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ABSTRACT

We explore the relationship between symmetry and entropy, distinguishing between symmetries of state and dynamical symmetries, and in
the context of quantum thermodynamics between symmetries of pure and mixed states. Ultimately, we will argue that symmetry in
thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe an interesting
technological application of symmetry-based control in the context of a quantum coherence capacitor. Symmetry, the concept from
which Noether derived the conservation laws of physics, is one of the most important guiding principles of modern physics. Moreover, sym-
metry is often regarded as a form of order, and entropy is sometimes regarded as a measure of disorder, so it is natural to suppose that sym-
metry and entropy are related in some way. In this article, we will explore the relationship between symmetry and entropy, demonstrating
that this relationship is by no means a simple one: in particular, it is important to distinguish between symmetries of state and dynamical
symmetries, and in the context of quantum thermodynamics to distinguish between symmetries of pure and mixed states. Ultimately, we will
argue that symmetry in thermodynamics is best understood as a means of control within the control theory paradigm, and we will describe
an interesting technological application of symmetry-based control in the context of a quantum coherence capacitor.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1116/5.0065442

I. THERMODYNAMICS ASACONTROL THEORY

The role of symmetry in thermodynamics has engendered consid-
erable discussion. In particular, links have often been made between
Curie’s principle (the idea that whatever symmetry or asymmetry is pre-
sent in an effect must also have been present in its cause) and thermody-
namics; we will return to this idea later in the article. It has also been
argued that symmetry considerations determine the correct choice of
thermodynamic variables—“A very few variables meet the criteria of
extensivity and time independence required for macroscopic measur-
ability. Those which qualify do so by virtue of one or another symmetry
consideration,”1 and of course, it is common to invoke symmetry con-
siderations to justify the use of uniform phase space distributions in dis-
cussions of the origins of thermodynamics in statistical mechanics.
Symmetries also play a major role in the study of phase transitions.2

However, in this article we will argue for a slightly different conceptuali-
zation of the relation between symmetry and thermodynamics—we will
argue that symmetries can be regarded as a locus of control within the
control theory approach to thermodynamics. This approach also has
important practical consequences, as there are many possible technolog-
ical applications of symmetry-based thermodynamical control.

There is a longstanding tradition of understanding thermody-
namics not as a true theory of dynamics but as a practical description
of the ways in which agents can manipulate thermodynamical systems.
The role of agents in thermodynamics was famously highlighted by
Maxwell, who observed that if a diminutive “sentient being” could
control things on the level of fundamental particles, perhaps we could
escape some of the more burdensome consequences of the second law.
The idea that thermodynamics is a theory about the abilities of agents
to manipulate systems was subsequently championed by Jaynes3 and
later byWallace4 andMyrvold.5

Myrvold’s approach reinforces the fact that our thermodynamic
descriptions typically assume that the certain controllable external
parameters are exogenous, meaning that we take it that these variables
have an effect on the system we are studying, but we disregard any
effects of the system we are studying on the variables. For example,
when we place an external heat bath next to a thermodynamical sys-
tem, we take it that the heat bath is infinite, so the thermodynamic
system will change in temperature to reach the temperature of the
adjacent bath, but this does not have any impact on the temperature
of the bath. Myrvold notes that this is always an idealization made for
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the purpose of calculation; in many real situations, it is a good idealiza-
tion since the effect of the system on the external variables is negligible,
but in cases where the system has a non-negligible effect on the con-
trollable variables this assumption may lead to errors in the long term.
We will see an example of such a case in Sec. IIIC.

In Wallace’s account, it is shown that “by treating [any system’s
dynamics, e.g.,] thermodynamics as a theory of transitions between
states resulting from simple controls, one can recover [the system’s
dynamics, e.g.,] thermodynamics if we do not include measurements
which affect subsequent choices of operations [i.e., feedback].” The
control operations Wallace considers consist of “doing things to the
external parameters,” like volume or temperature, such as “(a) smooth
modifications to the external parameters over some finite interval of
time; and (b) leaving the controlled object alone” for a long enough
time for it to reach a new equilibrium. A common realization of these
operations in thermodynamics is to bring two control systems into
physical contact (through, e.g., a diathermic membrane). Wallace
demonstrates that in the absence of feedback, physically possible con-
trol processes are limited to those which induce transitions that do not
lower Gibbs entropy.

While quantum thermodynamics differs from classical thermo-
dynamics in a number of ways, it turns out that the control theory par-
adigm is useful here too, although in the context of quantum
thermodynamics, the control theory paradigm is usually described as a
“resource theory.”6–8 In formulating a resource theory, we identify cer-
tain operations which are regarded as “free” in the sense that they can
be performed without using external resources, and then, we identify
the set of all states which can be prepared using only those operations
as free,—all other states are then regarded as a “resource.” For exam-
ple, in the resource theory of quantum thermodynamics, which applies
in the regime of a small number of particles interacting with a heat
bath, we might identify the energy-conserving operations as free, and
thus for a heat bath held at some fixed temperature, the free states con-
sist of those that are in thermal equilibrium with the bath. The
resource theory then characterizes which state transitions are possible
using only the free, energy-conserving operations. Again, it is clear
that this description is to some degree agent-relative, since the set
of free operations is typically supposed to coincide with those oper-
ations that the relevant class of agents can easily perform. The
resource theory formulation then enables us to formulate an analog
of the second law for microscopic quantum systems: it turns out
that we obtain not just a single constraint on entropy changes in
possible transformations but an entire family of constraints, each
of which can be regarded as a variant of the second law;9 and in
this case, these “second laws” are explicitly derived not just from
the dynamics of the system itself but from the way in which the
resource theory limits possible operations.

A valuable approach to making these insights quantitative is
afforded by the thermodynamic length, which measures the distance
between equilibrium thermodynamic states, which defines a metric on
the equilibrium states.10 Thus, rather than simply asking questions
about transitions that thermodynamical systems will spontaneously
undergo, we can consider exerting finer control by driving the system
along a desired path through the space of equilibrium space. The met-
ric defined by the thermodynamical length can then be used to answer
questions about the optimality of various such paths—for example, it
can be shown that the protocols with minimal dissipation are

geodesics of this metric,11 that dissipation is inversely proportional to
the duration of the protocol, and that the optimal protocol is indepen-
dent of duration.12 This methodology can be employed in both classi-
cal and quantum thermodynamics, thus allowing us to determine
more effective ways of exerting control over thermodynamical
systems.

Once we recognize that thermodynamical descriptions are rela-
tivized to a choice of macroscopic parameters and/or free operations,
it should not be surprising that interesting new thermodynamics can
arise when we identify and learn to control some new sort of macro-
scopic parameter and/or add a new operation to our set of free opera-
tions. In this paper, we will argue that symmetries can be used in this
way. In Sec. III, we will explore aspects of the role of symmetry in ther-
modynamics by studying some relationships between symmetry and
entropy, and we will argue that symmetry is best understood as a
means of control within the control theory paradigm. In Sec. IV, we
will see an example where symmetries are used as a way of accessing
and controlling phase properties of a thermodynamic system via quan-
tum symmetry-protected states.

II. SYMMETRY-PROTECTED STATES

In this section, we briefly review the physics of symmetry-
protected states, which will play an important role in our discussion.
The study of quantum entanglement has given rise to a rich under-
standing of the structure of several classes of entangled states. We typi-
cally distinguish between short-range entanglement (SRE),13 which
refers to entangled states which can be transformed into direct product
states using only local unitary transformations, and long-range entan-
glement (LRE), which refers to entangled states that cannot be trans-
formed into direct product states unless we act globally on the whole
system. In a gapped quantum system with no symmetries, all SRE
states can be transformed into one another using reversible transfor-
mations with no energy cost, so we say that they all belong to the same
phase, but in a gapped quantum system with symmetry, there are dif-
ferent classes of SRE states which cannot be transformed into one
another using local unitary transformations; thus, they belong to dif-
ferent phases. Any Hamiltonian in a symmetry-protected phase can be
reversibly transformed into a Hamiltonian whose ground state is a
product state, but only if the relevant symmetry can be broken during
this transition. Both the symmetry-protected state and the product
state respect the symmetry, but they are separated by a “symmetry
barrier”—i.e., a wall of states that do not respect the symmetry. We
have to pass through the symmetry barrier to get to the product state,
so as long as the symmetry cannot be broken, the entanglement will
remain robust. Thus, we refer to these states as “symmetry protected
topological states” (SPTS). Well-known examples of SPTS include the
1D Haldane phases for a chain of spin-1 systems,14 and topological
insulators.15 A symmetry barrier of this type may be compared to the
“energy barrier” that exists in a classical meta-stable state, as with
excited nuclear isomer states of certain radioisotopes;16 however, in
the case of the energy barrier it is necessary to input energy to over-
come the barrier, whereas in the case of the symmetry barrier, in prin-
ciple the symmetry may be removed adiabatically so it may be possible
to induce the relevant transition without any input of energy.

For example, in a quantum spin Hall insulator (or “topological
insulator”), the edge states are composed of pairs of states with equal
energy and opposite spin (Kramers pairs):17 the up-spin electrons flow
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in one direction and the down-spin electrons flow in the other direc-
tion. Because the states come in matching pairs, elastic back-scattering
of a left-moving state to a right-moving state or vice versa would break
time-reversal symmetry. Thus, no time-reversal invariant interaction
can cause back-scattering, and therefore, if we assume that the elec-
trons are exposed only to time-reversal invariant interactions, no
back-scattering will occur and therefore electrons will flow unimpeded,
like a current subject to no electrical resistance. Thus, the state is
“protected” by the time reversal symmetry.

However, if a “bath” of nuclear spins is present near the edges
of the system, the nuclear spins are coupled to the edge electrons
by the hyperfine interaction. These hyperfine interactions do not
satisfy time-reversal symmetry, and thus, it becomes possible to
have some elastic back-scattering where a left-moving electron
becomes a right-moving electron or vice versa; every time this hap-
pens, a nucleus spin is flipped. Under these circumstances, the
symmetry barrier can be bypassed, and thus, the state is no longer
protected by the symmetry. In previous experiments on this
topic,18 the spin bath has been provided by impurities within the
topological insulator itself, so it is not subject to external control.
However, since the edge states occur at the physical edge of the sys-
tem, one could also consider providing an external spin bath which
can be brought into diathermal contact with the outside edge of
the topological insulator and subsequently removed; provided the
systems are in close enough contact, then the spins should become
coupled to the edge electrons by the hyperfine interaction and thus
the time-reversal symmetry will be broken. Thus, by manipulating
the spin bath, we should be able to switch back-scattering on and
off. Of course, in reality most topological insulators will have at
least a few impurities, and thus, there will still be some violations
of time-reversal invariance even when the external spin bath is not
present, but by purifying the insulator as much as possible and
then providing a spin-rich material as an external spin bath, one
could nonetheless switch between a high degree of time-reversal
invariance and a significantly lower degree of time-reversal invari-
ance. We will assume that adding or removing the spin bath can be
performed adiabatically (i.e., no exchange of energy occurs during
this process). In general, adiabatic transformations cannot lower
the entropy of a state, and indeed, we will see that this is the case in
this instance.

Similarly, it has been shown19 that topological states can be pro-
duced by shining monochromatic circularly polarized light on a semi-
conductor quantum well. By tuning the form of the periodic
modulation of the light, we can control the symmetries present,
switching from an insulating state protected from back-scattering by a
time-reversal symmetry to an unprotected state where back-scattering
can occur. Thus, by controlling the symmetries we also control the
spectral properties of the edge state. This method has some practical
advantages over the spin bath approach, since photon polarization is
easier to manage than nuclear spin. It is, however, less clear that shin-
ing light on an insulator can be achieved adiabatically, but we will
assume that energy transfer is minimal, so the process is still effectively
adiabatic. Based on these examples, we think it is reasonable to treat
the time-reversal symmetry of systems of this kind as a parameter
which is subject to external manipulations; let us now see what kinds
of role symmetry-based control might play in the thermodynamics of
these systems.

III. SYMMETRY IN THERMODYNAMICS

We have argued that symmetries may play a role in the thermo-
dynamic description of a system; in this section, we will demonstrate
this by exploring the relationship between symmetry and entropy. For
classical cases, we will employ the Boltzmann entropy, which is given
by the formula �kB ln ðHÞ, where H is the number of microstates
which are compatible with the known macrostate of the system,3

where a “microstate” of a system is defined by giving the position and
state of each of the individual particles in the system (in most classical
cases, the “state” will simply be the momentum, but other properties
like spin may also be relevant), and a “macrostate” is defined by the
values of the chosen macroscopic parameters, so in general, a single
macrostate is associated with many possible microstates. For example,
putting the same quantity of gas in a larger box will increase the
entropy since there are more possible positions for the gas molecules
compatible with the same macrostate. For quantum cases, we will
employ the von Neumann entropy, which is given by the formula
�kBTrðq ln ðqÞÞ, where q is the quantum state of the system. The defi-
nition uses the trace function because trace is an invariant property of
a matrix of this class; note that this entails that the von Neumann
entropy of a pure quantum state is always zero. Technically speaking,
the von Neumann entropy is the quantum analog of the Gibbs entropy
rather than the Boltzmann entropy,15 but we employ the Boltzmann
entropy here because the connection between symmetries and
Boltzmann entropies is conceptually clearer and more easily illus-
trated. Since the Gibbs and Boltzmann entropies are equivalent in a
wide variety of important cases (including whenever the systems in
question are in equilibrium20), our conclusions are likely to generalize
to the Gibbs entropy in most circumstances, although no doubt there
will be a few interesting exceptions.

It will be important for us to distinguish between symmetries of
states and dynamical symmetries.21,22 We use the term “symmetry of
state” to refer to the group of invertible automorphisms on the space
of microstates of a system which do not change the macrostate of the
system (where an “automorphism” is a structure-preserving mapping
from an object to itself—in this case, from the set of microstates to the
set of microstates). Symmetries of state are, therefore, instantaneous
properties of an individual macrostate, and we will say that for a given
system, one macrostate is more symmetric than another if the associ-
ated symmetry group is larger. We will use the term “dynamical
symmetry” to refer to the group of transformations which map solu-
tions of the equations of motion of a system into other solutions: for
example, in the topological insulator without spin bath, time reversal
is a symmetry of the system since a time-reversed solution is still a
solution. Dynamical symmetries are thus properties of the laws by
which the system evolves and not of individual states; when a system
is subject to a dynamical symmetry, we know that the only possible
evolutions are evolutions which obey the relevant symmetry, so for
example, in the topological insulator case all allowed dynamical evolu-
tions must be time-reversal invariant. We will now consider each of
these types of symmetry in turn and discuss how they relate to classical
and quantum entropy measures.

A. Symmetries of state

Because entropy is a function of state, it is natural to suppose that
symmetries of state will have a direct impact on the entropy associated
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with a state. In particular, symmetry may in some cases be regarded as
a macroscopic parameter of the system or may have a direct quantita-
tive relationship with some macroscopic parameter, and thus, includ-
ing symmetry properties in the definition of the macrostate will often
have an effect on the quantitative value of the entropy.

1. The classical case

Suppose we have a set of n particles whose macrostate is
fully defined by the net polarization p, which is equal to the number
of spin up particles minus the number of spin down particles, i.e.,
u ¼ n=2þ p=2 where u is the number of spin up particles. Clearly,
the number of automorphisms in the symmetry group for the macro-
state of polarization p is given by the number of microstates compati-
ble with the macrostate of polarization p, which is equal to

n!
ðn=2þ p=2Þ!ðn=2� p=2Þ :

Moreover, the Boltzmann entropy of the system at polarization p
is equal to the logarithm of this number, and therefore, states with a
larger symmetry group are also states of higher entropy. In particular,
the “most symmetric” state is the one where the number of spin up
particles is equal to the number of spin down particles, which is also
the highest entropy state. Moreover, this relationship between symme-
try and entropy is not merely a quirk of one particular case, because it
follows directly from the combinatoric features of any problem involv-
ing assigning properties to individuals that the number of automor-
phisms in the symmetry group associated with a given macrostate is
equal to the number of different possible microstates compatible with
that macrostate, so in general, states which are more symmetric in this
sense will have higher Boltzmann entropy, and the highest entropy
state will be the most symmetric state.

This makes it clear that the “order” involved in symmetries of
state and the order which entropy is supposed to measure the absence
of are in a sense inverses of one another: the entropy measure takes
highly non-uniform states to be “ordered,” whereas from the point of
view of the symmetry group description, highly uniform states are
more ordered. The control theory paradigm gives a crisp way of
understanding these different perspectives on the nature of order,
because in the control theory approach, entropy is intended to the
absence of the type of order which we are able tomake use of to imple-
ment various thermodynamical transformations. In general, the use-
fulness of order in thermodynamics lies in the fact that it allows us to
control and accumulate microscopic fluctuations in order to do useful
macroscopic work, and heuristically speaking, accumulating fluctua-
tions involves arranging that the fluctuations should all “point in the
same direction” so their effects sum rather than canceling, which in
general requires decreasing the size of the symmetry automorphism
group. For example, in the simple example above, we can use the spins
in the system to achieve macroscopic effects only if a significant num-
ber of spins are pointing in the same direction, so that a net macro-
scopic polarization is produced. Similarly, in the example of the
topological insulator, we achieve a net macroscopic current at the edge
only if the number of left-movers is significantly greater than the num-
ber of right-movers or vice versa. So from a thermodynamic point of
view, it is asymmetry which is generally of practical value to us: the

more balanced a system is, the more difficult to extract work from the
energy of its microscopic fluctuations.

Moreover, the observation that states with a large symmetry
group have high entropy provides an interesting link between Curie’s
principle and the second law of thermodynamics. Curie’s principle
states that an asymmetry in an effect must be produced by an asym-
metry in the cause.23 This principle remains the subject of debate, and
there are a few putative counterexamples,24 but nonetheless, it is a
good heuristic which is true in many circumstances. In fact, the con-
tent of Curie’s principle is quite similar to the second law of thermody-
namics: it tells us that asymmetry cannot increase over time, or
correspondingly, symmetry cannot decrease over time, which is
exactly what we would expect based on the observation that, in gen-
eral, states with higher entropy are also more symmetric. Thus, as
noted by Rosen,25 for certain sorts of symmetries (i.e., those which are
associated with a group of automorphisms on microstates) the fact
that symmetry is in general non-decreasing can be understood as a
consequence of the fact that entropy is in general non-decreasing, and
thus, the relationship between entropy and symmetry provides a quan-
titative justification for Curie’s principle for these cases.39

That said, it is also important to observe that there is an alterna-
tive point of view in which symmetries decrease entropy. Consider
another type of case where we take a system and impose some symme-
try as an external constraint on that system. In general, this will have
the effect of decreasing the Boltzmann entropy, since the set of states
obeying the symmetry is a proper subset of the whole set of micro-
states S. For example, in the case of our spin system of n particles, if
we originally have no information about the value of p and we then
apply an external constraint which resets the polarization to zero, the
Boltzmann entropy will actually decrease, since the number of micro-
states compatible with the more constrained macrostate is smaller. So
in fact one and the same symmetry of state can have the effect of
increasing or decreasing entropy, depending on whether we are (1)
moving from a specific set of non-symmetric microstates to a disjoint
set of symmetric microstates, in which case entropy will typically
increase, or (2) we are moving from an entire state space to a proper
subset of symmetric microstates, in which case entropy will typically
decrease. However, it should be reinforced that in the latter case the
entropy decreases not because of any specific properties of the symme-
try, but simply because we have imposed some constraint which nar-
rows down the state space—moving from an entire state space to a
particular subset of non-symmetric microstates will have the same
effect.

2. The quantum case

The von Neumann entropy and the Boltzmann entropy are
equivalent in many circumstances,26 and thus the conclusions we
have drawn above also apply to many quantum systems. For exam-
ple, cases where we have classical uncertainty are typically trans-
lated to mixed quantum states, with classical probabilities
transformed into coefficients in a convex decomposition: so, for
example, for our n-particle spin system with polarization p, the
appropriate quantum analog might become an equally weighted
sum of all of the n!=ðn=2þ p=2Þ!ðn=2� p=2Þ pure states in which
exactly n=2þ p=2 spins are up and the remainder are down. The
von Neumann entropy of this arrangement would then be equal to
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the Boltzmann entropy of the original classical system, and thus,
we will see the same relationships between entropy and symmetry
as we saw in the classical case.

However, this representation assumes that the n particles are all
distinguishable (for example, because they are labeled by their posi-
tion in some sort of lattice). An alternative quantum representation of
this case would regard the particles as indistinguishable, which means
that rather than having n!=ðn=2þ p=2Þ!ðn=2� p=2Þ distinct pure
states, we would be working with a single pure state which consists of
n=2þ p=2 up spins and n=2� p=2 down spins, with nothing further
to be said about which particular spins are up or down. In this setting,
each polarization is associated with only a single possible (pure)
microstate, and therefore, all the polarization macrostates have
entropy equal to zero, so symmetry or asymmetry is irrelevant. Thus,
the conclusions we have drawn about the relationship between
entropy and symmetry still hold in quantum thermodynamics, but
only insofar as the symmetry or asymmetry properties are understood
as constraints on classical uncertainty, rather than constraints on a
pure quantum state. Put simply, the reason symmetries of state are
associated with high entropy is that they typically engender high
uncertainty about which particles have which properties, but when
we are dealing with a pure quantum state, there are in general no
objective facts about which particles have which properties, and this
severs the link between symmetry and uncertainty.

B. Dynamical symmetries

Let us now consider the effect of dynamical symmetries on
entropic descriptions. Since entropy is a function of state which is
blind to dynamics, one might think that dynamical symmetries
would be irrelevant to the entropy of a system. However, there is a
relationship between symmetries of state and dynamical symme-
tries, because dynamical symmetries are frequently linked with
variational symmetries, which are groups of infinitesimal transfor-
mations of variables under which the action of the system is
invariant.40 From Noether’s first theorem, if a system obeys a con-
tinuous global variational symmetry, then it must have a conserved
quantity,27 and this conserved quantity may sometimes function to
preserve a symmetry of state. For example, symmetry under trans-
lations leads to the conservation of momentum, so if a state exhib-
its some symmetry with regard to momentum (e.g., the total
momentum of system A is equal and opposite to the total momen-
tum of system B, which is not interacting with A), the dynamical
symmetry works to ensure that the relevant symmetry of state con-
tinues to hold.

In the case of the topological insulator, there is no conserved
Noether quantity corresponding to the time reversal symmetry,
because time reversal symmetry is not a continuous symmetry (there
are only two possibilities for the direction of time, so there is no con-
tinuous parametrization) and therefore Noether’s theorem does not
apply. However, it is nonetheless true that in this case the dynamical
symmetry is related to a symmetry of state, because the dynamical
symmetry prevents back-scattering and thus if we start out with the
number of left-movers equal to the number of right-movers, these
numbers will continue to be equal throughout the dynamical evolu-
tion. We will now examine these effects in greater detail for the classi-
cal and quantum case.

1. The classical case

We have seen that, in general, the effect of imposing a dynamical
symmetry on a system is to conserve some features of the original state
by limiting the possible evolutions that the system can potentially
undergo so that its microstate is limited to some region R of state
space. Thus, removing a symmetry will allow access to a region R0 of
state space which was previously forbidden. The effect of this process
on the long-run entropy will depend on the nature of the regions in
question: for example, if a system is prepared in such a way that it
exhibits some symmetry of state, and it is subject to some dynamical
symmetry which conserves that symmetry of state, removing the
dynamical symmetry may allow the system to reach less symmetrical
states which have lower entropy. Thus, in this instance removing the
dynamical symmetry may be the precursor to a decrease in entropy.
For example, in the case of the topological insulator, the system is able
to move from the higher-entropy symmetrical states to the lower-
entropy states with the number of left-movers not equal to the number
of right-movers. (Of course in this scenario it is also necessary to input
some energy to effect this transformation, and this is likely to be the
case in similar examples, since transitions to lower entropy states do
not typically happen spontaneously.)

On the other hand, if a system is prepared in a low entropy state,
the dynamical symmetry may instead function to preserve the system
in the low entropy state until such a time as the dynamical symmetry
is removed and the system can evolve toward the higher entropy state.
This effect could also be achieved with the topological insulator if it
were possible to remove the spin bath and thus restore the time-
symmetry after some back-scattering has occurred: the low entropy
state with the number of left-movers not equal to the number of right-
movers would in principle be preserved until time-symmetry could be
broken again.

Note that the preceding discussion assumed that the region of
state space R0 made accessible by removing the dynamical symmetry is
macroscopically distinct from the region R in which the state is con-
strained to lie for as long as the symmetry holds, so these two regions
of state space are associated with distinct macrostates. In the topologi-
cal insulator, the states in the region R0 made accessible by back-
scattering have nonzero edge current and polarization, so they are
macroscopically distinct from states in region R which all have zero
edge current and polarization. However, it was noted in Sec. I that, in
general, we have some freedom of choice about which macroscopic
parameters are considered relevant, so we can also consider a similar
case where R0 is regarded as having the same values of the macroscopic
parameters as R. For example, in the topological insulator case we
could declare that polarization and edge current should be left out of
the macroscopic description of the state (e.g., because in our lab we
have no instruments which can measure them). Thus, in this case,
removing the dynamical symmetry and then allowing the system to
undergo free evolution has the effect of increasing the number of
microstates compatible with the known macrostate, so the effect of
breaking the symmetry is always to increase the entropy of the system,
regardless of the nature of the states in R and R0.

It is important to reinforce that dynamical symmetries forbid
transitions, not states in-and-of themselves, and thus in the case we
have just considered, a dynamical symmetry can forbid the state from
moving from R to R0, but the symmetry in-and-of-itself does not rule
out any of the states in R and R0. So if the information available to us
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about the system consists only of the values of the relevant macro-
scopic parameters and the fact that the relevant dynamical symmetry
currently applies, all of the states in R and R0 are compatible with the
known macrostate, and the entropy will not increase when we remove
the symmetry (removing the symmetry widens the range of possible
evolutions but not the number of microstates compatible with our
information). This demonstrates that the increase in entropy induced
by removing a symmetry is in part a function of our knowledge of the
history of a system; in the topological insulator case we are confident,
based on theoretical arguments, that the original state has equal num-
bers of left-movers and right-movers, even though we have not given
ourselves access to macroscopic parameters which could confirm that,
so we are able to say that removing the symmetry strictly increases the
number of microstates compatible with our information about the sys-
tem, even though the new microstates still have the same values of the
macroscopic parameters.

It is also natural to ask whether adding the symmetry back in
decreases the Boltzmann entropy. This would be surprising, because
typically we expect that adding and removing a symmetry can be
achieved adiabatically (e.g., adding and removing a spin bath is an adi-
abatic process), and adiabatic transformations cannot decrease entropy
in classical thermodynamics. However, as a matter of fact removing
the symmetry does not change the Boltzmann entropy. This is because
prior to removing the symmetry, the system could be anywhere in Ror
R0, and after removing the symmetry, it could also be in either R or R0,
under the assumption that we have no access to macroscopic parame-
ters which would distinguish these two regions. So the entropy actually
remains the same, because all of the same states remain compatible
with the macrostate; we are just in the slightly unusual situation where
we know that the system is confined by the symmetry in some region
of the state space which is smaller than the region which is compatible
with the current macrostate. The reason the entropy increases when
we remove the symmetry but simply stays the same when we put the
symmetry back in is not really to do with the dynamical or thermody-
namical properties of the system at all, but is simply a function of our
knowledge about the history of the system. In fact it is often argued
that this sort of effect is to some extent responsible for the increase in
entropy over time:28 in general, we know the most about the state of a
system when we have deliberately prepared it in a particular state, and
when we subsequently allow it to evolve, we lose information as it may
evolve away from the region we initially selected. Removing the
dynamical symmetry is in this sense precisely analogous to removing
the partition in the textbook example where a gas is confined in one
half of a box and we then remove the partition: as we allow the gas to
disperse through the box, we lose information about its state and thus
the entropy increases.

This is also an interesting example of a case where the Boltzmann
entropy fails to fully capture the information that we have about the
microstate of a system, because it does not distinguish between the
case where the system can evolve freely between the microstates com-
patible with the current macrostate and the case where we can parti-
tion this set of microstates into subsets such that we know the system
is confined to one of these subsets but we cannot find out which subset
it is confined to. Clearly, there is a sense in which we have much more
information in the latter case than the former, since we can rule out
all the trajectories for the microstate which do not remain within a
single subset throughout the time of observation; thus, the possible

microscopic evolutions of the system are much more limited.
However, the Boltzmann entropy is not capable of quantifying the
extra information we have in the latter case, as it characterizes only
our (lack of) knowledge of the instantaneous microstate of the system,
and not our (lack of) knowledge of trajectories though the state space.
This is an important reminder that the entropic description does not
necessarily exhaust all the information that we have about the
system—it is simply intended to capture all the information that is
useful from the point of view of thermodynamics, i.e., information
that we can use to control the system in useful ways. A similar effect
can be achieved in the case of the gas in a box by removing the parti-
tion, allowing the system to equilibrate, and then closing the partition
again: now we know that the ratio of the volume of gas on one side to
the volume of gas on the other side must remain constant over time,
but we have no new information about what that ratio is, and thus the
insertion of the partition does not change the entropy of the system
even though in a sense we do have extra information. The gas in the
box case has been well explored in the literature29,30 (it was first for-
mulated in the 1870s31), and thus, we can say with some confidence
that the extra information available in this case does not allow the con-
struction of a Maxwell’s demon or other violations of the law of ther-
modynamics, and presumably the same is true in the case of the
dynamical symmetry, though it might nonetheless be interesting to
consider if this special effect could be leveraged for some new techno-
logical applications.

2. The quantum case

Of course, the topological insulator is in fact a quantum system,
so the preceding analysis should really be performed in terms of the
von Neumann entropy. Much of the preceding analysis will also carry
over directly to the quantum case. The von Neumann entropy is a
function only of the instantaneous state, so it is clear that changes in
dynamical symmetries will not instantaneously alter the von
Neumann entropy—for example, simply adding a spin bath to our
topological insulator does not instantaneously change the quantum
state (and in general no significant changes will occur until we add a
charging current), and thus, the von Neumann entropy remains the
same. However, by changing the set of allowed evolutions, we do
change the set of states which can be reached, and thus when the state
space is extended over spacetime, changes in dynamical symmetries
will have an effect on the von Neumann entropy if some of the states
that have become accessible have different von Neumann entropies
from the original state. As before, if we are dealing with a case where
classical uncertainty over different possible microstates is translated
into a convex decomposition over pure states, then the von Neumann
entropies will be equal to the Boltzmann entropies and thus the same
conclusions will apply.

On the other hand, if classical uncertainty is translated to a single
pure state, we will get different results. In the topological insulator, we
typically regard the edge particles as indistinguishable, so states can be
labeled by the difference in the number of left and right movers, but
there is nothing further to be said about which particles in particular
are moving left or right. When the time symmetry is removed the edge
states become coupled with the spins in the spin bath and thus
although the state of the system as a whole remains pure, the reduced
state of the edge particles becomes more mixed and therefore the

AVS Quantum Science ARTICLE scitation.org/journal/aqs

AVS Quantum Sci. 4, 022001 (2022); doi: 10.1116/5.0065442 4, 022001-6

Published under an exclusive license by AIP Publishing

 11 August 2023 16:29:20

https://scitation.org/journal/aqs


entropy of the edge particles actually increases in this process, even
though the state is becoming “less symmetric.” This is again a conse-
quence of the fact that the indistinguishability of particles in pure
quantum states severs the link between symmetry and uncertainty—
since there is no fact of the matter about which edge particles are going
which way in the original edge state, the high degree of symmetry of
this state does not lead to high uncertainty, and thus, the symmetry of
this state makes no contribution to its entropy.

C. Symmetries as a means of control

The preceding discussion makes it clear that neither symmetries
of state nor dynamical symmetries are equivalent to order as measured
by either the Boltzmann or von Neumann negentropy. Indeed, sym-
metries of state are in some sense exactly the opposite of the order
measured by negentropy, and thus, highly symmetrical states are often
undesirable in thermodynamics as they make it more difficult to accu-
mulate microscopic fluctuations. However, we have seen that manipu-
lating symmetries of state and/or dynamical symmetries can be used
as a way to either decrease or increase entropy, depending on the cir-
cumstances and the set of relevant macroscopic parameters. This leads
us to an important moral: symmetries cannot typically be regarded as
a thermodynamical property akin to temperature, pressure, heat
capacity and so on. Rather the most perspicacious way to understand
the role of symmetries in thermodynamics is to see them as a control-
lable feature within the control-theory paradigm. Symmetries—and in
particular dynamical symmetries—are relevant to a thermodynamical
description insofar as they can be used to preserve and/or control the
features that are relevant to thermodynamical descriptions, like the
other sorts of control operations that Wallace describes in his presen-
tation of the control theory approach to thermodynamics.4 For exam-
ple, in a topological insulator, ensuring that there is no spin bath
present entails that the system will remain in the high-entropy state
with n¼ 0 and will not gain an edge current or polarization even if we
attempt to charge it up.

As with the other “control operations” employed in control the-
ory approaches to thermodynamics, dynamical symmetries are a prop-
erty of the external constraints on a system, not of the system itself,
since changing the symmetries of a system does not instantaneously
change the state. Indeed, it is usually reasonable to regard dynamical
symmetries or the lack thereof as exogenous variables. In the topologi-
cal insulator case, if the size of the spin bath is effectively infinite rela-
tive to the number of electrons in the edge state, then the time-reversal
symmetry can be regarded as an exogenous variable: adding the spin
bath has an effect on the edge state (by permitting back-scattering) but
we do not need to consider the effect of the edge state’s behavior on
the spin bath. However, if the spin bath is finite some care is required
because each instance of backscattering uses up one of the spins, and
therefore, after a certain amount of back-scattering we will run out of
spins and thus back-scattering will again be forbidden. So in the finite
case, it is not simply a matter of switching the symmetry on and off:
rather we exert control by providing a finite resource which can be
used up. This is in fact directly analogous to the standard thermody-
namical use of heat baths: when we provide a heat bath to change the
temperature of the system being studied, we typically assume that the
bath is effectively infinite so its temperature remains the same while it
provides heat to the system or absorbs heat from the system; but of
course in real life heat baths are finite and their temperature will

eventually change as they provide or absorb heat. The difference is
that in the case of the topological insulator, only the spins adjacent to
the edge can affect the symmetry, so there is in fact a strong limit on
the size of the bath, making the idealization of infinite size inaccurate
in certain circumstances.

We have seen that the precise relationship between symmetry
and entropy depends on a variety of factors, including the type of sym-
metry, the type of entropy, and crucially, which regions of state space
are regarded as macroscopically distinct and what we know about the
history of the system. This is to be expected, because we have argued
here that both entropy and symmetry have epistemic aspects, since
they are features not only of systems in and of themselves, but also of
our knowledge of those systems—for example, dynamical symmetries
serve to delineate a set of possible transitions, but of course a system in
a fixed microstate at a fixed time will actually undergo exactly one
transition, so the relevance of the set is in large part to characterize
what observers who do not know the exact microstate can infer about
the evolution of the system. Thus, we should not expect to be able to
write down a straightforward mathematical relationship between the
symmetry increasing/decreasing aspects of a manipulation and its
thermodynamic properties: such a relation would also have to take
account all the various possibilities for an observer’s knowledge of a
system and its history, and would therefore become a very complex
three-way relationship between the system, the external constraints,
and the knowledge of the observer, but the fact that the relation
between symmetry and thermodynamics is complex does not under-
mine our observation that the thermodynamic relevance of symmetry
is primarily as a means of control. This observation is particularly
important given growing interest in the control theory paradigm of
thermodynamics—symmetries are not mentioned as a possible means
of control in any of the articles that we have cited on the subject, and
yet we have seen here that they offer interesting possibilities in this
regard, so we consider that symmetries may be a promising area for
future research in this field.

Moreover, we see great potential for novel technological applica-
tions once it is recognized that symmetries provide us with new ways
of exerting control over thermodynamical systems. For example,
symmetry-protected states are a particularly useful way of making use
of the order inherent in quantum entanglement, because they provide
a convenient middle ground between simple entangled states and
topologically ordered states. Ordinary entangled states like two-
particle Bell states are very unstable because they can be disrupted by
arbitrary local perturbations, and thus they are not sufficiently reliable
for use in thermodynamical applications. By contrast, topologically
ordered states32 (which involve a stronger form of order than
symmetry-protected topological states) are too stable for many ther-
modynamical applications—the topological phase cannot be changed
by any local perturbation whatsoever, which makes it difficult to access
and make use of the order inherent in the system in any thermody-
namical context, but with symmetry-protected topological states, we
can change the phase with a local perturbation if the relevant symme-
try is turned off, so we can access and make use of the system’s order
by controlling the symmetries of the system, but nonetheless, the state
can be held in a meta-stable state for long periods of time when the
symmetry remains switched on. Moreover, because symmetry-
protected topological states require only short-range entanglement,
they are easier to produce than full topologically ordered states, and
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therefore, technology based on such states is much more accessible
today.

Some steps have already been taken toward implementing
symmetry-based control of thermodynamic systems. For example,
Ref. 33 has experimentally demonstrated the decrease in entropy asso-
ciated with the removal of a symmetry by measuring the heat dissi-
pated when a Brownian particle transitions from a single-well to a
double-well potential; this article focuses on spontaneous symmetry
breaking, but in fact in practice the manipulation of an optical trap is
employed to bring the symmetry-breaking under the control of the
experimenters, thus providing a clear good demonstration of the possi-
bilities for symmetry-based control within the control-theory para-
digm. Meanwhile, Ref. 34 has shown theoretically that controlling the
symmetries of thermoelectric materials can make it more efficient. In
particular, they introduce an “asymmetry parameter” quantifying the
degree of symmetry-breaking, and demonstrate that as the asymmetry
parameter becomes it is possible to overcome the Curzon–Ahlborn
limit within linear response and to reach the Carnot efficiency even if
the usual figure of merit for thermoelectric materials is small. These
projects provide a proof-of-principle that symmetry-based control can
have practically useful applications, but there is a much wider space of
possibilities yet to be explored, and thus, we anticipate that symmetry-
protected states will be a fruitful domain for future investigations into
new technologies employing quantum thermodynamics.

IV. APPLICATION: COHERENCE CAPACITOR USING
SYMMETRY-PROTECTED STATES

In this section, we describe a concrete application of symmetry-
based control using symmetry-protected topological states—specifically,
we show how to use symmetries to construct a coherence capacitor
(CC). Acting in concert with a quantum heat engine (QHE), a coher-
ence capacitor is a source of power (such as electrical power on a mac-
roscopic level or kinetic power on a microscopic level) whose
efficiency exceeds classical thermodynamic limits and whose storage
capacity can greatly exceed electrochemical or mechanical batteries of
identical mass. It is also a safe source of power, being immune to unin-
tentional energy releases such as frequently occur in chemical storage
systems such as lithium-ion batteries.

To understand the significance of coherence capacitor concepts,
we first start with an abstraction revealing the importance of superlin-
ear scaling and then discuss how “low -quality” energy from the envi-
ronment is converted to work using the information35 in the
coherence capacitor as a resource.6 Finally, we discuss a practical
implementations of the coherence capacitor which makes use of sym-
metry as a means of control.

A. Information content of a graph

A coherence capacitor in its ideally abstracted form can be con-
ceived as a graph, a set of nodes connected by edges. The nodes of the
graph represent physical entities, such as atoms, molecules, or qubits
of some sort; the edges represent our resource, connections between
these entities, such as a quantum correlation only possible in a coher-
ent system. The nodes, therefore, are massive; the edges are massless
but contain information (the absence or presence of an edge between
two nodes is analogous to a bit in a state 0 or 1).

The number of edges in a fully connected or complete graph of n
nodes is

nðn� 1Þ
2

;

which scales as n2 in the limit of large n. This superlinear scaling in
number of edges represents a similarly superlinear scaling in the infor-
mation content of the graph, so that the specific information (informa-
tion per unit mass) contained in the graph is not constant but
increases with the graph size.

It is nearly certain that in practical graph implementations, dis-
tance or shielding effects will disallow to some extent the ability of a
sufficiently large graph to be fully connected; but even on graphs
where such a limit is active, it is likely that the scaling will be superlin-
ear in some fashion (nb, where b > 1). As will be shown in Sec. IVB,
it is superlinear scaling of information content that makes a coherence
capacitor interesting as a quantum thermodynamic system.

B. The coherence capacitor as a source of work

The combination of a store of information or negentropy (the
coherence capacitor) and an engine capable of converting that infor-
mation to useful work (the Quantum Heat Engine) represents a pow-
erful method of harvesting ambient energy that is inaccessible to
conventional heat engines. Whereas classically the “quality” of the
heat processed by an engine depends on the ratio of the temperatures
of the “cold” and “hot” reservoirs (giving rise to the Carnot efficiency
gc ¼ 1� Tc=Th), the CCþQHE combination can avoid this metric
altogether by introducing negentropy as a consumable resource, ren-
dering all heat of equal quality. This allows the QHE to exceed the
Carnot efficiency when also consuming information;36 in the limiting
case, the CCþQHE combination can generate work from a single tem-
perature reservoir.

The work generated by a QHE in excess of that allowed by the
Carnot limit is work undiscoverable classically and arises as a result of
the information stored in the CC. To distinguish this additional quan-
tity of work, and to allow a statement of the utility of the CC, we call it
“quantum-accessible” work; that is to say, it is work that is only acces-
sible through a proper quantum-mechanical mechanism. In the limit
of a CCþQHE operating on a single heat bath, the entire work output
of the quantum thermodynamic process consists of quantum-
accessible work extracted from the maximal-entropy heat of the bath.

The quantity of quantum-accessible work associated with a quan-
tity of information is given by Landauer’s principle,37

L ¼ kbT ln 2;

in which T is the temperature of the reservoir, kb is Boltzmann’s con-
stant, and L is the quantum-accessible work associated with a single
bit of information. Greater work can, therefore, be extracted when the
QHE is operating in a higher-temperature environment, as should be
expected; and the quantum-accessible work accessible by the informa-
tion in a CC is not constant but is environment-dependent. (This con-
trasts with other methods of energy storage and retrieval, such as
electrochemical batteries, which have environment-independent out-
put characteristics—within operational limits.) Also, with constant
quantum-accessible work per bit of information ‘, the benefit of the
superlinear scaling of Sec. IVA is clear: the information content and
the quantum-accessible work both increase more quickly than the
mass of the physical realization of the CC. This also contrasts posi-
tively with electrochemical energy storage devices, which have a
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constant energy per unit mass � and therefore which increase in energy
content proportionately to an increase in mass.

C. Physical realizations and their scaling

There are two salient features of a CCþQHE system that should
be realized in practice in order to make a practical power source. The
first, and sine qua non, is the ability to extract work from the environ-
ment which beats the efficiency performance of classical counterparts
by utilizing information as a resource. This means that these systems
should appear to exceed the Carnot efficiency as traditionally defined
using equilibrium temperatures. It is possible to carefully define ther-
modynamic empirical temperatures for the working fluid so as to
come up with a generalized quantum Carnot bound which will not be
exceeded by the quantum device, but the important point is that the
quantum device should exceed the classical Carnot bound as it would
traditionally be defined for a classical counterpart. The second condi-
tion, highly desirable but not necessary, is that the scaling of the
extractable quantum-accessible work be superlinear with increasing
CC mass. The first condition ensures that the CC has technological
benefit to offer that is unique when compared with electrochemical
batteries; the second allows the CCþQHE to perhaps outclass electro-
chemistry as the size of the system increases.

An example realization of the first criterion is given by Ref. 37, in
which the CC and QHE are integrated into a single device. This device
uses a topological insulator as described in Sec. II together with a spin
bath which breaks the time-reversal invariance, as depicted in Fig. 1.
As an example, suppose the electrons moving right on the top edge of
the topological insulator are spin down and the electrons on the top
edge moving left are spin up. If there is no spin-bath present, then
time-reversal symmetry prevents back-scattering, but by including a
spin bath which removes this dynamical symmetry, we increase the
accessible region of phase space and so it is now possible for back-
scattering to occur. On the top edge, an electron scattering from right
to left will produce a spin down nucleus, while scattering from left to

right will produce a spin up nucleus. Suppose the current is flowing to
the left; then there will be more right-moving electrons than left-
moving electrons, so we will get more back-scattering from right to
left, and therefore, the material near the top edge will end up with
more down than up nuclear spins and will thus take an overall nuclear
polarization. Thus, the presence or absence of the dynamical time-
reversal symmetry produces observable changes in the macroscopic
polarization parameter. Heat is dissipated during this process due to
the back-scattering of the electrons. Note that all of this can be
achieved using nuclear spins which are degenerate, meaning that up
and down spins have the same energy, and therefore, the down-
polarized state has the same overall energy as the unpolarized state,
and thus, there is no energy stored in the nuclear spins—this is a
non-energetic memory. However, the process does decrease the
classical Boltzmann entropy of the system, since we move to a non-
zero n state, and this decrease in entropy is the reason why we
need to dissipate heat during the polarization process, so that the
increase in entropy of the environment will balance the decrease in
entropy of the system.

When we remove the applied current, the imbalance in left
and right movers must be preserved, since it is recorded in the
polarization of the nuclear spins. Therefore, we now have more
left-moving than right-moving electrons, so a current flows in the
opposite direction from the charging current. As the current flows
the nuclear spins flip in the opposite direction and the polarization
dissipates, so eventually the number of left-movers and right-
movers will become balanced again and there will no longer be any
net current. If we connect a non-zero bias to the circuit while the
current is still flowing, the current will extract energy from the sur-
rounding thermal reservoirs in order to do work. The device mem-
ory is thus used to convert heat directly to work. However, this
does not violate the second law of thermodynamics, as the entropy
of the device increases as the polarization is lost and thus this
device cannot be operated continuously in a cycle without going
through the polarization phase again.

FIG. 1. Schematic diagram of (a) the CCþQHE system using a topological insulator, (b) the charging phase, and (c) the discharging phase. In the charging phase, an applied
bias current increases the number of right-movers (solid lines) at the edges relative to left-movers. This excess creates a net nuclear spin polarization with opposite values in
each edge. In the discharging phase, even without external bias, the net polarization of the nuclear spins increases the number of right-movers, driving a net discharging cur-
rent to the left. Reprinted with permission from Bozkurt et al., Phys. Rev. B 97, 245414 (2018). Copyright 2018 American Physical Society.39
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Note that the storage capability of this device depends on the
strength of the hyperfine interactions that permit the symmetry break-
ing. If the interaction is strong, the nuclear polarization will be pro-
duced quickly during charging, but will also dissipate quickly, so it will
not be possible to use the device for storage (but it might be suitable as
a capacitor). If the interaction is weak, it will take longer to produce a
nuclear polarization but the polarization will not dissipate quickly, so
we will be able to use the device as a kind of “battery.” In the limit
where the hyperfine interaction goes to zero, in principle the polariza-
tion cannot dissipate at all and thus, the imbalanced edge state will be
preserved. Different materials exhibit different strength of hyperfine
interaction—for example, thin film flakes of 3D topological QSHI
Bi2Te2Se (BTS221) have a fairly weak hyperfine interaction and thus
implementations of this kind require a very strong charging current
but have been experimentally demonstrated to retain a polarization
for several days, whereas InAs/GaSB quantum wells have a much
stronger hyperfine interaction, and therefore, implementations of this
kind are easy to charge but also depolarize quickly.18 Moreover, it is
possible to change the concentration of nuclear spins in InAs/GaSB
quantum wells using magnetic impurity dosing, which offers further
possibilities for controlling the level of symmetry breaking. Thus, by
making appropriate choices for the material of the spin bath, we are
able to exert thermodynamical control over the rate of charging and
discharging of the device, so the choice of material acts as a macro-
scopic parameter which alters the values of thermodynamic quantities
like entropy.

This observation suggests possibilities for a modified version of
the topological coherence capacitor where symmetry is actively manip-
ulated in order to control the system’s behavior. Let us suppose that it
is possible to add or remove an external spin bath; in principle this
would allow us to turn time-reversal invariance symmetry on and off,
thus changing the rate of charging and discharging. Note that when
the system is unpolarized, adding the spin bath is not by itself enough
to prompt the system to evolve to a polarized state: this transition
decreases the entropy of the system and thus we must still provide an
external current to induce it. A more interesting case occurs if the sym-
metry barrier can be removed while the system is in the higher entropy
state, because then the removal of the barrier would be expected to
lead to spontaneous evolution into the lower entropy state without any
further external manipulation. For example, suppose we add the spin
bath and create a polarization, then remove the spin bath to preserve
the polarization, and then at some later time we add the spin bath
again, at which point the system is expected to spontaneously depolar-
ize (and produce a current if there is a load attached). Assuming that
this is technologically possible, it would be an interesting example of a
case where we can induce a spontaneous evolution simply by (adiabat-
ically) altering a symmetry of the system and making no other
changes.

In a weak coupling and short-edge limit, the quantum-accessible
work available from the topological coherence capacitor scales as N2,
where N is the number of nuclear spins; this is the ideal scaling
described earlier for a fully connected graph. However, there is no
identifiable graph-like structure to this implementation, which sug-
gests that the N2 scaling is coincidental and may disappear outside the
limits under which it was derived. In particular, there would seem to
be a significant likelihood that in the thermodynamic (large N) limit,
the scaling will asymptote to a linear behavior. The open question that

remains, therefore, is whether the superlinear scaling can be accessed
in devices large enough to be useful in practical applications, such as
nanoelectronics. The most likely reason for the failure of the topologi-
cal coherence capacitor to manifest superlinear scaling at macroscopic
scales is that the coherences involved are spin coherences rather than
quantum coherences, and the spin coherences are not long-range
interactions and are therefore unlikely to correspond to edges in the
fully connected graph analogy. A theoretical manifestation of the
CCþQHE that clearly manifests the N2 scaling law is based on heat
exchange coherences (HEC) in a system of qubits.38 The HECs, joined
by displacement and squeezing coherences, scale quickly with increas-
ing numbers of qubits in the system and mimic the complete graph
model. The extraction of work using these HECs is proposed to be
accomplished through super-radiance in superconducting circuit QED
schemes. While this approach is promising—particularly because it
directly addresses the desirable superlinear scaling feature—to date no
experiment has been performed to demonstrate that this theory is
practicable.

V. CONCLUSION

In this article, we have explored the rich and interesting relation-
ship between symmetry and entropy. We noted that in many cases,
highly symmetric states also have high entropy. This illustrates some
of the limitations of regarding entropy as a measure of “disorder,”
because a state that looks ordered from the symmetry point of view
may also be highly “disordered” from the entropy point of view; the
control theory paradigm provides a better way to conceptualize this
relationship in terms of order, which can actually be used to produce
macroscopic work. The relationship between entropy and symmetries
of state then allows us to provide a quantitative justification for some
instances of Curie’s principle: asymmetry typically does not increase
because asymmetry is the inverse of entropy and entropy does not
decrease. However, we also noted that when symmetries are treated as
constraints on a state-space they may decrease rather than increase
entropy, so much hangs on the specific way in which symmetries are
being employed. We also saw that these symmetry-related effects pro-
vide an elegant demonstration of the differences between the probabil-
ities of statistical mechanics and the probabilities of quantum
mechanics; for the von Neumann entropy of a pure quantum state is
completely independent of the symmetry properties of the state, since
the probabilities associated with that state are not to be interpreted as
probability distributions over genuinely different microstates.

In the case of dynamical symmetries, we saw that the effect of
removing a dynamical symmetry may be to allow transitions that were
previously forbidden, and this may either increase or decrease entropy
depending on the nature of the newly accessible states. We also
observed that in some cases, a purely entropic description may fail to
fully characterize our knowledge of a system’s microstate, since it is
possible to construct examples where the Boltzmann entropy is blind
to our knowledge about the ways in which dynamical evolution is con-
strained by symmetries.

Finally, we argued that the thermodynamic role of symmetries is
best understood in the context of the control theory approach to ther-
modynamics, and we explored how symmetry-based thermodynamic
control can be used to construct useful energy storage and harvesting
systems, such as a “negentropy battery” or coherence capacitor. The
coherence capacitor is inspired by Maxwell’s original vision, using
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quantum thermodynamics and symmetry-based effects as to get
around some of the restrictions of the second law while still living
within the law’s constraints. We proposed a possible extension of the
coherence capacitor concept that would make more active use of con-
trollable symmetries; we believe symmetry-based control of this nature
may provide interesting possibilities for further advances in technolo-
gies based on quantum thermodynamics.
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