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ABSTRACT
We use methods from the Fock space and Segal–Bargmann theories to prove several results on the Gaussian RBF kernel in complex analysis.
The latter is one of the most used kernels in modern machine learning kernel methods and in support vector machine classification algorithms.
Complex analysis techniques allow us to consider several notions linked to the radial basis function (RBF) kernels, such as the feature space
and the feature map, using the so-called Segal–Bargmann transform. We also show how the RBF kernels can be related to some of the most
used operators in quantum mechanics and time frequency analysis; specifically, we prove the connections of such kernels with creation,
annihilation, Fourier, translation, modulation, and Weyl operators. For the Weyl operators, we also study a semigroup property in this case.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060342

I. INTRODUCTION

Positive definite functions and reproducing kernel Hilbert spaces (RKHSs) play an important role in different areas of mathematics, such
as complex analysis, operator theory, and Schur analysis, among others. They are also used to define coherent states in quantum mechanics and
appear in machine learning; see Refs. 1 and 2. Kernel methods and, in particular, support vector machines (SVMs) have different applications
and are used in machine learning for solving practical problems of industrial and technological interest. Indeed, these methods provide
techniques to process, analyze, and compare many types of data. The idea of using kernel methods in this framework goes back to the work of
Aronszajn, see Ref. 3, who was among the first ones to apply them in statistics. Later, Aizerman and co-authors treated positive kernels using
a dot product in another space, the so-called feature space; see Ref. 4. This idea was fully developed only in the 1990s, especially in relation to
vectorial data since kernels provide a vectorial representation of the data in the feature space. A brief account of the history of these methods
can be found in Chapter 1 of Ref. 5. We also refer to Refs. 6 and 7 for different connections and applications related to time series analysis,
statistical communication, control theory, and statistical theory of regression analysis. For further motivations and applications of SVMs in
machine learning, we refer, e.g., to Refs. 5 and 8 and also to Ref. 9 where the approach, however, is in the real case, not complex.

Among the most used kernels in machine learning algorithms and in support vector machine classification algorithms, there are the
so-called Gaussian radial basis function (RBF) kernels. RBF kernels, or more in general RBF functions, also play an important role in neural
networks; see Ref. 10. Actually, in Refs. 2 and 11, the reproducing kernel Hilbert spaces corresponding to the Gaussian RBF kernels were
introduced and used to analyze the learning performance of SVMs.

In this framework, the main objective and novelty of this paper are to use the Fock and Bargmann transforms as a new approach to study
the RBF kernels using complex analysis techniques. This approach may be further developed to prove many other results on the RBF kernels.
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In particular, we prove the connections of such kernels with creation, annihilation, Fourier, translation, modulation, and Weyl operators,
which may find direct applications, for example, in quantum mechanics.

The structure and main results of the paper are as follows: in Sec. II, we briefly recall the preliminary results on the RBF kernels and
spaces and some material that we need in the sequel. In Sec. III, we write the Gaussian RBF kernel in terms of a special Fock kernel and
provide an isomorphism between RBF and Fock spaces and we extend various results from the Fock to RBF spaces; in particular, we discuss
the reproducing kernel property and we provide the characterization and estimates of elements in the RBF space. Section IV deals with a
Segal–Bargmann-type transform in the setting of RBF spaces. We present two approaches to study it, which are, in principle, different. Indeed,
we first consider the Hermite generating function approach and we then use the RBF diagram approach. We show that both approaches
coincide. In Sec. V, we study how the RBF spaces can be connected to different operators that appear in quantum mechanics and time-
frequency analysis. More precisely, we discuss the links with creation, annihilation, and Weyl operators. In Sec. VI, we provide connections
between RBF spaces and the Fourier transform.

II. PRELIMINARIES
In this section, we review the classical notions of feature map, feature space, Fock and RBF kernels, and their RKHSs. For more details,

see Refs. 2, 11, and 12.

Definition 2.1. Let X be a non-empty set. Then, a function k : X × X Ð→ C is called a kernel on X if there exists a C-Hilbert space H with
an inner product ⟨⋅, ⋅⟩H and a map Ψ : X Ð→ H such that we have

k(x, x′) = ⟨Ψ(x′),Ψ(x)⟩H for any x, x′ ∈ H.

Moreover, the space H is called the feature space and Ψ is called a feature map.

Definition 2.2 (Fock space). Let α > 0; an entire function f : CÐ→ C belongs to the Fock space, denoted by Fα(C) (or simply Fα), if
we have

∥f ∥2
F α ∶= (

α
π
)∫

C
∣ f (z)∣2 exp(−α∣z∣2)dA(z) < ∞, (2.1)

where dA(z) = dxdy is the Lebesgue measure with respect to the variable z = x + iy.

Remark 2.3. The Fock space Fα is a reproducing kernel Hilbert space with the reproducing kernel defined by

Fα(z,w) ∶= exp(αzw) for any z,w ∈ C. (2.2)

Moreover, we have the reproducing kernel property that can be expressed in terms of this integral representation,

f (w) = ∫
C

f (z)Fα(z,w)dAα(z), (2.3)

where we have set dAα(z) = ( απ ) exp(−α∣z∣2)dA(z).

Let w ∈ C be fixed; the normalized Fock kernel is given by the formula

f αw(z) ∶=
Fα(z,w)√
Fα(w,w)

, z ∈ C. (2.4)

In particular, we have

f αw(z) ∶= exp(α(zw − ∣w∣
2

2
)), z,w ∈ C. (2.5)

We recall the Weyl operators on the Fock spaces (see Refs. 12 and 13)

Definition 2.4 (Weyl operator). Let α > 0 and a ∈ C. Then, the Weyl operator is defined and denoted by Wα
a : Fα Ð→ Fα, with

Wα
a f (z) ∶= f (z − a)f αa (z), f ∈ Fα, z, a ∈ C. (2.6)

It is known that we have the semi-group property given by

Wα
aWα

b = exp(−αi Im(ab̄))Wα
a+b, a, b ∈ C. (2.7)
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The RBF kernel and associated reproducing kernel Hilbert spaces in the complex variable case were first introduced in Ref. 11; see also Ref. 2.
Indeed, we briefly review these notions here since they are relevant in the sequel.

Definition 2.5 (RBF kernel). Let γ > 0, z ∈ C, and w ∈ C. The function defined by

Kγ(z,w) = exp(−(z −w )
2

γ2 ) (2.8)

is called the Gaussian RBF kernel with width 1
γ .

Remark 2.6. If x, x′ ∈ R, we have that

Kγ(x, x′) = exp(−(x − x′)2

γ2 )

is the standard real valued RBF kernel, which is used in (SVM) kernel methods.

The RKHSs associated with the complex RBF kernels Kγ were first introduced in Refs. 2 and 11. We revise this notion in the next
definition

Definition 2.7 (RBF space). Let γ > 0; an entire function f : CÐ→ C belongs to the RBF space, denoted by H RBF
γ (C) (or simply Hγ), if

we have

∥f ∥2
H γ ∶= (

2
πγ2 )∫C

∣f (z)∣2 exp((z − z)2

γ2 )dA(z) < ∞, (2.9)

where dA(z) = dxdy is the Lebesgue measure with respect to the variable z = x + iy.

Finally, we recall the scalar product on the standard Hilbert space L2(R), which is given by

⟨ϕ,ψ⟩L2(R) ∶= ∫
R
ϕ(x)ψ(x)dx.

III. FROM FOCK TO RBF KERNELS
In this section, we apply some well-known results on the Fock spaces in order to develop further the RBF kernels and associated Hilbert

spaces. First, we can write the RBF kernel using the classical Fock kernel as follows.

Proposition 3.1. Let γ > 0, z ∈ C, and w ∈ C. Then, we have

Kγ(z,w) = exp(−(z
2 +w 2)
γ2 )F 2

γ2
(z,w). (3.10)

For all α > 0, we also have

Fα(z,w) = exp(α(z
2 +w 2)

2
)K√ 2

α
(z,w). (3.11)

Proof. Let γ > 0 and z,w ∈ C. We develop simple calculations using the RBF and Fock kernel definitions to get

Kγ(z,w) = exp(−(z −w )
2

γ2 )

= exp(−(z
2 +w 2)
γ2 ) exp( 2

γ2 zw)

= exp(−(z
2 +w 2)
γ2 )F 2

γ2
(z,w).

We set α = 2
γ2 and apply formula (3.10) with some easy calculations; we obtain

Fα(z,w) = exp(α(z
2 +w 2)

2
)K√ 2

α
(z,w).
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◻

Theorem 3.2 (RBF-Fock isomorphism). Let γ > 0; an entire function f : CÐ→ C belongs to the RBF space Hγ if and only if there exists a
unique function g in the Fock space F 2

γ2
such that

f (z) = exp(− z2

γ2 )g(z) for any z ∈ C.

Moreover, there exists an isometric isomorphism between the RBF and Fock spaces given by the multiplication operator Mγ2

RBF : Hγ Ð→ F 2
γ2

defined by

Mγ2

RBF[f ](z) ∶=Mexp( z2
γ2 )
[f ](z) = exp( z2

γ2 ) f (z) for any f ∈ Hγ, z ∈ C. (3.12)

Proof. We set g(z) = exp( z2

γ2 )f (z) for every z ∈ C. Then, we just need to show that g belongs to F 2
γ2

. First, it is clear that g is an entire
function as multiplication of two entire functions. Now, we compute the norm of g with respect to the Fock space F 2

γ2
. Indeed, we have

∥g∥2
F 2

γ2
= ( 2

πγ2 )∫C
∣ g(z)∣2 exp(−2γ2∣z∣2)dA(z)

= ( 2
πγ2 )∫C

∣ f (z)∣2 exp( z2 + z 2

γ2 ) exp(−2γ2∣z∣2)dA(z)

= ( 2
πγ2 )∫C

∣ f (z)∣2 exp((z − z)2

γ2 )dA(z)

= ∥f ∥2
H γ < ∞.

In particular, the previous computations show the isometry property of the multiplication operator Mγ2

RBF , that is, we have

∥Mγ2

RBF[f ]∥F 2
γ2
= ∥f ∥Hγ for any f ∈ Hγ.

It was proved in Refs. 2 and 11 that the family of functions given by

eγn(z) =
√

2n

γ2nn!
zn exp(− z2

γ2 ) (3.13)

form an orthonormal basis of the RBF space Hγ. Furthermore, we have

Mγ2

RBF(e
γ
n)(z) =

√
2n

γ2nn!
zn for any z ∈ C. (3.14)

Then, the multiplication operator Mγ2

RBF maps an orthonormal basis of the RBF space Hγ onto an orthonormal basis of the Fock space

F 2
γ2

. Thus, Mγ2

RBF is a surjective isometric operator from Hγ onto F 2
γ2

. Hence, the RBF spaces and Fock spaces are isometrically isomorphic
to each other according to some specific choices of the width parameter γ > 0. ◻

Theorem 3.3. Let γ > 0; then, the inverse operator of Mγ2

RBF is also its adjoint. It is given by the operator

(Mγ2

RBF)
−1

: F 2
γ2
Ð→ Hγ,

which can be computed using the equalities

(Mγ2

RBF)
−1
= (Mγ2

RBF)
∗

=M−γ2

RBF. (3.15)
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Proof. We note that Mγ2

RBF is an isometric isomorphism by Theorem 3.2. Thus, it defines an unitary operator between RBF and Fock

spaces; thus, its inverse coincides with its adjoint operator. Hence, the inverse and adjoint operators of Mγ2

RBF are given by

(Mγ2

RBF)
−1

: F 2
γ2
Ð→ Hγ,

which is obtained using the following formula:

(Mγ2

RBF)
−1
=M−γ2

RBF. (3.16)

In particular, we have the following identity:

⟨Mγ2

RBFf , g⟩F 2
γ2
= ⟨f ,M−γ2

RBFg⟩Hγ for any f ∈ Hγ, g ∈ F 2
γ2

. (3.17)

◻

Theorem 3.4 (RBF kernel reproducing property). Let γ > 0; the RBF Hilbert space Hγ is a reproducing kernel Hilbert space whose repro-
ducing kernel is given by the RBF kernel Kγ(z,w). Moreover, we have the reproducing property, which is given by the following integral
representation:

f (w) = ( 2
πγ2 )∫C

f (z)Kγ(z,w) exp((z − z)2

γ2 )dA(z), f ∈ Hγ,w ∈ C. (3.18)

Proof. We insert formula (3.10) of Proposition 3.1 in the right-hand side of (3.18) and get

( 2
πγ2 )∫C

f (z)Kγ(z,w)e
(z−z )2

γ2 dA(z)

= ( 2
πγ2 )∫C

f (z) exp(−(z
2 +w2)
γ2 )F 2

γ2
(z,w)e

(z−z )2

γ2 dA(z)

= exp(−w
2

γ2 )(
2
πγ2 )∫C

f (z)e
z2

γ2 F 2
γ2
(z,w)e−

2
γ2 ∣z∣

2

dA(z)

= exp(−w
2

γ2 )(
2
πγ2 )∫C

Mγ2

RBF[f ](z)F 2
γ2
(z,w)e−

2
γ2 ∣z∣

2

dA(z).

However, we already know by Theorem 3.2 that Mγ2

RBF is an isometric isomorphism between the Fock and RBF spaces. Thus, it is clear

that Mγ2

RBF( f ) ∈ F 2
γ2

since we have f ∈ Hγ. We use the classical Fock reproducing kernel property and the explicit expression of Mγ2

RBF( f ) to
get

( 2
πγ2 )∫C

Mγ2

RBF[f ](z)F 2
γ2
(z,w) exp(− 2

γ2 ∣z∣
2)dA(z) =Mγ2

RBF[f ](w)

= exp(w
2

γ2 ) f (w).

Therefore, we insert this in the previous calculations and obtain

( 2
πγ2 )∫C

f (z)Kγ(z,w) exp((z − z)2

γ2 )dA(z) = f (w).

◻
Inspired from the case treated in Refs. 2 and 11, we prove the next result.

Proposition 3.5. For a fixed w ∈ C, we denote by Kw
γ the function defined as

Kw
γ (z) := Kγ(z,w).

Then, the following holds:

J. Math. Phys. 63, 113506 (2022); doi: 10.1063/5.0060342 63, 113506-5
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1. Kγ(z,w) =
∞

∑
n=0

en(z)en(w) for any z,w ∈ C.

2. ⟨Kw
γ , Kz

γ⟩Hγ = Kγ(z,w) for any z,w ∈ C.

Proof.

1. Let z,w ∈ C; we make the following calculations:

∞

∑
n=0

eγn(z)eγn(w) = (
∞

∑
n=0

2n

γ2nn!
znw n) exp(−(z

2 +w 2)
2

)

= exp( 2
γ2 zw) exp(−(z

2 +w 2)
2

)

= F 2
γ2
(z,w) exp(−(z

2 +w 2)
2

).

Then, we apply Proposition 3.1 and get
∞

∑
n=0

eγn(z)eγn(w) = Kγ(z,w).

2. For a fixed z,w ∈ C, it is clear that the function Kw
γ belongs to the RBF space Hγ. Thus, using the reproducing kernel property proved

in Theorem 3.4, we have
⟨Kw

γ , Kz
γ⟩Hγ = Kw

γ (z)
= Kγ(w, z).

◻

Remark 3.6. In analogy with the classical notion of Fock coherent states that appear in quantum mechanics, the kernel functions Kw
γ

will be called the RBF coherent states.

We can control functions of the RBF spaces as it is described in the next result.

Proposition 3.7 (RBF estimate). Let γ > 0 and f ∈ Hγ. Then, we have

∣f (z)∣ ≤ exp( 2
γ2 y2)∥f ∥Hγ for any z = x + iy ∈ C. (3.19)

In particular, if f is restricted to the real line, we have
∣f (x)∣ ≤ ∥f ∥Hγ , x ∈ R.

Proof. We know by the reproducing kernel property proved in Theorem 3.4 that

f (z) = ⟨f , Kz
γ⟩Hγ.

Thus, using the Cauchy–Schwartz inequality, we have
∣f (z)∣ ≤ ∥Kz

γ∥Hγ∥f ∥Hγ. (3.20)

However, it is clear by the reproducing property that we have

∥Kz
γ∥2

H γ = Kz
γ(z) = Kγ(z, z).

Therefore, making some simple calculations, we obtain

∥Kz
γ∥2

H γ = exp( 4
γ2 y2).

Finally, we insert the previous calculation in inequality (3.20) and conclude the proof of the first part of the statement. If f is restricted to the
real line, we just take y = 0 in the RBF kernel estimate (3.19). ◻
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Remark 3.8. The RBF kernel estimate that we got in the previous result can be directly deduced from Theorem 3.2 combined with the
classical Fock kernel estimate in complex analysis.

Let γ > 0, and set

eγn(z) =
√

2n

γ2nn!
zn exp(− z2

γ2 ), z ∈ C. (3.21)

Then, as a direct consequence of the previous result, we have the following.

Corollary 3.9. For any w ∈ C and n ≥ 0, we have

eγn(w) = (
2
πγ2 )∫C

eγn(z)Kγ(z,w) exp((z − z)2

γ2 )dA(z).

In particular, using formula (3.21), it holds that

wn exp(−w
2

γ2 ) = (
2
πγ2 )∫C

zn exp(− z2

γ2 )Kγ(z,w) exp((z − z)2

γ2 )dA(z).

Proof. We just need to apply Theorem 3.4 to the orthonormal basis functions eγn. ◻

Theorem 3.10 (sequential characterization). An entire function f : CÐ→ C, f (z) =
∞

∑
n=0

anzn belongs to the RBF space Hγ if and only if it

holds that

∞

∑
k=0

k!γ2k

2k

RRRRRRRRRRRRR

[
k
2 ]

∑
j=0

ak−2j

γ2jj!

RRRRRRRRRRRRR

2

< ∞. (3.22)

Proof. We note that thanks to Theorem 3.2, we know that f belongs to the RBF space Hγ if and only if there exists a unique function
g ∈ F 2

γ2
such that we have

f (z) = exp(− z2

γ2 )g(z), ∀z ∈ C. (3.23)

We can write g(z) =
∞

∑
k=0

bkzk that belongs to F 2
γ2

so that we have the growth condition given by

∞

∑
k=0

k!γ2k

2k ∣bk∣2 < ∞. (3.24)

We observe that using the Cauchy product, we have

g(z) = exp( z2

γ2 )f (z)

= (
∞

∑
n=0

z2n

γ2nn!
)(
∞

∑
n=0

anzn)

=
∞

∑
k=0

βkzk,

where we have set βk =
k
∑
j=0

sjak−j with sj = 1
γ2mm! for j = 2m and sj = 0 for j odd. As a consequence, we note that for any k ≥ 0, we have
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βk =
k

∑
j=0

sjak−j

= ∑
j

s2jak−2j +∑
j

s2j+1ak−(2j+1)

=
[

k
2 ]

∑
j=0

ak−2j

γ2jj!
.

However, we know that

g(z) =
∞

∑
k=0

bkzk =
∞

∑
k=0

βkzk.

Thus, if we identify the coefficients, we obtain that for any k ≥ 0,

bk = βk =
[

k
2 ]

∑
j=0

ak−2j

γ2jj!
.

Finally, we replace in (3.24) and get the condition

∞

∑
k=0

k!γ2k

2k

RRRRRRRRRRRRR

[
k
2 ]

∑
j=0

ak−2j

γ2jj!

RRRRRRRRRRRRR

2

< ∞.

◻

IV. THE RBF SEGAL–BARGMANN TRANSFORM
In this section, we will use the Segal–Bargmann transform and its different properties in order to study the notions of feature map and

feature spaces associated with the RBF kernels. In order to introduce the RBF version of the Segal–Bargmann transform, we will follow two
possible approaches that we can compare later.

A. The Hermite generating function approach
We denote by A α

SB(z, x) the classical Segal–Bargmann kernel corresponding to the Fock space Fα. More precisely, we have (see Ref. 14)

A α
SB(z, x) = exp(−α

2
(z2 + x2) +

√
2αzx), ∀z ∈ C, x ∈ R. (4.25)

Then, the classical Segal–Bargmann transform Bα : L2(R) Ð→ Fα(C) is defined for any φ ∈ L2(R) by the following expression:

Bα[φ](z) = ∫
R
A α

SB(z, x)φ(x)dx. (4.26)

In this paper, we will take α = 2
γ2 with γ > 0. Now, we consider the RBF Segal–Bargmann kernel given by the generating function,

A γ
RBF(z, x) ∶=

∞

∑
n=0

eγn(z)ψαn(x), z ∈ C, x ∈ R, (4.27)

where ψαn are the normalized weighted Hermite functions with the parameter α = 2
γ2 and eγn is an orthonormal basis of the RBF space Hγ that

was introduced before in Sec. III. This allows us to introduce the map Φ : CÐ→ L2(R), defined by

Φ(z) ∶= A γ
RBF(z, ⋅), ∀z ∈ C. (4.28)

We will study the RBF Segal–Bargmann transform of form (I) defined by

B
γ
RBF[ψ](z) ∶= ⟨Φ(z),ψ⟩L2(R) = ∫

R
A γ

RBF(z, x)ψ(x)dx. (4.29)
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Now, we can prove the following.

Proposition 4.1. Let γ > 0. Then, it holds that

A γ
RBF(z, x) = exp(− z2

γ2 )A
α
SB(z, x) for any z ∈ C, x ∈ R

with α = 2
γ2 .

Proof. It is well-known that the classical Segal–Bargmann kernel can be obtained as the generating function associated with the
normalized weighted Hermite functions. Indeed, for any z ∈ C and x ∈ R, we have

A α
SB(z, x) =

∞

∑
n=0

√
αn

n!
znψαn(x).

We set α = 2
γ2 and continue the calculations to get

A γ
RBF(z, x) =

∞

∑
n=0

eγn(z)ψαn(x)

= exp(− z2

γ2 )
∞

∑
n=0

√
αn

n!
znψαn(x)

= exp(− z2

γ2 )A
α
SB(z, x).

◻

Corollary 4.2. Let γ > 0 and φ ∈ L2(R), and set α = 2
γ2 . Then, we have

B
γ
RBF[φ](z) =M

−γ2

RBF[Bα(φ)](z) for any z ∈ C.

Proof. To prove the result, we only need to write the integral representation of the transformBγRBF and apply Proposition 4.1. ◻

Proposition 4.3. Let γ > 0. Then, we have the explicit expression given by

A γ
RBF(z, x) = exp(−(x −

√
2z)2

γ2 ) for any z ∈ C, x ∈ R.

Proof. We know by Proposition 4.1 that we have

A γ
RBF(z, x) = exp(− z2

γ2 )A
α
SB(z, x) for any z ∈ C, x ∈ R

with α = 2
γ2 . Then, we insert formula (4.25) and obtain

A γ
RBF(z, x) = exp(− z2

γ2 ) exp(−(z
2 + x2)
γ2 + 2

√
2

γ2 zx)

= exp(− 1
γ2 (2z2 + x2 − 2

√
2zx))

= exp(−(x −
√

2z)2

γ2 ).

◻
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Remark 4.4. We have
A γ

RBF(0, x) = e−
x2

γ2 , ∀x ∈ R.

We introduce the map Φ : CÐ→ L2(R), defined by

Φ(z) ∶= A γ
RBF(z, ⋅), ∀z ∈ C. (4.30)

In the sense that for any fixed z ∈ C, we have
Φ(z)(x) = A γ

RBF(z, x), ∀x ∈ R.

Proposition 4.5. Let z,w ∈ C. Then, we have

⟨Φ(z),Φ(w)⟩L2(R) = γ
√π

2
Kγ(w, z).

Moreover, for any z ∈ C, we have

∥Φ(z)∥L2(R) =
√

γ
√π

2
exp(−(z − z̄)2

2γ2 ).

Proof. Let z,w ∈ C be fixed. Then, using Proposition 4.3, we have

⟨Φ(z),Φ(w)⟩L2(R) = ∫
R
Φ(z)(x)Φ(w)(x)dx

= ∫
R
A γ

RBF(z, x)A γ
RBF(w, x)dx

= ∫
R

exp(−(x −
√

2z)2

γ2 ) exp(−(x −
√

2w)2

γ2 )dx

= exp(− 2
γ2 (z̄

2 +w2))∫
R

exp(− 2
γ2 x2 + 2

√
2

γ2 (z̄ +w)x)dx.

At this stage, we can use the well-known Gaussian integral formula given by

∫
R

e−ax2
+bxdx =

√π
a

e
b2

4a , a > 0, b ∈ C.

Indeed, we set a = 2
γ2 and b = 2

√

2
γ2 (z̄ +w) ∈ C, which leads to

b2

4a
= (z̄ +w)

2

γ2 .

Therefore, we obtain

⟨Φ(z),Φ(w)⟩L2(R) = γ
√π

2
exp(− 2

γ2 (z̄
2 +w2)) exp((z̄ +w)

2

γ2 )

= γ
√π

2
exp( 1

γ2 (−z̄ 2 −w2 + 2z̄w))

= γ
√π

2
exp(−(w − z̄)2

γ2 )

= γ
√π

2
Kγ(w, z).

In order to justify the second part of the statement, we note that

∥Φ(z)∥2
L2(R) = ⟨Φ(z),Φ(z)⟩L2(R).
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Thus, we apply Proposition 4.5 and get

∥Φ(z)∥2
L2(R) = γ

√π
2

Kγ(z, z).

However, we have
√

Kγ(z, z) = exp(−(z − z̄)2

2γ2 ).

Hence, we conclude that

∥Φ(z)∥L2(R) =
√

γ
√π

2
exp(−(z − z̄)2

2γ2 ).

◻

Remark 4.6. We note that in the case of the RBF kernel Kγ, the feature space and the feature map, which were discussed in Definition 2.1,
are obtained by setting H = L2(R) and Ψ = Φ.

Proposition 4.7. Let γ > 0 and n ≥ 0, and set α = 2
γ2 . Then, it holds that

B
γ
RBF[ψ

α
n](z) = eγn(z), ∀z ∈ C, (4.31)

where ψαn denote the α-weighted normalized Hermite functions and eγn is the orthonormal basis of the RBF space Hγ given by (3.21). Moreover,
we also have

∥BγRBF[ψ
α
n]∥Hγ = ∥ψαn∥L2(R) = 1. (4.32)

Proof. We observe that using Corollary 4.2 combined with the properties of the Bargmann transform Bα, we have

B
γ
RBF[ψ

α
n](z) =M−γ2

RBF[Bα(ψαn)](z)

= exp(− z2

γ2 )Bα (ψαn)](z)

= exp(− z2

γ2 )
√

αn

n!
zn

= exp(− z2

γ2 )
√

2n

γnn!
zn

= eγn(z).

The second part of the statement comes from the fact that both eγn and ψαn are the orthonormal basis of Hγ and L2(R), respectively. ◻

Theorem 4.8. The RBF Segal–Bargmann transform of form (I) defined by

B
γ
RBF[ψ](z) ∶= ⟨Φ(z),ψ⟩ = ∫

R
A γ

RBF(z, x)ψ(x)dx, ψ ∈ L2(R), (4.33)

is an isometric isomorphism mapping the standard Schrödinger Hilbert space L2(R) onto the RBF space Hγ.

Proof. Let γ > 0, and set α = 2
γ2 . Then, for any ψ ∈ L2(R), we have

∥BγRBF[ψ]∥
2
H γ = (

2
πγ2 )∫C

∣BγRBF[ψ](z)∣
2 exp((z − z)2

γ2 )dA(z)

= ( 2
πγ2 )∫C

∣M−γ2

RBF[Bα(ψ)]∣
2

exp((z − z)2

γ2 )dA(z).

However, we know by Theorem 3.2 that M−γ2

RBF is an isometric operator from the Fock space Fα(C) onto the RBF space Hγ. Thus, we also
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use the classical result by Bargmann on the transform Bα and obtain

∥BγRBF[ψ]∥
2
H γ = ∥M

−γ2

RBF[Bα(ψ)]∥Hγ

= ∥Bα(ψ)∥Fα(C)

= ∥ψ∥L2(R).

◻

B. The RBF diagram approach and inverse transform
We consider the composition of the classical Segal–Bargmann transform with the RBF multiplication operator that was introduced in

Theorem 3.2. Namely, this RBF Segal–Bargmann transform of form (II) is well posed thanks to the following commutative diagram:

In particular, we consider the following definition:

S
γ ∶=M−γ2

RBF ○ B 2
γ2

. (4.34)

This second approach will help a lot to translate several results involving the Segal–Bargmann transform from the Fock to the RBF
kernels. In particular, we prove the following result.

Proposition 4.9. The RBF Bargmann transform of form (I) coincides with the RBF Bargmann transform of form (II). In particular, for any
φ ∈ L2(R), we have

B
γ
RBF[φ](z) = S

γ[φ](z) for any z ∈ C.

Proof. With some calculations, we obtain that for any φ ∈ L2(R) and z ∈ C, we have

S
γ[φ](z) = ( 2

πγ2 )
1
4

∫
R

exp(−(
√

2z − x)2

γ2 )φ(x)dx. (4.35)

Thus, we apply Proposition 4.3 and conclude that

B
γ
RBF[φ](z) = S

γ[φ](z) for any z ∈ C.

◻
We observe that for z = 0, we have

S
γ[φ](0) = ( 2

πγ2 )
1
4

∫
R

e−
x2

γ2 φ(x)dx. (4.36)

We note that in order to calculate the inverse of the RBF Segal–Bargmann transform, it is enough to use expression (4.34) and Proposition 4.9,
which leads to the following result.

Theorem 4.10. For every γ > 0, we note that the RBF Segal–Bargmann transform inverse (BγRBF)
−1 : Hγ Ð→ L2(R) is given by

(BγRBF)
−1 = (B 2

γ2
)
−1
○Mγ2

RBF. (4.37)

More precisely, for any f ∈ Hγ, we have the explicit expression

(BγRBF)
−1[f ](x) = ( 2

πγ2 )
1
4

∫
C
A γ

RBF(z, x)f (z) exp((z − z)2

γ2 )dA(z). (4.38)
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Proof. First, we observe that using formula (4.34) and Proposition 4.9, we have

(BγRBF)
−1 = (M−γ2

RBF ○ B 2
γ2
)
−1
= (B 2

γ2
)
−1
○Mγ2

RBF.

Let f ∈ Hγ, and set α = 2
γ2 . Then, thanks to Proposition 4.3 and the Segal–Bargmann transform inverse expression, we obtain

(BγRBF)
−1[f ](x) = (B 2

γ2
)
−1
○Mγ2

RBF[f ](x)

= (B 2
γ2
)
−1
[exp( z2

γ2 )f ](x)

= ( 2
πγ2 )

1
4

∫
C
A α

SB(z, x) exp( z2

γ2 )f (z) exp(−α∣z∣2)dA(z)

= ( 2
πγ2 )

1
4

∫
C

exp( z2

γ2 )A
γ
RBF(z, x) exp( z2

γ2 )f (z) exp(− 2
γ2 ∣z∣

2)dA(z)

= ( 2
πγ2 )

1
4

∫
C
A γ

RBF(z, x)f (z) exp((z − z)2

γ2 )dA(z).

◻

Remark 4.11. We note that the RBF Segal–Bargmann transform is a unitary operator so that its adjoint coincides with its inverse. In
particular, for every f ∈ Hγ, we have

(BγRBF)
∗[f ](x) = ( 2

πγ2 )
1
4

∫
C
A γ

RBF(z, x)f (z) exp((z − z)2

γ2 )dA(z). (4.39)

V. CREATION, ANNIHILATION, AND WEYL OPERATORS ON RBF SPACES
Let X be the position operator on L2(R), which is defined by X(φ)(x) = xφ(x) for any φ that belongs to the domain of X and x ∈ R. We

denote by D(X) the domain of X, which is given by

D(X) ∶= {φ ∈ L2(R), X(φ) ∈ L2(R)}.

We denote by P the momentum operator on L2(R) defined by P(φ) = d
dxφ for any φ that belongs to the domain of P, which is given by

D(P) ∶= {φ ∈ L2(R), P(φ) ∈ L2(R)}.

Then, we can prove the following.

Proposition 5.1. It holds that
d
dz
B
γ
RBF = −

4
γ2 MzB

γ
RBF +

2
√

2
γ2 B

γ
RBFX onD(X). (5.40)

Proof. Let φ ∈ D(X); we have
B
γ
RBF[φ](z) = ∫

R
A γ

RBF(z, x)φ(x)dx.

Hence,
d
dz
B
γ
RBF[φ](z) = ∫

R

d
dz

A γ
RBF(z, x)φ(x)dx. (5.41)

However, we know by Proposition 4.3 that

A γ
RBF(z, x) = exp(−(x −

√
2z)2

γ2 ) for any z ∈ C, x ∈ R.
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Thus, developing direct calculations, we obtain

d
dz

A γ
RBF(z, x) = 2

√
2

γ2 (x −
√

2z)A γ
RBF(z, x). (5.42)

Hence, we insert (5.42) in (5.41) and get

d
dz
B
γ
RBF[φ](z) =

2
√

2
γ2 ∫R

(x −
√

2z)A γ
RBF(z, x)φ(x)dx

= − 4
γ2 MzB

γ
RBF[φ](z) +

2
√

2
γ2 B

γ
RBF[X(φ)](z).

This ends the proof. ◻

Corollary 5.2. We have

(BγRBF)
−1( γ2

2
√

2
d
dz
+
√

2Mz)BγRBF = X on D(X). (5.43)

Proof. On D(X), we have by Proposition 5.1 that

d
dz
B
γ
RBF +

4
γ2 MzB

γ
RBF =

2
√

2
γ2 B

γ
RBFX.

Thus, we obtain

X = (BγRBF)
−1( γ2

2
√

2
d
dz
+
√

2Mz)BγRBF on D(X).

◻
Let γ > 0 and a ∈ C. Then, we denote by Wγ,a

RBF the RBF-Weyl operators on the spaces Hγ that are obtained using the following
commutative diagram:

Thus, we define the RBF-Weyl operator by

Wγ,a
RBF ∶=M

−γ2

RBF ○W
2
γ2

a ○Mγ2

RBF. (5.44)

Theorem 5.3. Let γ > 0 and a ∈ C. Then, the RBF-Weyl operator Wγ,a
RBF is an isometric operator from the RBF space Hγ onto itself.

Moreover, its adjoint and inverse are given by
(Wγ,a

RBF)
∗ = (Wγ,a

RBF)
−1 =Wγ,−a

RBF .

Proof. We have

(Wγ,a
RBF)

−1 = (M−γ2

RBF ○W
2
γ2

a ○Mγ2

RBF)
−1

= (Mγ2

RBF)
−1
○ (W

2
γ2

a )
−1

○ (M−γ2

RBF)
−1

=M−γ2

RBF ○W
2
γ2

−a ○M
γ2

RBF.

We know by classical results on the Weyl operators (see Ref. 12) that
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(W
2
γ2

a )
−1

=W
2
γ2

−a.

Moreover, thanks to Theorem 3.3, we also have

(M−γ2

RBF)
−1
=Mγ2

RBF and (Mγ2

RBF)
−1
=M−γ2

RBF.

Thus, we obtain

(Wγ,a
RBF)

−1 =M−γ2

RBF ○W
2
γ2

−a ○M
γ2

RBF

=Wγ,−a
RBF .

◻
We note that the semi-group property related to the RBF-Weyl operator is given by the following result.

Proposition 5.4. Let γ > 0 and a, b ∈ C. Then, we have

Wγ,a
RBFW

γ,b
RBF = exp(φγ(a, b))Wγ,a+b

RBF

with φγ(a, b) ∶= − 2i
γ2 Im(ab̄). In particular, if a and b are real numbers, we have

Wγ,a
RBFW

γ,b
RBF =W

γ,a+b
RBF .

Proof. We observe that (Mγ2

RBF)
−1
=M−γ2

RBF ; thus, the following calculations hold:

Wγ,a
RBF ○W

γ,b
RBF = (M

−γ2

RBF ○W
2
γ2

a ○Mγ2

RBF) ○ (M
−γ2

RBF ○W
2
γ2

b ○M
γ2

RBF)

=M−γ2

RBF ○ (W
2
γ2

a ○W
2
γ2

b ) ○M
γ2

RBF.

However, we know by formula (2.7) that the Weyl operator satisfies the semi-group property given by

W
2
γ2

a ○W
2
γ2

b = exp(φγ(a, b))W
2
γ2

a+b

with φγ(a, b) ∶= − 2i
γ2 Im(ab̄). Therefore, we obtain

Wγ,a
RBF ○W

γ,b
RBF = exp(− 2i

γ2 Im(ab̄))M−γ2

RBF ○W
2
γ2

a+b ○M
γ2

RBF

= exp(− 2i
γ2 Im(ab̄))Wγ,a+b

RBF .

This ends the proof. ◻

We can compute an explicit expression of the RBF-Weyl operator, which is given in the next result.

Theorem 5.5. Let γ > 0, a ∈ C, and f ∈ Hγ. Then, we have

Wγ,a
RBFf (z) = exp(a2 − ∣a∣2

γ2 + 2z
(ā − a)
γ2 )f (z − a), z ∈ C.

Moreover, the RBF-Weyl operator reduces to the standard translation operator defined by

Ta[f ](z) ∶= f (z − a), z ∈ C,

if and only if a ∈ R.
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Proof. Let f ∈ Hγ; then, using expression (5.44), we have

Wγ,a
RBF[f ](z) = (M

−γ2

RBF ○W
2
γ2

a )[exp( z2

γ2 )f ](z)

= exp(− z2

γ2 )W
γ,a
RBF[exp( z2

γ2 )f ](z)

= exp(− z2

γ2 ) exp((z − a)2

γ2 )f (z − a) exp( 2
γ2 (zā − ∣a∣

2

2
))

= exp(a2

γ2 − 2
za
γ2 + 2zā − ∣a∣

2

γ2 )f (z − a)

= exp(a2 − ∣a∣2
γ2 ) exp(2z

(ā − a)
γ2 )f (z − a), z ∈ C.

From the previous expression, it is easy to see that if a ∈ R, we will have a2 = ∣a∣2 and ā = a. Thus, it follows that for every a ∈ R, we have

Wγ,a
RBF[f ](z) = f (z − a) = Ta[f ](z). (5.45)

For the converse, if we assume that (5.45) holds, we will get that

exp(a2 − ∣a∣2
γ2 ) exp(2z

(ā − a)
γ2 ) = 1 for any z ∈ C.

In particular, we obtain that a = ā, which shows that a ∈ R; this ends the proof. ◻

VI. THE FOURIER TRANSFORM ON RBF SPACES
Let α > 0; we denote by Fα the Fourier transform on L2(R) defined by

Fα(φ)(λ) ∶=
√ α

2π∫R
exp(−αiλx)φ(x)dx.

It is possible to use a commutative diagram in order to consider the composition

Zα = Bα ○ Fα ○ B−1
α : Fα(C) Ð→ Fα(C), (6.46)

where Bα is the classical Segal–Bargmann transform associated with the Fock space Fα(C).
It turns out that Zα reduces to a simple composition operator Cϕ with the symbol given by the function ϕ(z) = −iz (see Ref. 15), which

means
Cϕ f (z) ∶= f ○ ϕ(z) = f (−iz), z ∈ C, f ∈ Fα(C). (6.47)

Let us fix γ > 0. Then, using the RBF-Bargmann transform given by (4.34), we can introduce the following commutative diagram:

Thus, we have
Sγ ∶= BγRBF ○ F 2

γ2
○ (BγRBF)

−1.

We first observe that we have
B
γ
RBF ∶=M

−γ2

RBF ○ B 2
γ2

and (BγRBF)
−1 = B−1

2
γ2
○Mγ2

RBF.
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Then, we can prove the following result.

Proposition 6.1. Let γ > 0; it holds that
Sγ =M−γ2

RBF ○ Cϕ ○M
γ2

RBF ,

where ϕ(z) = −iz for any z ∈ C.

Proof. We note that thanks to Proposition 4.9, we know thatBγRBF = S
γ. Thus, we can provide the following calculations:

Sγ = BγRBF ○ F 2
γ2
○ (BγRBF)

−1

= SγRBF ○ F 2
γ2
○ (SγRBF)

−1

= (M−γ2

RBF ○ B 2
γ2
) ○ F 2

γ2
○ (B−1

2
γ2
○Mγ2

RBF).

Then, we shall use the classical result given by formulas (6.46) and (6.47) for the parameter α = 2
γ2 to get

Sγ =M−γ2

RBF ○ (B 2
γ2
○ F 2

γ2
○ B−1

2
γ2
) ○Mγ2

RBF

=M−γ2

RBF ○Z 2
γ2
○Mγ2

RBF

=M−γ2

RBF ○ Cϕ ○M
γ2

RBF.

This ends the proof. ◻

As a consequence, we can prove the next result.

Theorem 6.2. Let γ > 0 and f ∈ Hγ. Then, we have

Sγ f (z) = exp(− z2

2γ2 )f (−iz), z ∈ C.

In particular, if we set ϕ(z) = −iz, then we have
Sγ =M−2γ2

RBF ○ Cϕ.

Proof. Let f ∈ Hγ; thanks to Proposition 6.1, we have

Sγ =M−γ2

RBF ○ Cϕ ○M
γ2

RBF.

Thus, we set ψf (z) = C−iz ○Mγ2

RBF[f ](z) and get

ψf (z) = Cϕ[exp( z2

γ2 )f ](z)

= exp(− z2

γ2 )f (−iz).

As a consequence, we obtain
Sγ f (z) =M−γ2

RBF[ψf ](z)

= exp(− z2

γ2 )ψf (z)

= exp(−2
z2

γ2 )f (−iz).

◻
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Let a ∈ R; we consider on L2(R) the translation operator defined by τa : φz→ τaφ(x) ∶= φ(x − a). Then, using the RBF-Bargmann
transform given by (4.34), we can introduce the following commutative diagram:

Thus, we consider the factorization given by the operator

La
γ ∶= BγRBF ○ τa ○ (BγRBF)

−1.

Proposition 6.3. Let a ∈ R and γ > 0. Then, it holds that

La
γ =Wγ,a

RBF. (6.48)

Proof. Some calculations and a classical result on the Weyl operators (see Ref. 15) show that

La
γ = (M−γ2

RBF ○ B 2
γ2
) ○ τa ○ (B−1

2
γ2
○Mγ2

RBF)

=M−γ2

RBF ○ (B 2
γ2
○ τa ○ B−1

2
γ2
) ○Mγ2

RBF

=M−γ2

RBF ○W
2
γ2

a ○Mγ2

RBF

=Wγ,a
RBF.

◻

VII. CONCLUDING REMARKS
In a forthcoming work, we plan to investigate further results on RBF spaces using Fock spaces in the several variables case. This is not

the only way to extend the case of one complex variable case to a multi-dimensional case; in fact, one could consider the RBF kernels in the
hypercomplex case. In the specific case of quaternions, one may consider the setting of slice hyperholomorphic functions; indeed, it is possible
to introduce a quaternionic version of the RBF kernels thanks to the properties satisfied by quaternionic intrinsic regular functions. Inspired
from the calculations in Proposition 3.1, we introduce the quaternionic slice regular RBF kernel, which is defined by

Kγ,S(q, p) ∶= e−
q2

γ2 FS
2
γ2
(q, p)e−

p 2

γ2 , ∀(q, p) ∈ H ×H, (7.49)

where FS
2
γ2

is the slice hyperholomorphic Fock space kernel (see Ref. 16), which is defined in terms of the ∗-exponential function,

FS
2
γ2
(q, p) ∶= e∗(

2
γ2 qp) =

∞

∑
n=0

2n

γ2nn!
qnp n.

We note that by restricting both the variables q and p to the real line R, we get the classical Gaussian RBF kernel on R.
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