), and hence, Hy o, (H) becomes a complete R-Banach *-algebra acting on
the R-Hilbert space (Hy, (, );), i.e., if £ < 0, then H is (x-isomorphic to) a R-C*-algebra

(m (Hy)). Therefore, the statement (3.22) holds. O

Notation and Assumption. From below, the set H of all £-scaled hypercomplex numbers
is understood to be the ring, or either the R-Hilbert space (if £ < 0) or the complete R-
ISIPS (if t > 0), or either the R-C*-algebra (if ¢ < 0) or the complete R-semi-normed
x-algebra (if ¢ > 0), case-by-case. And we call the set H, the ¢-scaled hypercomplexes for

teR. O
Let ¢t € R, and Hy, the ¢-scaled hypercomplexes. Define a subset D; of H; by
Dy def {(x,y) eH;:xy€ ]R}, (3.24)

realized to be
DL & o, (D) = {[(x,y)]t = <’y‘ Z) :(x%9) € Dt}, (3.25)

in Hé = 7ty (H¢). Then Dy is a sub-structure of Hy, as a sub-ring algebraically, or, a closed
subspace analytically, or a *-subalgebra over R operator-algebraically, case-by-case. By
definition, one has the R-adjoint on Dy,

62)" =@ -y) = (5 —y) n Dy,

because x, y € R.

Definition 23 The sub-structure D; of (4.1) is called the ¢-scaled hyperbolics of the ¢-
scaled hypercomplexes Hy.

Note that, the (—1)-scaled hyperbolics D_; is isomorphic to the complex field C, and
the 1-scaled hyperbolics D is isomorphic to the (classical) hyperbolic numbers,

D={x+y:/*=1xyecR]}.
(e.g., see [4] in detail).

4 Scaled operator-valued-hypercomplexes

In this section, we extend our scaled hypercomplex numbers of {H} };cg to operators under
certain actions. Now, let B (H) be the operator algebra of all bounded linear operators on
a Hilbert space H, and A is a unital C*-subalgebra of B (H) with its unity 1 € .4, which is
the identity operator on H.

Definition 24 Let A be a unital C*-algebra in an operator algebra B (H) on a Hilbert
space H. Define the set 1} (A) by

e Ty tT)
M (A)dzf{( ! *):Tl,TgeA], (4.1)
g T2 Tl
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where T}" are the adjoints of T} in A, for all / = 1, 2, equipped with the semi-norm ||,
T tT, def
(T* T*> = 10T s 1720201
2 1 ®

identified with
T tTy

(T* T*> = T - 17l

2 1 (®)

where ||.||; is the semi-norm on H; (forall ¢ € R, in particular, the norm, if¢ < 0),and ||.|| 4

is the C*-norm on A, inherited from the operator-norm on B (H). We call 5 (A), the
t-scaled A(-valued)-hypercomplexes, for ¢ € R, and all operator-block (2 x 2)-matrices

>

of H’ (A) are said to be operator(-valued)-hypercomplexes.

T tT:
By abusing notations, one may/can write each operator-hypercomplex (T}‘ Tf) €
2 41

HE (A) by [(Th, T2)],, forall Ty, T € A.
Proposition 25 Let H’ (A) be the t-scaled A-hypercomplexes (4.1). Then

HS (A) is a complete R — SNS, Vt € R, (4.2)
In particular, ift < 0, then it is a R-Banach space.

Proof Suppose [(T1, T2)];, [(S1, S2)]; € Hé (A),and ry, ry € R. Then

rT1 + 1Sy tz1 Ty + trySy
r (T, 1)), + 2 [(S1, S2)], = ;
Ty + 1S5 rTf + sy
identifies with
rTi+rS  t(rTa+rSs)
= [(rnT1 + rS1, rnT2+rS2)l;,
(11 Ty + r2S2)* (r1 Ty + r281)*

contained in M’ (A). And hence, H, (A) forms a R-vector space. Since A is a C*-algebra
(and hence, it is complete over R), and H is a complete R-semi-normed *-algebra, this
R-vector space H’ (A) forms a complete R-SNS, for any ¢ € R.

Recall and remark that, if ¢ < 0, then Hj is a R-Banach %-algebra, and hence, in such a
case, the semi-norm ||. ||, on Hé (A) becomes a norm, by definition. Thus, if £ < 0, then
H’ (A) becomes a complete R-NS, equivalently, a R-Banach space. ]

The above proposition provides a structure theorem for the ¢-scaled A-hypercomplexes
H’ (A), characterized to be a complete R-SNS, by (4.2). Then can it be a R-algebra in a
usual sense? The answer is negative. Observe that, if [(T1, T2)];, [(S1, $2)]; € H5 (A), then

T tT: A
(T, T2 (2, $2)) = (Ti th> < e )
2 71 2“1

identical to
T1S1 + tT5S; ¢ (T1S2 + TaST)
¢ Hy (A), (4.3)
T3S+ T7Sy T35+ TSt
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in general, since

(T1S1 + tT2S3)" = STT + tS2T5 # TSt +tT5S),
or

(T1S2 + T2S5)" = S3TF + S1T5 # T5S1 + T1S;, (4.4)
in A, in general. i.e.,

([(T1, T2)1,) ([(S1, S2)1,) ¢ HY (A),

in general, under the usual block-operator multiplication.

Theorem 26 The C*-algebra A is commutative in the sense that: TS = ST, forall T, S €
A, if and only if the t-scaled A-hypercomplexes HY (A) is a R-semi-normed x-algebra, for
allt e R ie, forallt e R,

A commutative <= H5 (A) : complete R — semi — normed x —algebra.  (4.5)

In particular, if t < 0, then H} (A) is a R-Banach -algebra in the characterization (4.5).

Proof By (4.2), the t-scaled A-hypercomplexes H5 (A) is a complete R-SNS, for all ¢ €
R. Fix an arbitrary scale ¢ € R. Assume that the C*-algebra A is commutative. Then
the vector-multiplication (4.3) is well-defined on H5 (A), i.e., the usual (2 x 2)-block-
operator multiplication is closed on H5 (A), because the non-equalities in (4.4) become
the equalities under the commutativity of A. Therefore, equipped with this well-defined
vector-multiplication (4.3), the complete R-SNS H} (A) forms a complete R-semi-normed
algebra. Define now a bijection (1) on 1 (A) by

Ty, To),) “2° (7, T & [(17, - T2)],
ie,
T *
(Tl tTZ) =< Ty t(_TZ)),ian(A), (4.6)
T} T} ~T; T

like the R-adjoint (t) on Hy. Then

(7L TN = (15, ~T2)]] = [(T7% — (- T2)], = (T2, T2,

and
(r [(Ty, THI)' = (To, rT))] = [(T57 (= T2))], = r [(T0, T,
for all [(T1, T»)]; € H, (A)and r € R, and
(U(T1 T, + (51, $1)T = [(T1 + S0, Ta + )]

=[((Th+ 80", = (T + $2))], = [(T] + 1), T2 = S2],
= (T}, —T2)], + [(S}, —=S2)], = [(T1, T} + (S, )1}

and

1181 + tTgS’Zk t (T152 + Tzsik)
((T1, T2)]; [(S1, ST =
(T1S2 + TSF)" (T1S1 + tT»S3)"
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by (4.3) and (4.4), under the commutativity of A
(1181 + tT283)" ¢ (=T1Ss — T»S})

(—T1S2 — ToS})"  T1S1+tTsS;
SITY + 5T ¢ (—T1$2 - Tzsik)

(—T1$2 — ToS})"  T1S1+tTaS;

o SEt(=S)\ ([ T} t(-T»)
\=s s Ty T

by the commutativity of A
= [(Su 21} (To, TN,

in H4 (A), for all [(T1, T2)],, [(S1, S2)]; € H5 (A). Therefore, the bijection (1) of (4.6) is
a well-defined R-adjoint on H} (A). So, this complete R-semi-normed algebra H5 (A)
forms a complete R-semi-normed x-algebra if A is a commutative C*-algebra.

Conversely, assume that A is a noncommutative C*-algebra. Then, by (4.3) and (4.4),
the complete R-SNS H} (A) cannot be a R-algebra.

Therefore, the characterization (4.5) holds true.

Now, take ¢ < 0 in R. Then, by (4.5), one has that 4 is commutative, if and only if the
t-scaled A-hypercomplexes H5 (A) is a complete R-semi-normed x-algebra. However, if
t < 0, then, under the commutativity of A, H’ (A) becomes a R-Banach space, and hence,
it forms a R-Banach x-algebra. i.e, if £ < 0 in R, then A is commutative, if and only if
H’ (A) is a R-Banach x-algebra. O

The above theorem proves that the complete R-SNSs {H5 (A)} teR
R-semi-normed *-algebras equipped with the R-adjoint (4.6), if and only if A is a com-
mutative C*-algebra by (4.5). Without the commutativity on 4, the complete R-SNSs
{'Hé (A)}te]R cannot be R-algebras in a usual sense.

can be the complete

Remark 4.1. Suppose T € B (H) is a self-adjoint operator on a Hilbert space H. Then the
C*-subalgebra A7 = C* ({T'}) of B(H) generated by T is a commutative C*-algebra, *-
isomorphic to the C*-algebra C (spec (7)) of all continuous functions on the compact set
spec (T'), the spectrum of T, in C. And hence, such commutative C*-subalgebras do exist
in B (H). More generally, if T1, .. ., Tny € B (H) are self-adjoint, and mutually commuting
from each other in the sense that:

T} = T;inB(H), VI =1,...,N,
and
Tll le = Tl2T[1, Vll, lz € {1, .. .,N},
in B(H), for N € NU {00}, then the C*-subalgebra Ar,, 1, = C*({T1,..., Tn}) of B(H)
forms a commutative C*-algebra. (e.g., see [11,12]). O
Now, let A2 = A x A be the Cartesian-product C*-algebra of two copies of A’s, consist-

ing of the operator-pairs of A. Define a morphism « of A2 on the ¢-scaled hypercomplexes
Ht by

(4.7)

o (Ti, To) (@ b) = [(@T1, bT2)), = (ﬂTl t(bn))

bTy aTj
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identical to

( aTy t(bTy)

(bTy)* (aTl)*) contained in H} (A),
for all (a, b) € Hy. This morphism « of (4.7) satisfies that

a (2111 4 22T, T3) = z10 (T1, T3) + 200 (T2, T3),
and

a (T, z1T2 + 2213) = z100 (T, T2) + zoa (11, T3), (4.8)

on H;, whose images are in HJ (A), forall z1,zo € Cand T}, To, T3 € A.

Theorem 27 Let A> = A x A be the Cartesian-product C*-algebra of the fixed uni-
tal C*-algebra A, and o, the morphism (4.7) from A? to the t-scaled A-hypercomplexes
HY (A). Then o is a well-defined continuous bi-module action of A* acting on the t-scaled
hypercomplexes H realized in HY (A). i.e.,

a is a bi—module action of A? acting on H; realized in 'Hé (A). (4.9)

Proof By the definition (4.7) of the morphism «, every image « (T, T3) of « is a well-
defined function from H; into H5 (A), because,

a (T1, T2) (a, b) = [(aT1, bT2)];,
in Hé (A), since aT1, bTy € A, for all (a, b) € Hy, and (T1, Tr) € A% i.e,
(04 (Tb TZ) S BR (Ht) Hé (A)); V(Tb TZ) € A2;

where Bg (Hy, H’ (A)) is the operator space of all bounded R-linear transformations from
the complete R-SNS H; to the complete R-SNS Hg (A). Indeed, for any r1, r» € R and
(a1, b1), (az, b)) € Hy, one has that
o (Th, T2) (r1 (a1, b1) + r2 (a2, b2))
= a (T1, T2) (a1 + raaz, r1b1 + r2by))
(rai +raaz) T1 ¢ (rb1 +rab2) To

(ﬁE + 7’219_2) Ty (nay +raz) ITT

a1T1 th1Ts arTy thyTs
=n + 7y
b T T} by T}
= ria (T, T2) (a1, by) + roa (T1, To) (ag, by) (4.10)

satisfying

>

o (71, T2) (@ B)| = \/\nanni —t]o1s |
identical to

| (laTllq

implying that

bT2”A)Ht < 0%

lo (T3, To)ll = sup { e (T3, T2) )| = [ ], =1} < o0, (4.11)



D. Alpay, I. Cho Res Math Sci (2023)10:47 Page 190f44 47

for all (T, To) € A2, where ||.|| of (4.11) is the operator-norm on Bg (Ht, ’Hé (A)). There-
fore,

o (Th, T2) € Br (Hp, Hj (A)), ¥ (T, T2) € A, (4.12)

by (4.10) and (4.11).
Therefore, by the relation (4.8) and (4.12), the map « of (4.7) is a bi-module action of
A? acting on Hj realized in H} (A), i.e., the relation (4.9) holds. O

The above theorem shows that, indeed, our scaled A-hypercomplexes { HS (A)} are

teR
well-defined, as the images of the bi-module action o of .A? acting on the ¢-scaled hyper-

complexes H, where « (71, T2) € Br (Ht, HE (A)) by (4.9). It also illustrate the relation
between {H;};cr and {Hé (A)}teR’ as complete R-SNSs.

Corollary 28 As a complete R-SNS, the t-scaled A-hypercomplexes HY (A) is isomorphic
to the bi-module o (,Az) (H).

HY (A) 24 (H)) 4“2 o (A2) (H). (4.13)

Proof The key idea of the proof is that, for any z € C and T € A, the scalar-product
zT € A. Define a function Q : 4 (Hy) , — HS (A) by
Q (a (T, T2) (a, b)) = [(aT1, bT2)];,
for all (T3, T») € A% and (a, b) € H;. Then this well-defined function  is injective, since
if
o (Th, Tz) (a1, b1) # a (S1, S2) (a2, b2),
in 4 (Hy) 4, then
[(@1T1, b1T2)]; # [(a2S1, b2S2)];
in ’Hé (A), by (4.7). Moreover, it is surjective, since, for any [(T1, T2)], € Hé (A), there
exists (a, b) € Hy, with (a, b) € H; with g, b € C\ {0}, such that
1 1
(T, T2)]; = « (‘Tl; —Tz) (a,b).
a b
Therefore, this function Q is bijective from 4 (H;) 4 onto HJ (A). Moreover, for any

r, rp € Rand

Bi

one has

0 o (Top Toy) (ap by) €4 (Hy)y, forl =1,2,

Q(r1B1 + r2pa) = [(nar1Ti1 + raasThp, rib1Tho 4 rabaTp)],,

identical to

Q(r1p1 +r2p2) =r12(B1) + 12 (B),

in H} (A). So, this bijection Q is a R-linear transformation, and hence, it is a R-vector-
space-isomrophism from 4 (H;) 4 onto 5 (A). By the completeness, this isomorphism €2
is bounded. Therefore, the isomorphic relation (4.13) holds. O

The above corollary illustrates again that our scaled .A-hypercomplexes {Hé (A)} are

teR
well-defined as complete R-SNSs. It also shows the connections between {H};.g and

{15 (A} e
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5 Invertibility on 5 (.A)
In this section, we study the invertibility on the ¢-scaled .A-hypercomplexes H5 (A), where
A is a unital C*-algebra in the operator algebra B (H) on a Hilbert space H. First of all, to
consider the invertibility on the complete R-SNS H}, (A), we need a well-defined vector-
multiplication on it. i.e., we need to understand Hg (A) as a R-algebra. So, we restrict our
interests to the cases where A is a commutative C*-algebra by (4.5), and hence, understand
H’ (A) as a complete R-semi-normed x-algebra. Then the vector-multiplication,
T\ T, Sy 15, T181 + thSE< t (Tlsz + T2ST)
<T* T* ) (S* S* ) = 5 (5.0.1)
271 271 (T1S2 + T2S8F)" (T1S2 + t12S3)"
is well-defined on Hé (A), for all [(T1, T2)];, [(S1, S2)]; € Hé (A). Note again that the
commutativity on a fixed C*-algebra A allows us to have the above multiplications “on
HE (A),” by (4.5). i.e,, H (A) becomes a complete R-semi-normed x-algebra, equipped
with its R-adjoint (1),

T *
(T tS) _ ( T t(—S))) (502)
S* T _s* T

forall T, S € A. Consider the case where

Ty tTy S1 Sy _ 10 _ S1 tSy T, tTy (5.0.3)
Ty T )\sysr) \ov) \sisi)\ry17 ) o

where 1 is the unity (or, the identity operator), and 0 is the zero operator of A, equivalently,

1151 + tTQS; t (T182 + Tzsik) <1 0)

(T1S2 + T2S)" (T1S2 + tT»S3)" o1
and
10 S1Ty+ 52Ty t(S1T2 + S2T5)
(o 1) - ) (5.0.4)
(S1T2 + $2T5)" (S1Th +tS,T5)"
by (5.0.3). The equalities of (5.0.4) is equivalent to
T1S1+tThS; =1 = 81T + tS: T3,
and
T1S2 + ToST = 0= 81T + S T, (5.0.5)
in A, if and only if
T1S1+tThS; =1 = T1S1 + tT5 Sy,
and
T1Sy 4+ ToS7 = 0 = ToS1 + 17 S, (5.0.6)

by (5.0.5) and the commutativity on .A.

Definition 29 Let .4 be a commutative unital C*-algebra with its unity 1, and let 75 (A),
the corresponding ¢-scaled A-hypercomplexes. An element n € H5 (A) is invertible “in”
H’ (A), if there exists a unique element, denoted by n~1,in H5 (A), such that

_ 10 1.
nn 1=<01)=7} Ly, 1n’H§(.A),
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where 0 is the zero element of A.
By the above definition, one obtains the following result.

Proposition 30 Suppose A is a commutative unital C*-algebra with its unity 1, and
(T1, T2)l; € H, (A). Then [(Th, To)]; is invertible in HY (A), if and only if there exists a
unique element [(S1, S2)]; € H5 (A), such that
7181 + L‘TQS;< =1=T7T15 + th*Sz,
and

1182 + TzSik =0="T25 + Tsz, (5.0.7)
in A, for all scalest € R.

Proof The invertibility characterization (5.0.7) of the inverse [(S1, S2)]; = [(T1, T2)]; Lin
H’ (A) is obtained by (5.0.6), under the commutativity of A. O

Motivated by (5.0.7), we consider two different cases where ¢ # 0, and where £ = 0.

5.1 The case wheret =0
In this section, we let A be a fixed “commutative” unital C*-algebra with its unity 1, and
Hg (A), the 0-scaled .A-hypercomplexes,

HS(A):{(ST* 1?) :T,SGA},

equipped with the usual block-operator-matrix addition, and the multiplication (5.0.1),
and the adjoint (5.0.2). By (5.0.7), an element [(T1, T5)], is invertible in Hg (A), ifand only
if there exists a unique element [(S1, S2)]; € 'Hg (A), such that

TiS1+0- TS} = 1= T1S; +0- T} Sy,
and
T1Sy + ToSt = 0 = TpS1 + TISs, (5.1.1)
in A, and hence,
T1S1 = 1, and T1S; + TS} = 0 = ThS1 + T7Ss, (5.1.2)

in A4, by (5.1.1).
Observe the first equality 77S1 = 1 in (5.1.2). By the commutativity of .4, this equality
is in fact identified with

TlSl =1= SlTl, in .A,
implying that 77 is invertible in A, with its inverse T, 1 S1in A, ie,
Si=T17% in A (5.1.3)

where T 1 ¢ A means the inverse of T} € A, as the inverse operator of the operator
algebra B (H) (containing .A). And, by (5.1.2) and (5.1.3),

*
TiS, =~} = =T (17
and hence,

*
S = =171 (17) , in A (5.1.4)
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Theorem 31 An element [(T1, Ta)), is invertible in Hg (A), with its inverse [(S1, S2)]p €

HY (A), if and only if
T is invertible with its inverse Sy = T, Uin A
and
*
[(S1, $2) = [(T;l, —T7Ty (T;l) )]0 e HY(A). (5.1.5)

Proof An element [(T1, T2)], is invertible in Hg (A) with its inverse [(S1, S2)]; € Hg (A),
if and only if the relation (5.1.2) holds, if and only if T is invertible in A with §; = T 1
in A, by (5.1.3), and

_ -1 -1\* .
Sp=—T7 T (T7Y) ) in A

by (5.1.4). Therefore, [(T1, T2)], is invertible in Hg (A), if and only if the relation (5.1.5)

holds. ;
Observe that
(wry o) ([(17% -1 12 (177) ) )
7, 0 T 0
- T; T} —(T;1>*T2*T;1 (Tl_1>*
1 0

et (7o) ot
2+1 - 1( 1 ) 271 1

0 10

T*T‘1—<T_1T)*T*T_1 1 01
241 1 11 241

and, similarly,

([(rr =1tz (777))],) T T210) = ( . ;’)

in Hg (A), confirming the invertibility characterization (5.1.5) on Hg (A).

5.2 The case wheret # 0

In Sect.5.1, we characterize the invertibility on the 0-scaled A-hypercomplexes HJ (.A)
by (5.1.5), where A is a commutative unital C*-subalgebra of the operator algebra B (H)
on a Hilbert space H. As in Sect. 5.1, we fix a “commutative” unital C*-algebra 4, and let
H5 (A) be the corresponding ¢-scaled A-hypercomplexes, where ¢ # 0. Throughout this
section, we automatically assume that any fixed scale t€ R is non-zero. Recall that, by
(5.0.7), an element [(T1, T»)]; is invertible in 5 (A) with its inverse [(S1, $2)]; € H5 (A),
if and only if

1181 + tTZS; =1=T15 + tT;SZ,
and

T1Sy + ThSF = 0 = TS; + T3Sy, (5.2.1)
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in A. Since ¢ # 0 in R, the invertibility condition (5.2.1) is equivalent to
tT2S; =1 —T181 = tT5 S,
and
T1S2 + ToST = 0 = TsS1 + T1 S,
if and only if
1,85 = %(1 —T181) = T3S, = (12S3)",
and
T1Sy = —T»S}, and 118 = =TSy, (5.2.2)

in A. Suppose T7 and T, are invertible in the commutative C*-algebra .A. Then their
adjoints 77 and T’ are invertible, too, with (Tl*)_1 = (Tl_l>* in A, forall/ =1, 2. So, if
T1 and T> are invertible, then the invertibility condition (5.2.2) of [(T1, T2)]; € Hé (A)is
equivalent to

1 _
2= (1) (1= T18),
respectively,
S =—T;'TFSy, in A (5.2.3)
implying that
1 _ 1 _
S=- (1) a-ns) =1 (1) (1- 1 (-1 ' i)
—
_ L1 —1%
Sy = " (T3) (14 ThT, ' T{Sy),
—
1 1 _
$2=—(13) + - (13) "N TS,
—

1 _ 1 _
(1 -2 (13) ! T1T21T1*> S2= - (73) L inA
So,if 1 — % (Tz*)_l T Tz_le is invertible in 4, then

1, e 1, e -
si=1 () (1- @) nn)
—
1 Lo -1 — 1k * !
SZ:; I_Z(Tz) NI, T ) (13) )
since (TS)™! = §717~1 = T-15~1 in A (by the commutativity of A), for all T, S € A,
implying that
1 1 ! -
S=7 (T; -1 (T5)” T1T2_1T1*) ,
and hence,

S—l
275

1 —1
(T; - ;Tsz_lTl*> , in A (5.2.4)

Page 23 of 44
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and, under the same hypotheses,
S1=—T,'T{S,, by (5.2.3),

—

1 1 !
S1 =T, T} (; (T; - ;Tsz_lTl*) )

by (5.2.4), if and only if
1 1 -1
Sp = —;TZ_ITI* (Tz* -7 T;lTl*) ‘ (5.2.5)

Theorem 32 Assume that Ty, Ty and 1 — % (TZ*)f1 T\ T, le are invertible in A. Then
an element [(T1, T»)]; is invertible with its inverse [(S1, S2)], in H5 (A), if and only if

1 1 -1
Sy = —;TZ_ITI* (T; - ;T1T2_1T1*> ,
and

1 1 -t
Sy = - (Tz* - ?Tl T2_1T1*> . (5:2.6)

Proof Suppose T1, T and 1 — % (TZ*)_1 T, lTl* are invertible in the commutative
C*-algebra A. The invertibility condition (5.2.6) is shown by (5.2.4) and (5.2.5) on
Hé (A). O

The above theorem provides a partial characterization (5.2.6) of the invertibility on the
non-zero-scaled A-hypercomplexes HJ (A) of a commutative C*-algebra A, under certain
invertibility assumptions on A.

5.3 Summary and discussion
Let HJ (A) be the ¢-scaled A-hypercomplexes of a “commutative” unital C*-algebra A,
for all £ € R. The main results of this section are summarized by the following corollary.

Corollary 33 Ift = 0 in R, then an element [(T1, T2)], is invertible in Hg (A) with its
inverse [(S1, S2)]g € H5 (A), if and only if

T, is invertible in A, with its inverse Tfl,
and
*
[(S1, S2)]o = [(T;l, —17T, (T;l) )]0 e HY(A). (53.1)

Meanwhile, ift # 0inRR, then an element [(T1, T2)], is invertible with its inverse [(S1, S2)];
in MY (A), if and only if

1
T5S; = -~ (1 — T181) = T3S, = (T2S3) ",

t
and

T1Sy = —ThSY, and ToS; = — T3Sy, (5.3.2)
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in A. So, as a special case, ift # 0, and Ty, Ty and 1 — % (T;‘ )_1 Ty IT{" are invertible
in A, then the invertibility (5.3.2) is equivalent to

1.4 1 1 -
Slz—;TZ_ Ty (Tz* -1 T, Tl) s
and

1 1
Sy = Z (T; - ;Tl T2_1T1*>, in A (5.3.3)

Proof The invertibility characterization (5.3.1) on 'Hg (A) is proven by (5.1.5). The invert-
ibility characterization (5.3.2) on {Hé (A)} teR\{0) is shown by (5.0.7), or (5.2.2). The proof
of the special case (5.3.3) of (5.3.2) is done by (5.2.6). O

The above invertibility conditions on {Hg (.A)} ;cp are interesting themselves. However,
it is true that the commutativity assumption on a fixed unital C*-algebra A is strong,
but it is needed by (4.5). So, to avoid such a “strong” condition, we consider a new type
adjoint-like structure on a unital C*-algebra A, motivated by (4.3) and (4.4). See Sect.6
below.

6 The conjugation on a Unital C*-Algebra .4

In this section, let A be a unital C*-subalgebra of the operator algebra B (H) on a separable
(finite, or infinite dimensional) Hilbert space H, which is not necessarily commutative,
where the dimension of H, which is the cardinality of the orthonormal basis of H, is
N € NU {oo} (by the separability of H), i.e., dimcH = N. Note that every element T € A
is realized to be a (N x N)-matrix on H, i.e.,

211 212 - ZIN

221 222 -** ZoN
T= [ZU]NXN T

ZN1 ZN2 **° ZNN
where N € N U {o0} (e.g., see [11,12]). We now define the conjugate () on .A by

def [

T = [le]NxN =

Z_ii]NxN’ VT = [Zii]NxN €A (6.0.1)

where z;; are the usual conjugates of z;; in C. Then this conjugation on A satisfies that

T = T,

[ZU]NXN [_J]N N E 1]]N><N

forall T € A; and

T=z [Zif]NxN = [Zzii]NxN = [%]NXN = z[zt‘l‘]NxN =T,

forallze Cand T € A; and

T +S§= [Zl]]NxN + [WL]]NXN [ZU + Wl/]NxN T + g’
forall T, S € A; and

TS = [Zii]NxN wy] NxN = [Zzlkwkl:| =

NxN

N
[Zzik ij}
k=1

: [i N <w—k,->] = [l [l = @) ),

NxN

NxN

Page 25 of 44
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in A. So, this conjugation (6.0.1) on a unital C*-subalgebra A of B(H) on a separable
Hilbert space H is acting “like” an adjoint, but

TS=TS, in A VT,S € A,

different from the usual adjoint (x) on A.

Proposition 34 The conjugation (6.0.1) on a unital C*-subalgebra A of B (H) satisfies
that

T= T, and zT =zT,
forallT € Aandz € C, and

T+S=T+S, and TS=T S,
forall T,S € A

Proof The proof is done by the very above paragraph. O

Now, just like the scaled .A-hypercomplexes {H} (A)} ser Of (4.1), we define a following
structure.

Definition 35 Let A be a unital C*-subalgebra of the operator algebra B (H) on a sepa-
rable Hilbert space H. For any fixed ¢ € R, define a R-vector space,

e 17 tT;
535(-'4)d=f[<71 TZ>2T1;T2€A},
Py

of (2 x 2)-operator-block matrices, where T means the conjugate (6.0.1) of T in A,
equipped with the semi-norm,

< T, th)
T, Th
2 11 ©

We call the R-SNS )} (A), the ¢-(scaled-)conjugate A-hypercomplexes.

def
= NUT1ll g 1 T2l -

Note that, by the completeness of the C*-norm |.|| 4 on A, and the completeness of |. ||;
on the ¢-scaled hypercomplexes H, the norm ||. || ) on the £-conjugate A-hypercomplexes
95 (A) is complete, ie., H5 (A) forms a complete semi-normed space, as a topological

T tT:
space. Just like Sect. 5, if there are no confusions, then we denote (Tl Tz by [(T1, T2)];

2 11
ie.,

95 (A) = {[(T1, T2)], : T, To € A}
Observe that, if [(T1, T2)];, [(S1, $2)]; € 95 (A) and r1, rp € R, then

r (T3, To)l; + 72 [(S1, S)]; = (” T &l TZ)) + (”Sl “’252))

nTy nTi 1Sy nSi

riT1 +rS1 t(riTz +rSs)

riTo 4+ 1Sy 1Ty +ryS:

rnT1 4+ 1Sy t (T + rSs)
_ (6.0.2)
riTo +1rySy  riT1 4+ raS1
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by (6.0.1), and hence, it is contained in .65 (A), where (+) is the usual block-operator-
matrix addition, and

(T, T, [(S1, S, = (% %) (g_; f{)

T1S) + tT2S, t(T1S2 + T25_1)

T2S1 + T1Sy  tThSy + TS

T1S1 4 tT2Sy t(T1S2 + TaS1)
= , (6.0.3)
T1So + ToS1  T1S1 + TSy

by (6.0.1), showing that the product is also contained in % (A), where (-) is the usual
block-operator-matrix multiplication.

Theorem 36 The t-conjugate A-hypercomplexes 9 (A) of a unital C*-subalgebra A of
the operator algebra B (H) on a separable Hilbert space H is a complete R-semi-normed
algebra. i.e.,

95 (A) is a complete R — semi — normed algebra. (6.0.4)

Proof The t-conjugate A-hypercomplexes §5 (A) is a R-vector space because the usual
operator-block-matrix addition is closed on it by (6.0.2). So, as a complete semi-normed
space, it forms a complete semi-normed R-vector space. This R-vector space 95 (A)
becomes an R-algebra since the usual operator-block-matrix multiplication is closed on it
by (6.0.3). Therefore, it is a complete R-semi-normed algebra, i.e., the structure theorem
(6.0.4) holds. m|

By (6.0.4), we understand our ¢-conjugate .A-hypercomplexes $} (A) as a complete R-
semi-normed algebra. So, interestingly, without the commutativity assumption on a fixed
unital C*-subalgebra A of B (H), one can consider the invertibility on .‘6; (A), similar to,
but different from Sect. 5.

Recall that the ¢-hypercomplex A-hypercomplexes H4 (A) is isomorphic to the A-A
bimodule 4 (H;) 4 = o (A%) (H,), for any scale ¢ € R, by (4.13). By the very construction
of t-conjugate A-hypercomplexes §5 (A), we have a similar structure theorem like (4.13).
Let A2 = A x A be the Cartesian-product C*-algebra of two copies of a given unital
C*-algebra A (which is not necessarily commutative). And define an action,

B : A* — B (H;, 95 (A)),
by

aTy t (bTs)

T ) T 2] b - T ’ bT = _ 5

B (T, T) (a, b) = [aTh, bT»], (ng T
in 95 (A), for all (T1, T») € A% and (4, b) € Hy. ie., B (T, To) € Br (A% 95 (A)), where
Br (AZ, 565 (A)) is the operator space of all bounded R-linear transformations from A2
into $ (A) over R. Then, similar to the proof of (4.9), the morphism 8 is a well-defined
bounded bi-module action from .42 acting on our ¢-conjugate .A-hypercomplexes 9} (.A).

So, similar to (4.13), we obtain the following result.
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Theorem 37 The t-conjugate A-hypercomplexes §5 (A) of a unital C*-algebra A is iso-
morphic to the A-A bimodule (.AZ) (Hy), i.e.,

i d
95 (A) 24 (H) 4 “E B (A%) (H,).
Proof The proof is similar to that of (4.13). O

The above theorem shows a relation between the scaled hypercomplexes {H;};cg and
teR" The difference between (4.13) and the
above theorem is that a ¢-scaled .A-hypercomplexes H5 (A) is a R-semi-normed “vector

scaled-conjugate .A-hypercomplexes {$? (A)}
space” as a bimodule 4 (H) 4, meanwhile, a ¢-conjugate A-hypercomplexes $5 (A) is a
R-semi-normed “algebra” as a bimodule 4 (H;) 4.

Definition 38 Let £ (A) be the ¢-conjugate A-hypercomplexes for a scale ¢ € R. An
element n € H} (A) is invertible “in $ (A)” with its inverse =1 € 9 (A), if

! = [(1,0)], = (; (1’) —

where 1 is the identity operator of 4, and 0 is the zero operator of A, in B (H).

Suppose n = [(T}, T2)]; is invertible in the ¢-conjugate A-hypercomplexes Y (A) is
invertible with its inverse n ™! = [(S1, $2)], € 95 (A). Then

T1S) + tThS,y ¢t (T152 + T25_1) 10
! = = ,
T1Sy + ToS1  T1S1 + tThS, 01
and
S1Th+ 59Ty t($1T2+ S2Th) 10
n'n= = ,
STy + 5271 S17T1 + tSsz 01
if and only if
1181 + thS_Z =1=85T1 + tSsz,
and

T1Sy + TaS1 = 0 = S1 T2 + S» T3, in A. (6.0.5)
Proposition 39 An element [(T1, T2)]; is invertible with its inverse [(S1, S2)]; in the t-
conjugate A-hypercomplexes §5 (A), if and only if

T181 + tTZS_Z =1=85T1+ tSsz,
and

T1Sy + T28] =0 = 51Ty + S, T, in A (6.0.6)
Proof The invertibility condition (6.0.6) on $5 (A) is shown by (6.0.5). O
6.1 The case wheret =0

In this section, we fix the zero scale in R, and the corresponding 0-conjugate A-
hypercomplexes Sﬁg (A) of a unital C*-subalgebra .4 of the operator algebra B(H) on
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a separable Hilbert space H, i.e.,
TO
0 = T; S =\=-=]:TS »
95 (A) {[( o ST €A

as a complete R-semi-normed algebra by (6.0.4). By (6.0.6), an element [(T1, T1)], is
invertible with its inverse [(S1, S2)]p in fjg (A), if and only if

T'$1=1=8T,
and
T1Sy + ToS1 = 0 = $1T> + Sp T3, in A (6.1.1)
The first formula of (6.1.1) implies that T} is invertible in A, with its inverse T} L=g.
So, the invertibility condition (6.1.1) is equivalent to
S1 =T and T1Sy + 1281 = 0 = §1 T2 + S2 T4, (6.1.2)
in A, if and only if
S =T{Y T1Sy = —ToT; L, and $,T7 = —T; 1T,
if and only if
S =T7Y Sy =T ' T, 17, in A (6.13)
by (6.1.2).

Theorem 40 An element [(T1, T2)) is invertible in .‘7)(2) (A), if and only if

T is invertible with its inverse T Lin A,
and

(T T)5" = [(17 -1 1) ] e 95, (6.1.4)

Proof The proof of the invertibility condition (6.1.4) on Yjé (A) is done by (6.1.3). O

The above theorem shows that [(T; S)], is invertible in S’)g (A), if and only if there exists
the inverse,

(T9Ng" = [ (T ~T7'sT )] e 99 (),
by (6.1.4). It shows that if T is not invertible in .4, then [(T, S)], cannot be invertible in

532 (A). So, all elements [(T; S)], are not invertible in .‘7)(2) (A), whenever T is not invertible
in A.

6.2 The case wheret # 0
In Sect. 6.1, we characterize the invertibility condition on the 0-conjugate A-hypercomplexes
YJS (A) of a unital C*-subalgebra A of the operator algebra B (H) on a separable Hilbert
space H, by (6.1.4). In this section, we fix a non-zero scale t € R \ {0}, and study the
invertibility on the corresponding ¢-conjugate A-hypercomplexes $5 (A). Throughout
this section, any given scale ¢ is automatically assumed to be non-zero in R.

By (6.0.6), an element [(T1, T»)]; is invertible with its inverse [(S1, S2)]; in $5 (A), if and
only if

T181+tThSy = 1= S1T1 + ST,
and

T1So + ToS1 =0 = 81Ty + S» 71, in A 6.2.1)

47
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This condition (6.2.1) is equivalent to

(1 - SITI);

— 1 — 1
T2S, = n (1 —T181), $2Tr = n

and

Tzs_l = —-T18y, 5271 =—-81Ty, in A. (6.2.2)

Note that, an operator T is invertible in .4, if and only if the conjugate T is also invertible
in A, because

T T=T-1T=1=1=1=TT"1=TT"},

implyingthat
TT1=1=T1T,= (T) ' =T L, inA 6.2.3)
Assume that T, (and hence, T5) is invertible in A (by (6.2.3)).

Take the second equality of the first line of (6.2.2), and the second equality of the second
line of (6.2.2). Then we obtain that

1 —_—
So=-01-8T) T, % by (6.2.3),
and
S =-8TT;% in A (6.2.4)
From the second formula of (6.2.4), one has
1 —\ —
S = — (; (1—8T1) T;l) T,
=
si=— (072t ) T
1=- ; 2 - ; 14149 1 ’
=
S e oo L L | I
S1 = _;TZ TITZ + ;SITITZ T,
implying that
| S e R
Si= ST, TTy ! = - Ty Ty
—
1 — 1——
S (1 =T T, 'T; T21> = —;T;T1 Ty, in A (6.2.5)
Now, assume that
1 —
1--T T, 'Ti T, " is invertible in A.
Then, by (6.2.5), we have that
| G I
S; = _;T;IT1 7! (1 -1 T2_1T1T2_1> . (6.2.6)
Therefore, by (6.2.4) and (6.2.6),
1 p—
S=21=5T)T,",
and
1 17 1 1 17 1 -
Si=— T, TiT; (1 —TT;'TiT; ) ,

implying that

1 1— 1 — -1 _
Si=+ (1 - (—;Tz_lTsz_l (1 - ;T1T2_1T1T2_1> ) Tl) T (6.2.7)

in A.
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Theorem 41 Suppose T and 1 — %Tl T, 171T; L are invertible in a unital C*-algebra
A. An element [(T1, T»)], is invertible in the t-conjugate A-hypercomplexes $% (A) with its
inverse [(S1, S2)]; € 95 (A), if and only if
_ I LT, Ty -
Sl—_?z 149 1_;12 149 ’

and

1 R I T —
Sa=+ (1 —~ (—;Tleszl (1 - ;T1T21T1T21> ) Tl) Tyh  (62.8)

in A
Proof By (6.2.2), an element [(Ty, T»)], is invertible with its inverse [(S1, S2)]; in $5 (A),
if and only if
— 1 — 1
128 = n 1 =T151), S$2T> = n (1-5T),

and
T5S1 = —T1Sy, ST = —S1 Ty, in A
Under the assumption that
Trand 1 — %TlﬁﬁT{ 1 are invertible in A,

we have

-1
I e v | |
Si=—7T, "I, (1= N, T, ,

1 R e SN p—
S=7 (1 - (—;T;lTsz_l (1 - ;Tsz_lTsz_l) ) Tl) T,

in A, by (6.2.6) and (6.2.7), respectively. Therefore, the invertibility condition (6.2.8) is
obtained under hypothesis. O

and

The above theorem partially characterizes the invertibility (6.0.6), or (6.2.1) on the ¢-
conjugate A-hypercomplexes 5 (A) under certain invertibility assumption on A by
(6.2.8).

6.3 Summary and conclusion

In this section, we summarize the main results of Sects.6.1 and 6.2. Let A be a unital
C*-subalgebra of the operator algebra B (H) on a separable Hilbert space H, and lett € R,
and 95 (A), the corresponding ¢-conjugate A-hypercomplexes.

Corollary42 Ift = 0 in R, then an element [(T1, T2)]y is invertible with its inverse
[(S1, $2)]g in 99 (A), if and only if
T, is invertible in A,

and

(SuSlo = [(T0 T I < 99 (A (63.1)
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Meanwhile, if t # 0 in R, then [(Th, T2)], is invertible with its inverse [(S1, $2)]; in $5 (A),
if and only if

_ 1 _
125 = n (1 —-T1T151), S2Tr =

~ | =

(1 - Sl TI)’
and

T5S1 = —T1Sy, $3T1 = =81 Ty, in A (6.3.2)

In particular, if To and 1 — %Tl T, 1TlTZ_ L are invertible in A, then

-1
R s vt iy G S+ |
Si=— T, "7, (1= ST, T, )
and
1 1 1+ 1 1 1 1 - 1
So=2(1- (=T ' TTy <1—;T1T2 T1T2> | T,%  (63.3)
in A.

Proof The invertibility (6.3.1) on f)g (A) is shown by (6.1.4). The invertibility character-
ization (6.3.2) on {%} (A)}teR\{o} holds by (6.2.2). The special case (6.3.3) of (6.3.2) is
proven by (6.2.8). O

The above corollary provides the invertibility characterization on the scaled-conjugate
A-hypercomplexes { 95 (A) } ;g Of 2 unital C*-subalgebra A of the operator algebra B (H)
on a separable Hilbert space H.

7 The invertibility on H; and on 5 (A)
In this section, we briefly consider the relation between the invertibility on the ¢-scaled
hypercomplexes H; and that on the ¢-conjugate .A-hypercomplexes §5 (A) of a unital
C*-subalgebra A of the operator algebra B (H) on a separable Hilbert space H, for ¢ € R.
Remember that, for any scale ¢ € R, a t-scaled hypercomplex number (a, b) € H; is
invertible, if and only if (4, b) € Hi’”’, if and only if
2
det ([(@, b)),) = la> — ¢ |b| #0,

th
where [(a,b)], = (g _) € 'H5, by (2.2.2). Also, recall that the ¢-conjugate A-

a

hypercomplexes $} (A) is isomorphic to the A-A bimodule,
d
A (E) 4 “E () (H),
as a R-SNS, where

B(T1, T2) (@, b) = [(aTy, bTo)), = (ﬂT 1 t(bm)

bTy aTy
in % (A), for all (T3, T») € A% and (a, b) € H,.

Note that, for any arbitrary [(T1, T2)]; € 9 (A), there exists at least one (a, b) € Hy,
with a, b € C \ {0}, such that

(Ty T)], = [(a (ﬁn), b (%TZ))] _ (in, %Tz> (@b),

in % (A). For instance,
[(0,0)], = (0,0)(1, 1),
(T,0)], =B(T,0)(1, 1),
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and
(T,S)], = B (%T %s) i),

etc.. Now, let (a, b) € Hi”" with its inverse,

a —b
(a,b)~ ! = , € H,,
(w — [ 1aP —t|b|2> t

by (2.2.2). Assume that the operators T} and T are invertible in the C*-algebra A, with
their inverses 7' Land T, L respectively. For (g, b) € Hff’", consider the element,

T = B (T, T2) (a, b) = [(aTy, bT2)],,

and

1 1
s=p(17,1;") (@b ') = ah, _ _—bh , 7.1
(174 757) (@b)™) |:(|a|2—t‘b|2 prird | RIS

in the ¢-conjugate A-hypercomplexes 5 (.A). Remark that the conjugate T5 is also invert-

ible in A, with its inverse 72_1 =T, Lin A, and hence, the element S of (7.1) is well-
determined in 57)5 (A). Observe that

TS = ([(aT bT)])(( at’ _bﬁ ) )
TR a2 — ¢ > lal2 —¢]p* )],

ary'  —oT,"
aTy thT, lal>—t|b]*>  lal®—t|b|?
bT, aTy b1y _aT'
lal2—t|b]*  lal*—t|b|?
lal?1—¢[b]*1 —abTi T, "+abTyT; "
lal2—¢|b|? lal2—¢|b|?
—abT1 T, +abT>T; " lal*1—¢|b|*1
lal2—¢|b|? lal2—¢]b|?
—abT1?+abT2?
1 —
lal?—¢|b]
- , (7.2)
—abT1?+abT2?
— 1
|a| —t|b|
and, similarly, we have
7abT1?+abT2F
1 —
lal®—t|b|
ST = , (7.3)
—ﬂbT1?+ﬂbT2F
w7 1
lal2—¢|b]
in 95 (A), ie,
—1 -1
—abT T, + abT>T
TS = {(1 i — = ST, (7.4)
lal” — 1t }b’ t

in % (A) by (7.2) and (7.3), whenever T and S are in the sense of (7.1).
Define a subset A™"” of A by the set of all invertible operators of A, i.e.,

A def {T eA:3T7! in.A}.

47
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Lemma43 Let (a,b) € H" inH, fort € R, where
a#0and b #0, in C.

If T € A™ in the fixed C*-algebra A, then [(aTy, bT>)), is invertible in the t-conjugate
A-hypercomplexes %, (A), with its inverse,

e ar1 —bT
[(aT5T)] " = [( , )} :
g jal> — ¢ |b[*" lal> —¢|p]*) ],

satisfying
(B(T.T)(ab) ' =p(T"\T) ((u, b)—l), (7.5)
in 9% (A), where

a —b
(@ b))t = A e H,.
(w —¢[p* laP —tw) ’

Proof Let (a, b) € H" be an invertible ¢-scaled hypercomplex number of H;, where

a, be C\ {0}, in C

with its inverse,

a —b
(@b)! = A cH
<|a|2—t|b|2 al —t|b|2> t

For the invertible operators T4, T> € 5’)5 (A), if we let

T=2 (Tl: TZ) (61, b) = [(dTIJ bTZ)]t)

and

=1 )
s=8(17L 17 (@p)t) = ar, b, ,
(et )= (e )
in % (A), then

—abT T + abTo T71
TS:|:(1, a 1 i Ll )} — ST,
|al _tib| t

in 9% (A), by (7.3) and (7.4). It shows that
Tlﬁ =1= TZF in .A,
if and only if
10
TS = [(1,0)], = = ST,
()
in % (A). Equivalently,
I — 10 ot
T, =TiinA<=TS = 01l = ST in 95 (A),

if and only if
T, ' =Tiin A < T = Sin 5 (A). (7.6)



D. Alpay, I. Cho Res Math Sci (2023)10:47

By (7.6),if (4, b) € H" and T € A", with T~} = T in A, then the element [(aT, bT)]t
is invertible in % (A), with

e ar! —bT
‘ jal> — ¢ |b[*" lal> —¢|p]*) ],

Therefore, the invertibility condition (7.5) holds on 5'35 (A). O

Similar to (7.5), one can get the following result.

Lemma 44 If (a,b) = (0,b) € Hi’”’ is an invertible t-scaled hypercomplex number of Hy,
where

a=0and b #0, in C,

then
— 1 - b7t
o7 =107 = | (0. 255) | <ot
t
equivalently,
BLT)©O8) " =50,77) (0,67, in95(A). (7.7)

Proof 1f (a,b) € Hf;"" is invertible in H, with a = 0 and b # 0 in C, then

0 —b b
(@b =0 = , — (o0 -2},
<|o|2—t|b|2 |0|2—t|b}2) ( thIZ)

inH,. If T € A" in A, then

o) = o) = (o 255)]

t[bf*

in 9% (A). Thus, the invertibility (7.7) holds. Indeed,

— 0 br1
B bT-1 0 T |b]?
[(O’bT)]t 0, —3 =1 _ 77
t}b’ ¢ bT 0 bT—1
tlof*
0 br 1 _
10 |b[? 0 T
01 BTl BT 0
t|b|
([ bT ! -
(o Z5) | 1067,
L\ efpl7/ ],
in the ¢-conjugate A-hypercomplexes §? (A). ]

Just like (7.7), we obtain the following result.

Lemma 45 If (a,b) = (a,0) € H™ is an invertible t-scaled hypercomplex number of Hy,
where

a#0and b =0, in C,

Page 35 of 44
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then
_ ar1
(@0 7)), =t@r o) = | (T 0) | e st
t
equivalently,
(B(LT)(©0,5) " =B(T%0) ((@0)"), in 9 (A). (7.8)

Proof 1f(a, b) € Hé"" is invertible in H, with a # 0 and b = 0 in C, then

a -0 a
a,b1=a,01=< , )=<—; 0),
(@?) (@0) lal* — £101*" |al* — ¢ 0> |a|*
inH,. If T € A" in A, then

[t 0.7 = ez o =[ (- )]

lal?’

in 9% (A). Thus, the invertibility (7.8) holds. Indeed,

ar!
ﬂT 0 |6l‘2

ar o, (5 0)| -
|al t a7 1

0 aTl 0

ar-!
1 0 ‘a|2 0

al 0

01 0 oIl 0 al

1
-5 0)] 1o,
|al t

in the ¢-conjugate A-hypercomplexes §? (A). ]

By summarizing the above main results (7.5), (7.7) and (7.8), one has the following theorem.

Theorem 46 Let (a,b) € H?‘V be invertible in the t-scaled hypercomplexes H;, with its

inverse,

a —b
(@ b))t = a c M,
<|a|2—t|b|2 lal? —t|b|2> t

andlet T € A" in A Ifa, b € C\ {0}, then

BT @h) " =p(17T) (@b ™) (7.9)
and ifa = 0 and b # 0 in C, then

BET)@b) " =077 (@) (7.10)
and ifa # 0 and b = 0 in C, then

BT @h) " =p(1740) (@b)),in 5% (A (7.11)
Proof The invertibility conditions (7.9), (7.10) and (7.11) are shown by (7.5), (7.7) and
(7.8), respectively. O

The above theorem shows a relation among the invertibility on the scaled hypercom-
plexes {H;};cg, the invertibility on .4, and that on the scaled-conjugate A-hypercomplexes
{S’f)g (‘A)}teR by (7.9), (7.10) and (7.11), where A is a unital C*-subalgebra of the operator
algebra B (H) on a separable Hilbert space H.
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8 The invertibility on (2 x 2)-Block Operators and That on 55; (A)

In this section, we confirm that our invertibility on the ¢-conjugate A-hypercomplexes
95 (A) is determined by the invertibility on the (2 x 2)-block operators M (A) in the
canonical sense of Chapter 3 of [1] over a unital C*-subalgebra of the operator algebra
B (H) on a separable Hilbert space H, where

d A1 A
My (A) = l[Aij]ZXZ £l (A; AZ) A1, A1, Ao, Ax € A}'

The following proposition is know (e.g., see [1]).

Proposition 47 Suppose operators A, D, A — BD™'C € A™ are invertible in A. Then
A B uv

a (2 x 2)-block operator € My (A) is invertible with its inverse , if and
CD W Z

only if
U=(A-BD7'C),
V=—(A-BD'C)"'BD,
W =-D"'C(A-BD'C)",
and

Z=D"'4D"'C(A-BD"'C) ' BD", (8.1)

ABY\
in A. i.e., under the hypothesis, the inverse (C D) is

1

(A-BD7'C)” —(A-BD"'C)"' BD!

-p7'c(A-BD'Cc)"' D'+ D 'Cc(A-BD'C) ' BD!
in M2 (A)
Proof See e.g., the formula (3.2.8) in Chapter 3 of [1]. O

With respect to (8.1), we consider a connection between the invertibility on the (2 x 2)-
block-operator algebra M, (A) over A, and that on the ¢-conjugate A-hypercomplexes
95 (A), for an arbitrary scale ¢ € R. Recall that, by (6.1.4),

(T Tl = [(T7 ~17' 2T | e 98 (8.2)

and, by (6.2.8), if [(T1, T2)]; is invertible in 5 (A) with its inverse [(S1, S2)]; € 95 (A),
then

-1
R s TS iy SRR Sy oS
S1==1T, ', (1= 1T, TN, ,

and

1 R e -
$p=- <1 - (—;Tleszl (1 - ;T1T21T1T21) ) T1> T, (83
in A, under suitable invertibility assumptions.

Assumption and Notation 8.1. (From below, AN 8.1) In the rest of this section, if we
express “a certain formula holds under suitable invertibility assumptions,” then it means

that “if we write the inverse notation A~! for an operator A in a fixed C*-algebra .4, then it
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automatically assumed that 4 is invertible in A with its inverse A~! € .A.” For instance, as
in the above paragraph, “the formulas (8.3) holds under suitable invertibility assumptions”
means that “the formula (8.3) holds by assuming that

1 —
Ty, Ty and1 - =T, T, ' Ti T,

are invertible in A.” O
Now, assume that £ = 0in R, and let

A=T,B=0-Ty=0,C=Ty, andD =Ty, in A (8.4)
Then, if

A B 1 O
= = [(T1, T2)]y € 95 (A),
C D T, Th

is invertible “in M (A),” then

-1
A B uv
= S M2 (.A) )
CD W Z
where U, V, W and Z satisfy (8.1) under suitable invertibility assumption on .4, and hence,

——1—\"1 1
U=(r-om %) =17

N
V=— (T1 — 0T, T2> 0T, ‘=0,
——1 — 1\ "1 e
W=_-T, T (1"1—()1"1 T2> — T, 'Y
and
P s e 1\l —1 =1
Z=T '+T 'T (T1—0T1 Tg) o7, =T, (8.5)

in A, by (8.1) and (8.4).

Theorem 48 Under suitable invertibility assumptions (in the sense of AN 8.1), the invert-
ibility on the 0-conjugate A-hypercomplexes .?_)(2) (A) and the invertibility on the algebra
My (A) are equivalent, ie.,

The invertibility on 538 (A T the invertibility on My (A) (8.6)

Proof Under suitable invertibility assumptions, by the invertibility (8.1) on Ma (A), if

71 0
[(T1, T2)]o = <_1 _> € 93 (A) C My (A)
Ty T
is invertible “in M, (A),” then
Tt 0
[(Ty, To)l;" = 0 U e My (A),

—17 -1 -1
— T T TS

by (8.5), because

A ' =41 in A, if Aisinvertiblein A.
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It shows that the inverse U € Mj (A) of [(T1, T2)]y € Sﬁg (A) is identified with
-1 ~1 -1
T 0 (-17'111)
U= € M2 (-’4)1
LY Tt

contained “in 5’)3 (A),” as

v=[(r - nr)] e s,

Therefore, the invertibility on My (A) implies the invertibility on Y)g (A) under suitable
invertibility assumptions.

Since .‘73(2) (A) is a subalgebra of My (A) by definition, the invertibility on 573(2) (A) implies
that on M» (A). Therefore, the equivalence (8.6) holds. O

The above theorem shows that the invertibility on the 0-conjugate A-hypercomplexes
99 (A) and that on M, (A) are equivalent under suitable invertibility assumptions by
(8.6).

Now, assume that £ # 0 in R, and let

A=T), B=tTy C=Ty andD =Ty, in A (8.7)
Then, if

A B T, tTy
let

= = [(T1, To)], € 95 (A),
C D T, Ty

is invertible “in My (A),” then

-1
(gg) :<;;>6Mﬂm,
where U, V, W and Z satisfy (8.1);
u=(A-8ptc)’,
V=—(A—BD"'C) ' BD,
W =-D"'C(4—BD'C) ",
and
Z=D"'+D'C(A-BD'C)” BD,

in A, equivalently,
— 11— -1
u= (T1 DT Tg) ,
1 \-1 —
V=- (Tl —tTr T Tg) (tTy)) Ty

_— ] 11—\ 1
W=-T 1T2 (Tl—tTQTl 1T2> ,

and

— — —1—\ 1 .
Z=T ! + T (Tl —tTr T 1T2> (tTy) T 1, (8.8)
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in A, under suitable invertibility assumptions in A, by (8.1) and (8.7). Recall that, by
(8.3), under suitable invertibility assumptions, if [(71, T2)], is invertible with its inverse
[(S1, $2)]; “in $% (A),” then

—1
R s o iy (AR e v |
S1==T,' T, (1= 1T, TN, ,
and

1 1o 1 = -
Si= (1 —~ (—;Tleszl (1 — ;T1T21T1T21) ) T1> T, (89

in A. From the first formula of (8.9), one has that

Gy 1, 11\
S = —;T2_1T1T2_1 (1 - ;T1T2_1T1T2_1>

17— | S
=— T T (T = [Ty T T

| Ry g 1 == -1
=T, T (- ST ' Th

1= (.1 1 _ g1 -
=—-T; (BT - T T

1 =(..—1 1_ —— -
:—ZTZ T2T1 —ZTlTZ

1 1 1 _ g !
=, (T - 01y '

-1

1 —1—= 1 —_—1 -1
= n —TT7 Ty + ;T1 = (—tTng Tr + T1) =U, (8.10)

where U is in the sense of (8.8), i.e., the 1 of (8.9) is identical to U of (8.8) in .4, by (8.10).

Now, let
—1—\ 1
ST = U = (Tl —tTrTh 1T2) € A,
in(8.9) in(8.8)
by (8.10).

Also, in the second formula of (8.8), one has

—1—\ 1 -
V=— (Tl T Th 1T2) T Ty

and by (8.9),
1

-1
_ I B s O S e 1
Sy = ; 1 ;Tz T, 1 ZT1T2 T, )Ty,

in A, under suitable invertibility assumptions.

Proposition 49 Let A, B € A be invertible elements of a fixed C*-subalgebra A of the
operator algebra B (H) on a separable Hilbert space H. Then
J— -1 —_— —_—
(A-BA'B) =a7'+ATB@A-Ba7'B)  BAT,
and
— — -1 — _
A'B(BA 'B—A) =(BAT'B—A) BA™.inA (8.11)

Proof The above two formulas of (8.11) are shown by the formulas (3.9.25) and (3.9.26)
of [1], respectively. O
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By (8.11), one obtains the following corollary.
Corollary 50 Let A, B € A be invertible elements of a fixed C*-algebra A. Then
- _ 13\l
A4+ A'B(A—BA'B)BA! = (A _BA 1B) L in A (8.12)
Proof The formula (8.12) is shown by (8.11). Indeed,
A"+ AT'B(A—BAT'B)BA™!
=(1+47'B(A-BA'B) ' B)a™!
— — -1 __
= (1 +A7B(1-4 'BA7'B) 4 1B> Al
PR | 1N\
=(1-47'BA 'B) A7 =(a-BA 'B) ,
in A, by applying the formulas of (8.11). O

If S; € Aisin the sense of (8.9), then one has

S, =U= (Tl - thT{lTZ)_l = (Tl — thTl_lT2>_1, (8.13)
in A, by (8.10). Then, by (8.11) and (8.12),

Si=T1 ' +(Ti (T —tT ) BT, inA (8.14)
Note and recall that, by the fourth formula of (8.8), we have

Z=T + T (0 - T ') e T
in A. It shows that

Z = 8 , in A (8.15)
in(8.8)  in(8.9)

by (8.13) and (8.14).
Now, consider the operator V in the second formula of (8.8),

—1—\ "1 1
V=-_ <T1 DTy Tz) tTo) Ty
and the operator S; of (8.9),

1
_ I 1 1 T 1 1
tSo =1— _;TZ T1T2 1—;T1T2 T1T2 T T2

in A. Then
N N -1 -
P = 1 T -1 1
tSo =11 ;TZ T\ Ty ?Tl T2 11 T2 Ty T T2

—_— . _— _1 —_—
1- <—T2_1 (T -1 ') ) Tl) T, !

_ — \—1
~T To+ T T; ) T1> T, !

T <T1 - thTfsz)_ Ty, (8.16)

47
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in A. Now, let’s compare the operators V of (8.8) and the the operator ¢S; of (8.16) induced
from the operator S, of (8.9).

—1 —1=\"!, 7T
t=T,  — (T —tT ‘1) T,
by (8.16)

- - 1— -1 —
=T - ((l—tT2T1 BT TN 1)

- — 11— -1___
=T - ((l—tT2T1 BT T 1)

=(1-(1-nn BT R (8.17)
- (1 _ (1 + 17! (1 — thTfszT;1> m?{sz)) T, " (8.18)
since
(1-AB'=1+A4(1-BA)!B
in A under suitable invertibility assumptions for A, B € A; so, one can take
A=TY and B=tThT; 'To,
in (8.17). Thus, by (8.18),
t5, = (-17 (1T BI7 )T )T

=17 (1= Ty T ) Ty

11—\ 1 —
- <T1 — Ty T, 1Tz) ¢TI T ' =V, (8.19)
in A. i.e., by (8.19), we have that

£S5 = V ,inA (8.20)
where S is from (8.9) of (8.8)

By (8.20), we obtain that

1
S, ==(S) = -V= W ,inA,
of 89 1 by(8.18) ¢ of (8.8)
where
1 o 1—N\-1
W=-T, 'T, <T1 Ty T, sz) , (8.21)

Theorem 51 Let t # 0 in R. Under suitable invertibility assumptions (in the sense of
AN 8.1), the invertibility on the t-conjugate A-hypercomplexes $ (A) and the invertibility
on the algebra M (A) are equivalent, i.e.,

the invertibility on M, (A) N e invertibility on 95 (A), YVt e R\ {0}. (8.22)
Proof For anonzero scalet € R\ {0}, suppose the element [(T1, T2)], is invertible “in the
t-conjugate A-hypercomplexes §5 (A)” with its inverse,

(S0 S2)], = (% tSS_2> € 9L (A),

1

where

-1
IS et i R | 171
Si=—T, Tyt (1- - nT T
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and

1 1,1 | SRS -1
Sz:? 1-— —;TZ T1T2 I_ZTITZ T1T2 Tl TZ ’

in A by (6.2.8), or (8.3), under suitable invertibility assumptions. Then as a (2 x 2)-
operator-block matrix,
T tT: .
(T3, T2)), = (—1 —2> € 95 (A), inMs (A),
T, T

1

”»

it can have its inverse “in M» (A),

(s y) e

with
g\l
U= <T1 —tT9Th Tg) ,
——1—\"1 — 1
V=-— (T1 — Ty Ty T2> tTo) Ty Y
—_— ] —1—\ "1
W=-T T, (T1 —tTy T T2> ,
and

— — —1—\ 1 —
Z=T1 '+7T» (T1 DT 1T2> ¢ T,

in A, by (8.8). However, by (8.10), (8.13), (8.20) and (8.21), we have that

uv _ NRAY
wz) \$S)

“in $% (A),” inside My (A). It shows that the invertibility on M5 (A) implies that on §5 (A).
Since % (A) is a subalgebra of M, (A), the invertibility on £} (A) implies that on M (A).
Therefore, the equivalence (8.22) holds. O

So, we obtain the following main result of this section.

Corollary 52 The invertibility on the t-conjugate A-hypercomplexes $ (A) and the
invertibility on My (A) are equivalent, for all scales t € R.

Proof 1t is shown by the equivalences (8.6) and (8.22). O
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