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Keratin 1 as a Cell-surface Receptor in Cancer
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1School of Pharmacy, Harry and Diane Rinker Health Science Campus, Chapman University, 
Irvine, California, 92618-1908, USA

2Department of Dermatology, Yale University, New Haven, Connecticut, 06520-8059, USA

Abstract

Keratins are fibrous proteins that take part in several important cellular functions, including the 

formation of intermediate filaments. In addition, keratins serve as epithelial cell markers, which 

has made their role in cancer progression, diagnosis, and treatment an important focus of research. 

Keratin 1 (K1) is a type II keratin whose structure is comprised of a coiled-coil central domain 

flanked by flexible, glycine-rich loops in the N- and C-termini. While the structure of cytoplasmic 

K1 is established, the structure of cell-surface K1 is not known. Several transformed cells, such as 

cancerous cells and cells that have undergone oxidative stress, display increased levels of overall 

and/or cell-surface K1 expression. Cell-surface keratins (CSKs) may be modified or truncated, 

and their role is yet to be fully elucidated. Current studies suggest that CSKs are involved in 

receptor-mediated endocytosis and immune evasion. In this Review, we discuss findings relating 

to K1 structure, overexpression, and cell-surface expression in the context of utilizing CSK1 as a 

receptor for targeted drug delivery to cancer cells, and other strategies to develop novel treatments 

for cancer.
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1. Introduction

Intermediate filaments (IFs) are fibrous cytoplasmic and nuclear protein assemblies that 

provide crucial structural integrity and signaling processes to cells. Based on the protein 

sequence and domain structure of IFs, IFs are divided into six major classes (Type I -Type 

VI) and their expression is cell-type dependent [1, 2]. For instance, epithelial cells contain 

cytokeratin filaments (Type I and Type II) while mesenchymal cells contain vimentin 

filaments (Type III).

Different epithelial cell types can be distinguished based on the expression of types of 

keratins [3–6]. There are 28 Type I (acidic) and 26 Type II (basic or neutral) keratin proteins. 

Keratins within the same type show high sequence identity ranging between 67–74% [4]. 

Type I and Type II keratins form heterodimers, such as keratin 1/keratin 10 (K1/K10), 

K5/K14 and K8/K18. Earlier studies suggested that luminal and basal cells from the normal 
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mammary epithelia can be distinguished based on the keratins these cells express [7]. For 

instance, basal cells present between the luminal cells and basement membrane showed 

expression of K5 and K14 while luminal cells expressed K8, K18, and K19. Further, keratins 

from mammary tissue showed differential expression between normal and tumor derived 

cells, and the expression of several keratins, such as K8, K18, and K19, has been linked 

with cancer prognosis and is being used as a diagnostic marker [7–10]. The presence of type 

II K1 in cancer cells was discovered in the late 2000s [34, 35] and K1 is also a potential 

candidate for cancer prognosis. The location, structure, and function of K1 in cancer cells 

is just beginning to be understood, which is the focus of this review. Its role in tumor 

progression and metastasis is yet to be elucidated.

An emerging area of importance is the role of IFs on the surface of cells, both normal human 

cells and pathogenic ones, such as cancer cells. The presence of cell-surface K8 (CSK8) in 

cancer cells has been linked to a mechanism for immune escape of cancer cells, contributing 

to metastasis. CSK8 leads to inhibition of interactions between the major histocompatibility 

complex class I (MHC I) molecules and T-cell receptors (TCR) [12, 13]. The MHC I – TCR 

interaction is an important mechanism by the cytotoxic T lymphocytes for elimination of 

malignant cells. K8/K18 or K8/K19 heterodimer masks MHC I related molecules on the 

surface of lymph node metastatic carcinoma cells and prevents their interaction with TCR on 

the cytotoxic CD8+ T cells [13].

Similarly, vimentin, a Type III IF serves as a timely example of cell-surface IFs. Cell-

surface vimentin (CSV) functioned as a co-receptor for severe acute respiratory syndrome 

coronavirus (SARS-CoV) entry into host cells by directly binding to SARS-CoV spike 

protein [14]. During the COVID-19 pandemic, additional studies demonstrated that CSV 

also functioned as a co-receptor to angiotensin converting enzyme 2 (ACE-2) for SARS-

CoV2 cellular entry [15], prompting calls for investigation into vimentin-targeted therapies 

for SARS-CoV2 infection prevention and/or treatment [16]. Beyond SARS-CoV and SARS-

CoV2 infection, vimentin facilitates viral entry into host tissues for multiple viruses [17].

While it is understood that cytoplasmic IFs like keratins and vimentin form flexible, 

filamentous bundles, how IFs become presented on the cell-surface and what molecular 

structure they adopt is still poorly understood. A recent investigation of CSV demonstrated 

that it does not exist on the cell-surface in a filamentous state, but rather forms a multimeric 

assembly comprising 4–12 subunits [18]. This was similar for other type III IFs, and it is 

believed that a “Cys-2” region in coil 2b is a major driver for type III IF recruitment to the 

plasma membrane, with specific phospholipid association facilitated by basic residues in the 

2b domain.

Whether these same structural properties govern CSK presentation remains to be 

determined. It has been shown that assembly of soluble keratin oligomers begins at the 

cell periphery near focal adhesions, with formation of short, then larger IFs, as the keratins 

migrate toward the cell center/nucleus and are ultimately incorporated/bundled into the 

keratin network [19]. It is logical to hypothesize then that since keratin protomers and/or 

small oligomers are present near the plasma membrane, that these keratin forms can be 

translocated through the membrane and presented onto the cell-surface. For example, it 
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was shown that K1 is on the cell-surface of MCF-7 breast cancer cells [20]. Moreover, 

peptides developed to selectively target breast cancer cells were found to bind to CSK1 [20, 

21]. Thus, CSK1 exemplifies why it is important to further investigate: i) the mechanism 

behind CSK presentation; ii) the underlying sequence (truncated vs. full-length forms) and 

conformation/structure of the CSK; and iii) how aberrant CSKs can be selectively targeted 

and harnessed for therapeutic purpose.

2. Molecular Structure of K1

Cytoplasmic K1 is 644 amino acids (aa) long (~66 kDa), with a 180 aa N-terminal head 

region, a 313 aa central coiled-coil domain, and a 151 aa C-terminal tail region. All keratins 

share this rod-like structure (Figure 1). The central helical domain is divided into four 

coiled-coil segments: they are denoted 1a, 1b, 2a, and 2b and are connected by L1, L12, 

and L2 linkers. X-ray crystal structures of the K1 1b and 2b domains, the two longest of 

the rod region, have been determined (PDB ID: 6EC0 and 6E2J for 1b, and 4ZRY and 

6UUI for 2b [22–24]). The K1 structures were determined with K1 1b complexed to K10 1b 

(heterotetramer structure) or K1 2b complexed to K10 2b (heterodimer structure).

The K1 head and tail regions are distinct from the helical rod domain because they contain 

a high proportion of glycine loop motifs. These motifs generally adopt the form x(y)n, 

where x is an aromatic residue (or occasionally a long-chain aliphatic one), y is glycine or 

sometimes other polar residue, and n is the variable number of tandem glycine loop motifs 

[25]. The function of these glycine motifs at the molecular level remains to be elucidated, 

but it is known they are important in head-to-tail assembly of IF proteins into mature IF 

filaments [26]. The heads and tails of keratins have long been considered low-complexity 

protein domains (LCDs) that are intrinsically unstructured; however, recent work suggests 

that segments of the head and tail can adopt cross β-strand architecture [27] as well as 

low-complexity aromatic rich kinked segments (LARKS) [28]. The kinked β-sheet structure 

of LARKS provide intra- (aromatic “ladders”) and inter-sheet stabilization of keratin 

protofilaments. Cross β-strands and LARKS likely facilitate the molecular interactions 

required for head-to-tail interactions in filament elongation and IF assembly [29].

The crystal structures of the 1b and 2b domains of K1 revealed four key structural features, 

the first three being important in keratin tetramerization: 1) a hydrophobic pocket in the 

N-terminal aspect of the 1b domain; 2) a series of residues in the middle of the 1b domain 

termed “K1 interaction residues” which interact with a K10 1b hydrophobic stripe; 3) an 

anchoring knob in the C-terminal aspect of the 1b domain [23]; and 4) the non-conserved 

residues in the 2b domain of K1 mostly align along the outer helical ridge maximizing 

surface chemistry diversity from other keratins [22]. During K1/K10 tetramerization, the 

anchoring knob from one K1/K10 dimer binds into the hydrophobic pocket from the partner 

dimer, creating an anti-parallel tetramer with the K1 interaction residues binding to the 

K10 hydrophobic stripe [23]. This structural mechanism for 1b-mediated tetramer assembly 

is conserved among IFs [29]. Several keratinopathies, human diseases related to keratin 

mutations, occur due to pathogenic mutations in the 1b and 2b domains of keratins [22, 30, 

31].
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CSK8 also showed differential expression between prostate cancer cells and normal prostate 

tissue [50]. Immunohistochemical staining and flow cytometry results displayed higher 

levels of CSK8 in DU-145 and PC-3 prostate cancer cells and lower K8 in RWPE-1 

and BPH-1 normal prostate cells. Interestingly, LNCaP prostate cancer cells showed low 

expression of CSK8, as also previously observed for some of the head and neck carcinoma 

cells [49]. Similarly, it was suggested that CSK1 expression varied among neuroblastoma 

cell lines (Section 3) [39]. Overall, it is found that the cancer cells express much higher 

levels of CSKs compared to non-cancerous cells. Prostate cancer cells DU-145 exhibited 

ten times more CSK8 molecules compared to the normal RWPE-1 prostate cells [50]. The 

authors also explored the role of K8 in enhancing plasminogen activity for proteolysis which 

may have implications in cell migration and metastasis. Such studies are currently under 

further investigation.

Increased K17 in ovarian cancer cells.

Overall increased expression of K17 in cancer cells is also reported. Wang et al. investigated 

the expression levels of K17 gene and protein in tissues from epithelial ovarian cancer 

(EOC) patients [51]. Gene expression levels were compared using real-time quantitative 

PCR in 20 paired samples from EOC and adjacent noncancerous tissues. The K17 mRNA 

in EOC tissues was significantly higher than in non-cancerous tissues (P<0.001). K17 

protein levels were obtained from immunohistochemistry analysis of 104 tumor and 40 

noncancerous tissues, where processed tissue sections were incubated overnight with rabbit 

anti-K17 antibody followed by staining with a secondary antibody. Authors found that K17 

expression was higher in EOC tissue samples than in non-cancerous tissues. Further, K17 

expression was correlated with the EOC clinical stage showing that higher K17 expression 

resulted in a significantly poorer prognosis.

Truncated K81 in cancer cells.

The presence of truncated K81 was reported in human breast carcinomas and in Epstein-

Barr virus (EBV)-infected gastric carcinoma cells [11, 37]. Regnier et al. evaluated the 

expression of human basic hair keratin 1 (hHb1) or K81 using Northern blot analysis [11]. 

A hHb1 3’ probe (corresponding to the tail and 3’ untranslated region of hHb1) was used 

to hybridize total RNA extracted from normal and breast cancer cells. Analysis of breast 

cancer cell lines (Table 1), led to identification of a unique 1.1-kb mRNA corresponding to 

the N-terminal truncated hHb1 keratin. The 1.1 kb mRNA matched with the MLN137 cDNA 

cloned from metastatic lymph nodes from human breast cancer [38]. The results suggest that 

breast cancer cells express an N-terminal (5’) truncated hHb1 mRNA, where the truncated 

mRNA was not detected in normal cells. The data indicated that the truncated mRNA is 

associated with the malignant mammary epithelial cells. In addition, Nishikawa et al. found 

upregulation of truncated hHb1 (K81) in EBV-positive gastric epithelial carcinoma cells 

(Nu-GC-3) compared to EBV-negative cells using DNA array screening [37].

7. Concluding Remarks and Future Perspectives

Keratins as a marker for epithelial cells play a significant role in health and disease. 

The expression of CSKs increases in cancer cells (breast, neuroblastoma, colon, prostate, 
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etc.), cells under oxidative stress (hypoxic HUVECs) and cells with drug resistance 

(nasopharyngeal cancer cells CNE2/cDDP). Several mechanisms are proposed for the cell-

surface presentation of keratins. For instance, keratins may be exposed to the cell-surface 

after overexpression by transformed cells and their lack of integration into IFs [47]. Small 

oligomers of keratins are present near cell’s periphery, and these might translocate to the 

plasma membrane [19]. It is also proposed that secreted keratins may bind to the cell-surface 

[50]. Further investigations are necessary to fully establish CSK presentation in cells.

While overexpression of several keratins has been linked to cancer prognosis, the function 

of these proteins on the cell-surface is less studied compared to cytoplasmic intermediate 

filaments. Current literature suggests CSKs may be involved in immune escape mechanisms 

of cancer cells contributing to metastasis [12]. CSKs may have specific but different 

functions in cancer, inflammation, or apoptosis/necrosis. These functions include interaction 

with other cell-surface proteins, formation of protein complexes for signaling and/or 

endocytosis, etc. [34, 43]. The CSKs could be modified, or simply truncated keratins 

compared to the full-length keratins found in the cytoplasm that form the IFs. It needs to 

be elucidated if the structure of CSKs is maintained and CSKs exist as similar heterodimers 

compared to cytoplasmic counterparts.

The presence of CSKs such as K1 in cancer cells makes them ideal targets for 

delivery of anticancer therapeutics and imaging agents. Peptides and antibodies targeting 

cell-surface receptors have been conjugated to chemotherapeutics to give peptide-drug 

conjugates (PDCs) or antibody-drug conjugates (ADCs) [52–54]. Several ADCs targeting 

cell-surface receptors, like Trop-2, HER2, CD22, CD30, and CD33, are FDA approved 

for cancer treatment, and a PDC targeting somatostatin receptor is approved for the 

treatment of somatostatin receptor-positive gastro-enteropancreatic neuroendocrine tumors 

[52]. PDCs or ADCs, which are carrier-linked prodrugs, increase the therapeutic efficacy 

of chemotherapeutics by specifically delivering drug to the cancer site. With better 

understanding and identification of cell-surface proteins specific to cancer cells, we are 

destined to see approval of more ADC and PDCs for cancer treatment in the coming years.

We used CSK1 targeting peptide 18-4 (WxEAAYQrFL) to synthesize four peptide-

doxorubicin (Dox) conjugates to increase the efficacy of Dox for breast cancer treatment 

[21, 55]. The PDCs were more toxic to triple-negative breast cancer (TNBC) cells compared 

to non-cancerous breast epithelial MCF-10A cells, while Dox was equally toxic to both 

cancer and non-cancerous healthy cells [21]. We reported the in vivo efficacy of one of these 

PDCs, where the peptide 18-4 is conjugated to Dox via an acid-sensitive hydrazone linker, 

in a mouse model for TNBC [56]. Female NOD/SKID mice with the MDA-MB-231 cell-

derived xenografts treated with the PDC showed improved efficacy (significantly reduced 

tumor volume), longer drug circulation time, and decreased off-target accumulation of 

the drug compared to the Dox treated mice. Notably, Dox levels in the heart of PDC 

treated mice were significantly lower than that in Dox treated mice. Dox is associated with 

high cardiotoxicity [57, 58] and PDC helped in targeting Dox mainly to the cancer site. 

Similarly, ADCs with anti-K1 antibody conjugated to chemotherapeutic drugs may prove to 

be beneficial for cancer treatment and warrant investigation.
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K1 targeting peptides and antibodies can also be conjugated to the surface of drug delivery 

platforms such as liposomes and micelles for targeted delivery of the drugs to the cancer site 

[59]. Finally, targeting of the cell-surface receptors can also be used for developing imaging 

agents such as the fluorogenic Trp(redBODIPY) cyclopeptide for imaging aggressive 

carcinomas expressing K1 [41].

K1 is an important component of epithelial cells. Its cell-surface overexpression in 

aggressive cancers as a novel biomarker could be utilized for the development of K1 targeted 

agents for treatment and diagnosis. For instance, aggressive cancers like TNBC for which 

there is no well defined clinical marker yet could benefit the most with the presence of 

CSK1. Furthermore, elucidation of CSK1’s role in tumor progression and metastasis will be 

invaluable for cancer therapy and management.
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Abbreviations

ADC antibody-drug conjugate

cDDP cis-diamminedichloroplatinum

CSK cell-surface keratin

CSV cell-surface vimentin

Dox doxorubicin

EOC epithelial ovarian cancer

HUVECs human umbilical vein endothelial cells

IFs intermediate filaments

K keratin

K1 keratin 1

MHC I major histocompatibility complex class I

NOD/SKID nonobese diabetic - severe combined immunodeficiency

NPC nasopharyngeal carcinoma

LARKS low-complexity aromatic rich kinked segments

PDB protein data bank

PDC peptide-drug conjugate
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SPR surface plasmon resonance

TAM tumor associated macrophages

TCR T-cell receptors

TNBC triple-negative breast cancer

Trop-2 trophoblast cell-surface antigen 2
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Figure 4. Putative peptide binding site: 2b domain of cell-surface K1 on breast cancer cells.
(a) Paraformaldehyde fixed MCF-7 breast cancer cells were incubated with mouse anti-K1 

mAb followed by Alexa 488 goat anti-mouse secondary antibody (red) and FITC-p160 

labeled peptide (green) under non-permeabilizing conditions. Confocal microscopy images 

show that the K1 (red) is expressed at the cell-surface and is co-localized with peptide 

FITC-p160 (green). (Bar 100 μm) (b) Peptide interaction with K1 fragment (38 kDa, 387–

496 aa) was observed by SPR and the resulting Kd values are listed. Lower case x and 

r are D-norleucine and D-arginine, respectively. (c-h) Ribbon (c) and molecular surface 

representations (d-h) of K1 2b domain which is the keratin domain targeted by p160 and 

18-4 peptides. (e,h) Coulombic (e.g. electrostatic) surface potential of K1 2b showing 

it is predominantly acidic except for a strong basic patch at the proximal region. (f,g) 

Hydrophobic surface potential of K1 2b demonstrating the majority of the hydrophobic 
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residues (orange) occur along the dimerization interface whereas polar residues (blue to 

white) are surface-exposed.
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Figure 5. Higher expression of K1 in cancer cells.
Total whole cell expression of K1 in cancer (MDA-MB-435 and MCF-7) and non-cancer 

(MCF-10A) cells. Western blot analysis of the protein expression in cell lysates detected 

using anti-K1 antibody is shown. β-actin is used as a control. Adapted with permission from 

[20]. Copyright 2017 American Chemical Society.
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Figure 6. Higher K1 expression in HUVECs after oxidative stress.
(a) Comparison of K1 expression levels by ELISA and Western blot (inset) in 

HUVECs before (normoxia) and after (hypoxia) oxidative stress. n=3, * p<0.05. (b) 

Immunofluorescent confocal microscopy images showing z-sections of two cells (HUVECs) 

that have undergone oxidative stress. These images confirm the CSK1 (green) expression. 

Nuclei were stained red with propidium iodide. Adapted with permission from [36]. 

Copyright 2001 Elsevier.
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Table 1.

Expression of K1 in human tissues/cells.

Human tissue/cell line Increased K1 expression* Reference

Hepatocellular carcinoma (patient serum) Overall (WB, ELISA) [32]

Nasopharyngeal carcinoma (CNE2/cDDP) Overall (WB, 2D-gel, MS) [33]

Neuroblastoma (NMB7) Cell-surface (DB, IF, flow cytometry) [34]

Breast Cancer (MCF-7) Cell-surface (IHC, 2D-gel, MS) [35]

Breast Cancer (MCF-7) Overall and cell-surface (WB, IF) [20]

HUVECs after oxidative stress Overall and cell-surface (WB, ELISA, IF) [36]

*
techniques used to detect K1, DB= direct binding experiment, 2D-gel= 2D gel electrophoresis, IF= immunofluorescence, WB= Western blot, MS= 

mass spectrometry
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